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ABSTRACT

The collocation method is a widely used numerical method for science and engineering problems governed
by partial differential equations. This paper provides a comprehensive review of collocation methods and their
applications, focused on elasticity, heat conduction, electromagnetic field analysis, and fluid dynamics. The
merits of the collocation method can be attributed to the need for element mesh, simple implementation, high
computational efficiency, and ease in handling irregular domain problems since the collocation method is a type
of node-based numerical method. Beginning with the fundamental principles of the collocation method, the
discretization process in the continuous domain is elucidated, and how the collocation method approximation
solutions for solving differential equations are explained. Delving into the historical development of the collocation
methods, their earliest applications and key milestones are traced, thereby demonstrating their evolution within
the realm of numerical computation. The mathematical foundations of collocation methods, encompassing the
selection of interpolation functions, definition of weighting functions, and derivation of integration rules, are
examined in detail, emphasizing their significance in comprehending the method’s effectiveness and stability. At
last, the practical application of the collocation methods in engineering contexts is emphasized, including heat
conduction simulations, electromagnetic coupled field analysis, and fluid dynamics simulations. These specific
case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex
engineering challenges. In conclusion, this paper puts forward the future development trend of the collocation
method through rigorous analysis and discussion, thereby facilitating further advancements in research and
practical applications within these fields.
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1 Introduction

In engineering, simulation and solving complex mathematical models is a critical task. However,
as the complexity of problems increases, traditional analytical methods often seem inadequate, which
makes researchers and engineers turn to numerical methods [1,2] to obtain accurate and feasible
solutions to practical problems. For the solution to a numerical model can be summarized as
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the function approximation. Generally, interpolation and summation of the basis function are two
commonly used ways. Based on these two thoughts, a large number of numerical methods have
emerged, such as finite element method (FEM) [3], finite volume method (FVM) [4], and boundary
element method (BEM) [5,6]. Among these methods, the collocation method has attracted widespread
attention due to its distinct advantages (shown in Fig. 1). Specific advantages include natural treatment
of boundaries, high computational efficiency, applicability to a wide range of physical fields, and so
on. By selecting appropriate collocation points or discrete points within the problem domain, the
collocation method can transform engineering problems into a series of algebraic equations, so that the
numerical solution of the problem can be implemented. For a given differential problem, a collocation
scheme frequently results in some of the most effective practical numerical results. Furthermore, the
method is so versatile and intuitive that it is unsurprising that these methods have been extensively used
for numerous decades. In addition, the collocation method, as a numerical technique, has achieved
great success in solving various engineering problems attributed to its flexibility and adaptability.

Figure 1: The main application disciplines of the collocation method

The collocation method has some key milestones and early applications including early works on
numerical analysis [7], application in fluid dynamics and structural mechanics [8], and advancements
in radial basis functions [9]. Certainly, the collocation method, as a node-based method, is naturally
combined with the meshless method. With the deepening research into meshless methods, collocation
techniques have also seen further developments. Factually, the development of meshless methods
has a long history, with early representative methods tracing back to the generalized finite differ-
ence method (GFDM) [10–13] and smoothed particle hydrodynamics (SPH) [14–17]. Subsequently,
Onate et al. [18,19] proposed the finite point method (FPM) by combining the moving least squares
approximation with collocation discretization techniques. Building upon the FPM, Breitkopf et al. [20]
presented a double-grid diffuse collocation method using a sequence of two first-order numerical
derivations. Duarte and Oden proposed the h-p cloud method [21,22] to solve boundary-value
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problems. Lee et al. [23] introduced the meshfree point collocation method (MPCM) and applied
it to elastic crack problems. Aluru developed the point collocation method with reproducing kernel
approximations [24] to overcome the problems of nodal volumes and the implementation in boundary
conditions. The moving least-square reproducing kernel approximations technique [25] does not
require the derivative calculation and has been successfully used to solve the Poisson and Stokes
equations. However, the relevant researches indicate that the direct collocation method is not inferior
in accuracy and stability [26,27] to the Galerkin-type meshless methods in solving simple problems,
but its accuracy and stability significantly decrease when dealing with complex problems [28].

To mitigate the instability issues in traditional collocation methods, some methods based on
the least-squares discretization technique have emerged. Zhang et al. [29] came up with the least-
squares collocation meshless method, which possesses high accuracy with low computational effort.
Park et al. [30–32] suggested the least-squares meshfree method (LSMM) to eliminate problems caused
by integration operations and employed it to perform the metal forming analysis. Zhang et al. [33]
extended their study to the weighted least-square method. Liu et al. [34] proposed a least-squares radial
point collocation method (LS-RPCM) to perform adaptive analysis stably. The nonlinear integral
differential equation with multiple kernel terms was calculated in two steps by a localized meshless
collocation method [35], which has the characteristic of unconditional stability. The fractional
Rayleigh-Stokes problem was solved by Avazzadeh et al. [36] using a localized hybrid kernel meshless
technique, which makes the method obtain stable results after overcoming the ill-conditioning issue.
Kee et al. [37] proposed the regularized least-squares radial point collocation method (RLS-RPCM1),
where the regularization technique has successfully stabilized the solution of RPCM for the forward
problems.

Moreover, in order to eliminate the computational instability of the collocation method,
Yang et al. [38] conducted a meshless intervention point method (MIP) with h-p-d adaptability by
using the local interpoint approximation technique and extended their research [39] to a meshless
global dielectric method (MGIP) derived from the generalized variational principle.

Aiming to cure some defects of a single discrete approach, or to improve computational stability,
or to facilitate the application of boundary conditions, a class of coupled discrete methods have
also been proposed. Through combining collocation method and meshless local petrov-galerkin
(MLPG), Liu et al. [40] put forth a meshfree weak-strong (MWS) form method. On the basis of
collocation method and Galerkin method, Pan et al. [41] developed the Galerkin lest-squares method
(MGLS). The coupling of SPH [42–45] and finite element method (FEM), outlined by Vuyst et al.
[46], showcased benefits in extreme deformations problems. Merging the merits of MLPG and MIP,
Yang et al. [47] illustrated the meshless local strong-weak (MLSW), which can easily implement
boundary conditions while ensuring accuracy.

The following sections of this paper aim to provide a comprehensive perspective review on
the applicability of the collocation method to solve engineering problems. Firstly, in Section 2, the
principles of the collocation method are presented, along with the common approximation schemes
used within this method. Next, successful applications of the collocation method to address problems
in solid mechanics, beam-plate-shell structures, fracture problems, multi-field coupling problems, as
well as heat conduction and fluid flow problems are thoroughly illustrated. To present the performance
of the collocation method in real engineering scenarios, a numerical example is provided in Section 6,
showcasing the application of a subdomain-free element method developed by our research group to
a corrugated sandwich structure within a thermal protection system. Finally, the future trends and
developments with respect to the collocation method are outlined in Section 7.
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2 The Principle of Collocation Method

From the perspective of interpolation, the collocation method can be introduced as follows. Let
us first consider function interpolation methods. Subsequently, a function u(x) can be approximated
by a simpler function ũ(x) that fulfills the interpolation conditions

ũ(xi) = u(xi), i = 1, 2, . . . , n (1)

where n is the number of interpolation points distributed in the domain �. Generally, the interpolation
function is a part of a n-dimensional linear space V . Thus, it can be shown as

ũ(x) =
n∑

i=1

βiYi(x) (2)

where Y1(x), . . . , Yn(x) are basis functions which span V . Note that the coefficients βi can be
determined according to the interpolation conditions, viz. Eq. (1) after a linear system of n algebraic
equations are solved.

Subsequently, the following differential equation needs to be solved approximately

Lu(x) = Q(x) (3)

where L is an invertible differential operator, and q(x) is a source function. Similar to the interpolation
implement, the collocation method aims to find an approximating function ũ(x) ∈ V that satisfies

L̃u(xi) = Q(xi), i = 1, 2, . . . , n (4)

Substituting Eqs. (2) into (4), the collocation method can be presented in a matrix form:⎡⎢⎢⎣
LY1(x1) LY2(x1) . . . LYn(x1)

LY1(x2) LY2(x2) . . . LYn(x2)
...

...
. . .

...
LY1(xn) LY2(xn) . . . LYn(xn)

⎤⎥⎥⎦
⎡⎢⎢⎣

β1

β2

...
βn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
Q(x1)

Q(x2)
...

Q(xn)

⎤⎥⎥⎦ (5)

From the perspective of numerical computation, collocation method can be regarded as a special
type of weighted residual method (WRM) [48]. Its basic theory is described as follows. For a given
engineering problem governed by partial differential equations (PDEs), it has the following definition:

F(u) − f = 0, in � (6)

G(u) − g = 0, on ∂� (7)

When substituting the trial function ũ = ∑n

i=1 βiYi into Eqs. (6) and (7), generally, residuals appear,
which can be expressed as

RI = F (̃u) − f �= 0 (8)

RB = F (̃u) − g �= 0 (9)

The collocation method is defined as treating the weighted function that plays a role in eliminating
residual as Dirac δ function, which can be mathematically written as∫

�

wiRId� =
∫

�

δ(x − xi)RId� = RI = 0 (10)
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∫
�

wiRBd� =
∫

�

δ(x − xi)RBd� = RB = 0 (11)

in which

δ(x − xi) =
{∞, x = xi

0, x �= xi
(12a)∫ ∞

−∞
δ(x − xi)dx = 1 (12b)∫ xi+c

xi−c

δ(x − xi)dx = 1 (c > 0, c → 0) (12c)

Observing Eqs. (10) and (11), in a word, the collocation method is a numerical method that
enforces the residual generated by each collocation point in the governing equation to be zero.
Therefore, the advantages of the collocation method lie in its simplicity, implement convenience, and
high efficiency. However, its drawbacks are primarily manifested in computational instability, lower
solution accuracy, and slow convergence speed.

2.1 Approximation Scheme
There are many ways to construct approximation functions according to collocation information,

and the choice and definition of these functions will directly affect the stability, accuracy, and
applicability of the method. The following content will briefly introduce some commonly used
approximation schemes.

2.1.1 Moving Least Square (MLS) Approximation

Moving least square method was initially used for curve fitting [49], and was then further
developed by Wixom et al. [50], Lancaster et al. [51]. As shown in Fig. 2, MLS approximation functions
generally employ a linear combination of polynomial basis functions and for the nodeI in the support
domain �S (Generally with circular Fig. 3 and rectangular shape Fig. 4), the approximation function
can be written as

uI(x) ≈ ũI(x) =
m∑

i=1

pi(x)ai(x) = pT
I (x)a(x), x ∈ �S (13)

which p(x) = [p1(x), p2(x), . . . , pm(x)]T is polynomial basis functions, m is the number of terms in the
complete polynomial basis functions, a(x) = [a1(x), a2(x), . . . , am(x)]T is the coefficient vector.

Figure 2: MLS approximation for the 1D problem
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Figure 3: Support domain with circular shape

Figure 4: Support domain with rectangular shape

Aiming to determine the coefficient vector a(x), a weighted discrete L2-norm is constructed in the
support domain �S:

J(a) =
N∑

J=1

wJ(x)[pT
J (x)a(x) − û(xJ)]2 (14)

where N is the total number of nodes in the domain �S, wJ(x) is the weight function at node J.

To find the stationary value of the functional J(a) with respect to a(x), viz. ∂J/∂a = 0, it yields

a(x) = A−1
(x)B(x)û (15)
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in which

A(x) =
N∑

J=1

wJ(x)pJ(x)pT
J (x) (16)

B(x) = [w1(x)p1(x), w2(x)p2(x), . . . , wN(x)pN(x)] (17)

û = [û1, û2, . . . , ûN]T (18)

Substituting Eqs. (15) into (13) leads to

ũI(x) = pT
I (x)A−1

(x)B(x)û =
N∑

J=1

φJ(x)ûJ = �(x)û (19)

in which

φJ(x) = pT
I (x)[A−1

(x)BJ(x)] (20)

For the calculation of the derivative of the shape function φJ(x), two ways have been proposed by
Nayroles et al. [52] and Belytschko et al. [53]. In addition, to improve the efficiency of constructing
the MLS approximation scheme, Cheng et al. [54] proposed the complex variable meshless method
(CVMLS). In this method, the unknown coefficients are smaller in number than the MLS approxima-
tion, which means that there are fewer nodes used to discretize the model.

2.1.2 Kernel Approximation

Smoothed particle hydrodynamics (SPH) [55–57] has been widely employed in various fields, such
as fluid, impact, and explosion mechanics, and it offers distinct advantages for problems that involve
density as a field variable.

For the function u(x), Kernel approximation can be presented as

uI(x) ≈ ũI(x) =
∫

�

uJ(x)wJ(x − xI , h)d�S (21)

where h is the radius of the smooth domain. wJ(x − xI , h) is the kernel function, which can also be
called the weight function. And the kernel generally has the following properties:∫

�

wJ(x − xI , h)d�S = 1 (22)

lim
h→0

wJ(x − xI , h) = δ(x − xI) (23)

wJ(x − xI , h) > 0, ∀x ∈ �S(xI) (24)

wJ(x − xI , h) > 0, ∀x �∈ �S(xI) (25)

In general, the weight function in Eq. (21) is selected as the Gaussian and spline functions. And
Eq. (21) can be calculated as

ũI =
N∑

J=1

uJ(x)wJ(x − xI , h)VJ (26)
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where VJ represents the spatial measure corresponding to the J-numbered particle xJ , that is, the three-
dimensional problem represents the volume and has

VJ = mJ/ρJ (27)

where mJ and ρJ are the mass and density at node xJ , respectively.

Hence, substituting Eqs. (27) into (26), it yields

ũI =
N∑

J=1

φJ(x)uJ (28)

in which

φJ(x) = mJ

ρJ

wJ(x − xI , h) (29)

2.1.3 Polynomial Basis Approximation

For the approximation function, polynomial basis approximation uses a linear combination of
polynomial basis functions:

ũ(x) =
∑

i=1

pi(x)ai = pT(x)a (30)

where p(x) = [p1(x), p2(x), . . . , pm(x)]T , a = [a1, a2, . . . , am]T is the coefficients vector, which can be
obtained by constructing a functional expression,

J =
N∑

J=1

[pT
J (x)a − ûJ ] (31)

Let J = 0 at each collocation node, it yields

a = P−1û (32)

where

P = [pT
J (x)]N

J=1 =

⎡⎢⎢⎣
p1(x1) p2(x1) . . . pm(x1)

p1(x2) p1(x2) . . . p1(x2)
...

...
. . .

...
p1(xN) p2(xN) . . . pm(xN)

⎤⎥⎥⎦ (33)

Hence, for the computation node xI , the approximation scheme can be written as

ũI(x) = pT
I (x)a = pT

I (x)P−1û =
N∑

J=1

φJ(x)ûJ = �(x)û (34)

where �(x) is the shape function:

�(x) = [φ1(x), φ2(x), . . . , φN(x)] = pT
I (x)P−1 (35)

in which its derivative can be calculated as

�,i(x) = pT
I ,i(x)P−1 (36a)

�,ij(x) = pT
I ,ij(x)P−1 (36b)
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Note that the shape functions belonging to the point interpolation have Kronecker δ property.
Hence, the Dirichlet boundary conditions can be directly imposed. However, point interpolation
approximate requires that the number of support points N must be strictly equal to the number of terms
m of the basis function vector, which is a very strict condition, and the arbitrary distribution of support
points can easily lead to the singularity of the P(x) or the deterioration of the condition number.
Therefore, the compatibility of the construction method of this approximation function is poor.

2.1.4 Generalized Finite Difference Approximate

The generalized finite difference approximation is proposed to adapt to arbitrary irregular grids,
which belongs to a nodal approximation technique in essence. However, this approximation scheme is
not aimed at approximating the field function, but rather at approximating the differential variables
of the field function. On the supporting domain �S of a node xI , the approximate function of the field
variable u(x) can be expressed by Taylor expansion:

u(x) ≈ ũ(x) = uI + h
∂uI

∂x
+ k

∂uI

∂y
+ h2

2
∂2uI

∂x2
+ k2

2
∂2uI

∂y2
+ kh

∂2uI

∂x∂y
+ O(
3) (37)

in which

uI = u(xI , yI) (38a)

h = x − xI (38b)

k = y − yI (38c)


 =
√

h2 + k2 (38d)

By applying Eq. (37) to calculate the local support point set xJ
N
J=1 of point xI , a set of linear

equations can be obtained

a · d = f (39)

Note that the node xI are not in the set xJ
N
J=1, and

a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 k1 h2
1/2 k2

1/2 h1k1

h2 k2 h2
2/2 k2

2/2 h2k2

...
...

...
...

...
hJ kJ h2

J/2 k2
J/2 hJkJ

...
...

...
...

...
hN kN h2

N/2 k2
N/2 hNkN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(40)

d =
[
∂uI

∂x
,
∂uI

∂y
,
∂2uI

∂x2
,
∂2uI

∂y2
,

∂2uI

∂x∂y

]T

(41)

f = [(u1 − uI), (u2 − uI), . . . , (uN − uI)]
T (42)

Then, the five unknown derivative variables of the node xI can be expressed as

d = a−1f (43)

In order to ensure the consistency of the approximations and avoid the singularity of a, it is
necessary to increase the number of supporting points, namely, N > 5, and construct the following
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functional expression on this set of points

� =
N∑

J=1

1

3

J

(aJd − f J)
2, N > 5 (44)

in which

aJ =
[

hJ kJ

h2
J

2
k2

J

2
hJkJ

]
(45)

f J = uJ − uI (46)

Taking the stationary value of a functional, viz. ∂�/∂d = 0, it yields,

d = A−1Bf (47)

in which

A =
N∑

J=1

1

3

J

aT
J aJ (48a)

B =
[

aT
1


3
1

aT
2


3
2

. . .
aT

J


3
J

. . .
aT

N


3
N

]
(48b)

Obviously, the generalized finite difference approximation results in a differential expression for
the field variable computed at point xI

di =
N∑

J=1

(A−1BJ)i · (uJ − uI) (49)

In the process of calculation, only the field variable uI and its differential approximation di are
brought into the governing equation and its boundary conditions, then the discrete equation can be
constructed and solved.

3 Collocation Methods in Solid Mechanics

In order to study the behavior mechanism of solid mechanics, collocation methods have been
paid considerable attention. Known for their meshless characteristics, collocation methods have been
widely used to simulate elasticity, plasticity, fracture mechanics, and multi-filed coupling problems.
This section will provide an overview of research achievements in collocation methods in the solid
mechanics field, at the same time, the perspective of future research to further advance the development
of this field is explored.

3.1 Elasticity and Plasticity
Elastic and plastic mechanics have consistently represented fundamental challenges in the engi-

neering field, encompassing various aspects from the elastic behavior of materials to plastic deforma-
tion and failure. Collocation methods, as a highly promising numerical approach, have demonstrated
remarkable potential in addressing problems related to elastic and plastic solid mechanics. Collocation
methods discretize structures through distributed points, also known as nodes or collocation nodes,
providing flexibility in handling complex geometries and material heterogeneity. Consequently, these
characteristics become a powerful tool for studying material elasticity and plasticity. This subsection
will focus on the application of the collocation methods in problems related to elastic and plastic solid
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mechanics problems, and focus on the advantages of the collocation methods in dealing with complex
geometries, large deformations, and large strains. Through an extensive literature review, the aim is to
provide a comprehensive perspective to better understand and apply the collocation method to solve
complex engineering problems involving material behavior.

A meshless stable collocation method [58] using reconstructed kernel approximation as an
approximation function is presented. Through performing high-order accurate integration in regular
subdomains, it has the characteristics of high efficiency, high accuracy, and good stability, and the
superiority of the method is verified by elasticity examples. The variable collocation method [59]
combines the efficiency of the collocation method with the accuracy of the Galerkin method, and the
potential of the method is demonstrated in examples of linear and nonlinear elasticity. Incorporating
isogeometric techniques and boundary scaling techniques, the 2D solid problem can be solved by
a surface-oriented formulation called the Non uniform rational B-spline (NURBS)-based hybrid
collocation-Galerkin method [60], which allows modeling with an arbitrary number of boundaries.
Then through using NURBS based collocation method to solve ordinary differential equations,
Chen et al. [61] extended their research to three-dimensional solid problems, which can also be
nonlinear problems. Using the meshless point grafting method, an effective shear modulus approach
[62] was presented to analyze the elastoplastic analysis for two-dimensional solids and plates, and this
method has the advantages of its simplicity and easy implementation for material properties. For the
transient elastodynamic cracked solid with anisotropy material properties, the time-domain boundary
element method [63] was presented with spatial discretization by the Galerkin method and temporal
discretization by the collocation method. The contribution of this method is to convert the arising
hypersingular integrals to weakly singular integrals and this method was further applied to transient
2D piezoelectric cracked solids [64]. Isogeometric (IGA) collocation formulation [65] was developed
to solve steady-state statics and dynamics problems. It has stable results, robust, high-order accuracy,
and higher computational efficiency than the finite element method. Afterward, this method was
extended to solve large deformation problems and hyperelastic material behavior [66]. Subsequently,
for linear and plastic materials, the mixed stress-displacement isogeometric collocation method [67]
was proposed. It not only has higher computational efficiency than the conventional IGA method but
also overcomes existing issues such as volume self-locking and instability. Stevens et al. [68] proposed a
meshless local radial basis function (RBF) collocation method with high convergence rates and applied
it to solve linear elasticity problems. Based on the moving least squares approximation, the local
meshless formulations [69] were established for the elastic field, which can ensure the accuracy of the
results and reduce the calculation cost. Based on the T-spline IGA technique, the hybrid variational-
collocation immersed method [70] was proposed to solve the fluid-structure coupling problem, and
its results agree well with the exact solution. The gradient-reproducing kernel collocation method [71]
was developed to solve elastic problems. The main highlight of this method is that it simplifies the
calculation process of the reproducing kernel collocation method (RKCM) method while ensuring
optimal convergence. Afterward, this method [72] was employed to solve high-order PDEs, and the
results show that its computational efficiency is much higher than the traditional RKCM. In addition,
using the least square approximation, the weighted reproducing kernel collocation method [73] was
introduced to the inverse elasticity problem. The meshless singular boundary method [74] combines the
dimensionality reduction of the BEM method and maintains the merits of meshless and integration-
free attributes of the fundamental solution method. Besides, it performs well for elastic problems
with complex geometries. By introducing the fixed, moving, and multiple fixed kernel techniques, the
efficiency and accuracy of the finite cloud method [75] surpass those of the point collocation method.
Computational outputs show that as a truly meshless method, this method has a good prospect
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in engineering applications. The radial point interpolation collocation method [76] was adopted
in dealing with nonlinear Poisson equations. In this method, for imposing Neumann boundary
conditions, Hermite interpolation was chosen to improve the numerical stability. Next, the radial
point collocation method was evolved to a regularized least-square radial point collocation method
[37] through introducing a regularization technique, which can ensure the stability and accuracy of
the results. Moreover, as a pure meshless method, this method can avoid the mesh reconstruction
progress. A weighted strong-form collocation framework [77] was constructed to numerically analyze
incompressible linear elastic structures. And this method does not exist the volume locking problem
and has good convergence. The advantage of the modified equilibrium on line method (ELM) [78] was
that in elastodynamics problems, the natural boundary conditions are automatically satisfied through
a weak formulation, and the two forms of shape function construction including moving least square
approximation and radial basis point interpolation approximation, are discussed. The results show that
the method was more stable and accurate than the direct collocation method. Compared with the DRK
approximation based-collocation method, the differential reproducing kernel (DRK) interpolation-
based collocation method [79] has the advantage that the shape function of the DRK interpolation
function has the delta property, which can achieve the purpose of reducing the computational cost.

3.2 Beams, Plates, and Shells
The analysis and design of beam, plate, and shell structures have always been crucial tasks in

engineering problems. They are widely used in aerospace, bridges, vessels, and various mechanical sys-
tems. Comprehensive understanding and optimizing the behavior of these structures are paramount to
ensuring their performance, safety, and sustainability. And various corresponding theories have been
developed, including the first-order shear deformation theory and higher-order shear deformation
theory. Collocation methods, as a powerful numerical tool, have played a pivotal role in addressing
engineering problems related to beam, plate, and shell structures. Unlike traditional finite element
methods, collocation methods do not require mesh, offering greater flexibility in handling complex
geometries and boundary conditions. This makes them an ideal choice for exploring deformation,
heat conduction, vibration, and other issues in these structural elements. In this subsection, a series
of relevant literature on the application of meshless methods in beam, plate, and shell structures
is reviewed to showcase the latest research advancements and engineering practices in this field.
By gaining an in-depth understanding of the strengths and limitations of these methods, a better
understanding of their potential and applicability in the analysis of beam, plate, and shell structures
can be obtained.

The isogeometric analysis (IGA) method [80] has gained wide attention from scholars. Reali and
Gomez first introduced the isogeometric collocation approach [81] to thin structures including Euler
beams and Kirchhoff plates, and numerical results show that this approach has strong adaptability for
complex geometric models and has good convergence. Marino applied the isogeometric collocation
method [82] to calculate the nonlinear beam, and the selected rotation parameterization technique
made the approach accurate and efficient. The displacement-based and mixed IGA formulations [83]
allow to analyze beams with arbitrary bending curvature, and it can adapt to complex geometric
models without the self-locking problem. Pavan et al. [84] extended the isogeometric collocation
(IGA) method to solve laminated composite beams. Like in most strong-form methods, the governing
equations are discretized directly, which makes the computation more efficient, and a variety of
shear deformation theories are considered in numerical examples to verify the method’s accuracy. In
order to overcome the problem appearing in the Serret–Frenet (SF) local frame and on the Darboux
vector, an IGA-C method [85] relying on Bishop frames was presented. The nonlinear dynamic
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state of the piezoelectric energy harvester was analyzed by a nonlocal couple stress-based meshless
collocation scheme [86], in which the coalesce basis function can effectively eliminate the singularity.
The Chebyshev collocation method [87] computed the dynamic behavior of nonlinear beams without
integral operation, and the eigenvalue analysis was accurately given. A collocation meshless method
[88] is proposed to study 3D functionally graded beams, in which the non-classical effects can
be dealt with directly. For the Bernoulli-Euler beams and Kirchhoff-Love plates, Chen et al. [89]
developed a Hermite DRK interpolation-based collocation method to solve them with a variety of
boundary conditions. Absorbing the advantages of the IGA method and boundary element method,
the collocation-based isogeometric boundary element method [90] can calculate the shell structure
at a lower computational cost. The nanocomposite cylindrical shells were analyzed by a Chebyshev
collocation-based semi-analytical approach [91], and its results can help to improve the stability of the
shell structures. Based on the higher-order shear formula, the free vibration behavior of functionally
graded shells is carried out by the collocation method [92] using the radial basis function. The
spectral collocation method with orthogonal polynomials [93] was used to analyze the free vibration
of laminated shell structures. The advantage of this method relied on that it allows shell structures
with arbitrary boundary conditions. For the steady-state or transient nonlinear behavior of circular
plates, the interior global orthogonal point collocation method was developed by Nath et al. [94].
According to the first-order shear theory, the displacement and rotation of a shell with conical
geometry were expressed by Chebyshev and Fourier polynomials [95], respectively. The highlight of
this method was its simplicity owing to no need for any numerical integration or differentiation in the
computing process. Combining the radial basis functions and collocation method, Wang et al. [96]
proposed radial basis collocation method (RBCM) to adopt the thin functionally graded shells with
heterogeneous materials. Afterward, Wang et al. [97] proposed the Hermitian collocation method
and showed that the introduced gradient reproducing kernel approximations technique can avoid
the high order differential operation to improve the computational efficiency. Moreover, this method
has higher precision than the direct collocation method at the boundary. Considering the thermal
environment, the buckling analysis of the nanocomposite plates was studied by a 2D Chebyshev
collocation method [98], and the factors affecting the stability and critical angular velocity were
investigated. The Chebyshev collocation method [99] was used to discretize the dynamic equations
of large deformation displacement of sandwich plates in the post-buckling state, and many factors
affecting the natural frequency were discussed in detail. The meshless collocation method [100] using
the spline radial basis function was performed to research the hyperelastic behavior of silicone plates
under uniformly distributed loading, and the effectiveness of the method was verified by experiments.
Three kinds of formulations were listed to solve the bending problem of laminated composite plates,
and then the isogeometric collocation method [101] was used to discretize the equations, the effect
of which can reduce the shear locking issue of plates under a clamped state. For laminated plates
composed of thin plates and thick plates, Ferreira et al. [102] suggested a solution method that brings
the radial basis function collocation technique into Carrera’s Unified formula to predict the steady-
state and transient behaviors. By using the meshless collocation technique to deal with the boundary
and using the weak formula to deal with the differentiation calculation, Wu et al. [103] proposed
the Reissner mixed variational theorem (RMVT)-based meshless collocation (MC) and element-free
Galerkin (EFG) methods for functionally graded plates, and this method had good convergence. For
the bending problem of Kirchhoff plates [104], the governing equation was discretized by the radial
basis approximation scheme, and the singularity and symmetry belonging to the system of equations
were handled by the Hermitian collocation method.
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3.3 Fracture Analysis
In materials science, the issue of fracture behavior has always been a vital study area, impacting

structural reliability and safety. Collocation methods with meshless nature allow for less effort
handling in complex geometric shapes and crack propagation processes. Moreover, it eliminates the
complexities associated with mesh generation and remeshing, thus offering remarkable flexibility and
precision in predicting crack propagation, crack tip behavior, and stress intensity factors. Subsequently,
the research achievements of collocation methods in the fracture mechanics field will be presented in
this subsection.

Nguyen-Thanh et al. [105] established a scheme for the crack propagation in fiber-reinforced
composites on a microscopic scale by means of the isogeometric meshfree collocation method. In
addition, this method has the strength of adaptive analysis. Schillinger et al. [106] advocated a hybrid
isogeometric method with higher computational efficiency than the Galerkin method. The combina-
tion of the collocation method and the Galerkin formula can deal not only with the second boundary
conditions and interface constraints but also with the integral terms. Combining with the boundary
element and boundary collocation technique [107], crack propagation and coalescence phenomena
were accurately predicted. The enriched meshfree collocation method [108] was presented to build
a framework for fracture problems. The advantage of this method was that the calculation of the
derivative for the weight function or moment matrix could be avoided by an approximation technique.
Problems with non-convex geometry and local characteristics were dealt with by the subdomain
radial basis collocation method [109], which improves the adaptability of the traditional RBCM. The
crack problem for functionally graded piezoelectric/piezomagnetic materials was performed in a finite
domain by the boundary collocation method [110] with the semi-inverse technique, and the factors
affecting the crack behavior were discussed.

3.4 Coupled Multi-Physics Problems
Multi-field coupling problems involve interactions between multiple physical fields including

elastic, thermal, electric, magnetic fields, and so on. Collocation methods, with their high suitability
for addressing multifield problems, can effectively simulate the behavior of multi-physical fields. In
this subsection, the relevant literature on the application of collocation methods to predict multi-field
coupling problems will be reviewed.

For the 2D flexoelectric structures, the collocation mixed finite element method [111] with C0

continuous approximation can reduce the number of degrees of freedom compared with the traditional
Lagrangian method, and the obtained results were helpful to the structural safety analysis. Later,
they continued their research [112] to explore the effect of flexoelectricity properties on the crack
tip. The virtual boundary element-integral collocation method [113] was proposed to address the
magneto-electro-elastic coupling problem. The key innovation of this method lies in the use of a virtual
boundary to circumvent singularity issues at the physical boundary. Considering the elasto-visco-
plastic problem for 3D beams, a mixed isogeometric collocation method [114] directly discretized
nonlinear differential equations like most strong-form approaches. In this method, the physical
variables including displacement, orientations, and stress were discretized by B-splines or NURBS,
and the time term was discretized by an implicit return-mapping scheme. The relationship between
the nonlinear dynamic behavior and the size of the energy harvester involving the electro-elastic
coupling field was studied by the meshless collocation method [115], and the accuracy of this method
was guaranteed by the strain gradient technique. Wu et al. [116] extended the meshless collocation
method to shell structures under thermo-electro-elastic multi-coupled fields. The method’s highlights
rely on that the differential of the shape functions could be obtained by differential reproducing
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conditions, and the delta property owing to the shape functions made it easy to impose Dirichlet
boundary conditions. In our previous work, the zonal free element method [117], initially proposed by
Gao et al. [118], discretized the governing equations for the electro-elastic coupling field in a strong
form, and its highlight lay in overcoming the corner problem in the meshless method through the zonal
technique. Then, our research was extended to treat the transient thermo-electro-mechanical multi-
field coupling problem [119], whose accuracy and stability are guaranteed by the Galerkin scheme.
Due to the wide applicability of the magnetoelectric coupling effect, the multi-physics zonal Galerkin
free element method [120] was proposed to analyze the dynamic responses of the functionally graded
magneto-electro-elastic structures.

4 Collocation Methods in Heat Conduction and Fluid Flow

Heat conduction and fluid dynamics are pivotal and inescapable engineering problems. For heat
transfer problems, the collocation method can effectively simulate intricate heat transfer phenomena
such as heat conduction, convection, and radiation by employing numerical discretization and
approximation techniques. For fluid flow problems, by modeling them into differential equations and
applying suitable numerical techniques, the collocation method efficiently addresses various crucial
aspects including flow velocities, pressure distributions, and fluid characteristics, which play a pivotal
role in enhancing the design and optimizing the performance of engineering systems. This section
embarks on an exploration of a series of literature studies to showcase the significant advancements
and successful cases of the collocation method in solving heat conduction and fluid flow problems.

4.1 Heat Conduction Problems
Accompanied by randomly distributed collocation points and radial basis functions approxima-

tion, a meshless collocation framework [121] was brought up to solve heat conduction problems.
However, two significant issues urgently required resolution. One is that the solution matrix is not
sparse. The other is that with an increase in the number of collocation points, the ill-conditioning of
the solution matrix and computational cost also increased. The Legendre wavelet collocation method
[122] was employed to simulate the behavior of porouselastic structures in a thermal environment.
Utilizing the Kirchhoff mapping technique, the solution of the non-linear term caused by variable
thermal conductivity was achieved. A standout feature of this method was its ability to provide high-
accuracy results even with a low number of collocation points. The heat transfer problem about an
infinitely long cylindrical structure was computed by the spectral collocation method [123]. Both the
Eulerian scheme and spectral collocation scheme discretize the time, spatial, and derivative terms,
resulting in computational results with high accuracy. In a similar vein, Chen et al. [124] utilized
the spectral collocation method to analyze two physical models for natural convection in a square
cavity, and they investigated several factors that influence the dimensionless stream function and
temperature distribution. The temperature distribution for the radiative heat-conductive porous fin
[125] was approximated using Lagrange interpolation polynomials in the spectral collocation method.
Besides, the method’s effectiveness was validated by comparing the results with previously reported
literature. In heat conduction problems with functionally graded materials properties, the time-
fractional derivative terms were handled by a localized collocation approach [126] with fundamental
solutions. A hybrid method [127] that combined collocation methods with the Galerkin method was
capable of efficiently computing the convective heat transfer problems generated by incompressible
flow outside a cylinder. The contribution of this method was that under the assumption that the heat
flux has no influence on the velocity field, the uncertainty of inflow velocity and the wall heat flux were
solved. The meshless collocation method using the B-spline function approximation technique, named
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the meshless local B-spline collocation method [128], provided a new idea for addressing transient
heat conduction problems with heterogeneous material properties. As a purely meshless technique, its
advantage lay in that it could directly deal with the discontinuity of the material interface.

4.2 Fluid Flow Problems
Karageorghis et al. [129] obtained the answer to the two-point boundary value problems using

the spectral collocation method, and the standout feature of the method was that the performance
of the trial function was not affected by nonlinear terms. In the Lagrangian framework, the weighted
meshless collocation method [130] excelled not only in its ability to easily capture moving boundaries
or interfaces but also in its avoidance of the introduction of coefficients to handle incompressible
terms. Besides, numerical results obtained by this method were better than traditional finite difference
method (FDM) or SPHs. Aronson et al. [131] introduced the residual-based stability technique into the
isogeometric collocation method. The method not only inherits excellent convergence and accuracy
but also can address the issue of spurious oscillations in scalar transport and incompressible fluid
problems. Aiming to treat the fluid-structure coupling problem, the research objects within the Eule-
rian mesh were discretized by Lagrangian particles. In addition, this method [132] ensured high-order
continuity between nodes and particles and offered greater efficiency in calculating shape functions
compared to SPH methods. Then, they applied this method to simulate the water wave problem
[133]. Aronson et al. proposed two schemes, the velocity-pressure scheme and the vorticity-velocity-
pressure scheme, for analyzing incompressible flow problems [134], and the results indicated that the
latter approach exhibited a faster convergence rate compared to the former one. Furthermore, this
method combined high-order accuracy while inheriting the advantages of computational efficiency
associated with the collocation method. The fluid flow phenomena in the thermal environment were
studied through the local radial basis function collocation method [135] in which the numerical
solution’s efficiency was ensured by the artificial compressibility method. The groundwater flow with
unconfined conditions was predicted by the meshless point collocation method [136] using radial basis
functions, which had the simplicity of directly discretizing the governing equation. The challenge
of the 2D stream-vorticity problem has been resolved using the meshless point collocation method
[137]. The contribution of this approach lies in its ability to obtain derivatives of arbitrary functions
through shape functions constructed by the moving least squares approximation, offering a novel way
for imposing vorticity boundary conditions. For biomedical issues, a localized collocation meshless
method [138] has been employed to investigate the hemodynamics problem with incompressible flow
properties. Numerical oscillations had been suppressed by a high-order upwind scheme, leading to
third-order accuracy in the obtained results. The meshless collocation method using Hermitian radial
basis approximation calculated the transient responses of the convective-diffusion problem [139]. It
is worth noting that accurate calculation results could still be obtained even under conditions of
a strong velocity field and a long time. A spectral collocation method [140] numerically computed
the 2D axisymmetric boundary layer equations with the compressible properties. In addition, the
preconditioning operation for the governing equations accelerated computational efficiency, and the
results indicated that the influence of transverse curvature on stability should be paid attention.
Later, they continued their study [141] to three-dimensional incompressible flow problems. The real
compressible flow problem was explored by the finite point method [142], at the same time, the h-
adaptive technique was also proposed. The numerical results including the wings were satisfactory,
which proved the ability of the method to solve practical problems. Through the singularity subtraction
technique and asymptotic expansion, Botella and Peyret also applied the Chebyshev collocation
method [143] to address singularity issues arising from boundary discontinuities or changes in
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boundary condition types. Still utilizing the Chebyshev collocation method, the boundary layer flow
problem of magnetohydrodynamic, as a non-Newtonian fluid, was numerically investigated [144].
Note that in this approach, the governing equations could be transformed into ordinary differential
equations.

5 Recent Advances in Collocation Methods

With the development of numerical methods, several novel collocation methods have emerged in
recent years. Based on smoothed gradients technique, Wang et al. [145] proposed a superconvergent
gradient smoothing meshfree collocation method. This method not only overcomes the basis degree
discrepancy issue but also realizes the second accuracy by linear basis function. Subsequently, they
extended their research to laminated composite plates [146] and completed work on accuracy analysis
[147] of meshless collocation methods. By introducing fractional Lagrange interpolants obeying the
spectral theory, fractional spectral collocation method with exponential convergence was proposed
by Zayernouri et al. [148] to deal with fractional partial differential equations. Fu et al. [149] first
introduced the localized collocation schemes and summarized several complicated problems success-
fully solved by these methods. Trigonometric Fourier collocation method with arbitrary order was
proposed by Wang et al. [150] to solve multi-frequency oscillatory problems. Combining collocation
method and deep learning method, the bending problem of the Kirchhoff plate was computed by the
deep collocation method proposed by Guo et al. [151]. Through the recursive gradient formulation,
Wang et al. [152] established a superconvergent isogeometric collocation method, which processes
higher computational efficiency than the standard isogeometric collocation method while ensuring the
superconvergence property. Recently, our research group has also done a lot of work on the collocation
methods. The three main methods to be described here are the element differential method [153], free
element method [154], and finite line method [155]. Yan et al. [156–158] used updated Lagrangian
particle hydrodynamics (ULPH) method to simulate the multiphase flows problem and solid object
water entry problem. Yu et al. [159] established nonlocal differential operators in a unified way. Jingwen
Ren et al. [160] gave a new idea for the IGA problems. Taking heat conduction as the background, the
introduction to these three methods is briefly given below. First, in heat conduction, the governing
equation and boundary conditions are presented as follows:

∂

∂xi

(
λij(x)

∂T(x)

∂xj

)
+ Q(x) = 0, x ∈ � (50)

T(x) = T̃(x), x ∈ �1 (51)

q(x) = −λij

∂T(x)

∂xj

ni = q̃(x), x ∈ �2 (52)

q(x) = −λij

∂T(x)

∂xj

ni = h(T(x) − T∞), x ∈ �3 (53)

where λij is second-order thermal conductivity tensor, T the temperature, T∞ the environmental
temperature, Q the heat-generation rate, q the heat flux, and �1, �2, and �3 are the boundaries with
respect to the given T̃ , q̃ and T∞. ∂� = �1 ∪ �2 ∪ �3.

5.1 Element Differential Method (EDM)
As shown in Fig. 5, the isoparametric collocation elements are used to discretize the computa-

tional model. It is worth noting that in the 2D 9-node collocation element, the governing equation
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and flux equilibrium equation are satisfied at the internal node, interface nodes, and boundary nodes,
respectively. The main innovation in EDM is to give the analytic expression (Eqs. (54) and (55)) of the
derivative of shape functions in the second-order isoparametric element, which can directly discretize
the governing equation without any other operation [153].

Internal node

Interface node

Boundary node

Collocation element

Figure 5: Collocation element in EDM
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where Nα is the shape function at node α. Jik is the Jacobi matrix. ξ and x are the coordinates in the
global and local coordinates system, respectively.

Hence, the discretized equations for internal, interface, and boundary nodes are given as follows
[153,161]:[∂λij(ξ)
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where λij is the thermal conductivity. ξ , ξ I , ξ b are the local coordinates of internal, interface, and
boundary nodes, respectively. M and K are the number of element surfaces related to the interface
node and boundary node, respectively. nf

i is the unit normal with respect to surface f . q is known
heat flux.

In summary, the element differential method is an element collocation method with high precision
and high computational efficiency.
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5.2 Free Element Collocation Method (FrEM)
The free element collocation element method retains the merits in using the analytic expression to

directly discretize the governing equation and boundary conditions, and it has the distinct feature of
freely forming the collocation element at each point and the element is connection-free with neighbor
nodes’ elements [154]. Like in meshfree methods, a series of nodes are discretized in the computational
domain in FrEM. At each collocation node, an independent local element, called as the free element,
can be formed with the surrounding nodes, as shown in Fig. 6. Contrasting to EDM, no element
interfaces exist in FrEM and therefore FrEM is suitable for both solid mechanics [118] and fluid
mechanics [162].

Collocation node

Boundary node

Internal collocation element

Boundary collocation element

Figure 6: Collocation nodes and their 9-node free elements in FrEM

Taking the heat conduction problem as an example, the discretized equations in FrEM can be
obtained from Eqs. (50) and (51) as [154][∂λij(ξ

c)
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where ξ c and ξ b are the local coordinates of internal and boundary nodes, respectively. ni is the unit
normal. q is known heat flux.

In FrEM, the use of isoparametric elements can ensure its stability. Moreover, the distinct feature
of freely forming an element at each point avoids the appearance of interfaces between elements,
making it very adaptable for dealing with fluid problems using an upwind scheme [163]. FrEM has
strong-form and weak-form schemes [164,165], and a lot of examples have been used to examine their
stability and flexibility [154,162–165].

5.3 Zonal Galerkin Free Element Method (ZGFREM)
By absorbing the idea of the finite block method, ZGFREM is proposed by introducing the zone

technique into FrEM. As shown in Fig. 7, the computational model is first divided into five zones,
then each zone is discretized by a group of collocation nodes. Compared with FrEM, a new type of
collocation node, the interface collocation node appears. It will form a collocation element for zone I
and zone IV, respectively.
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Collocation node

Internal collocation element

Boundary collocation element

Interface collocation element

Figure 7: Collocation nodes and their 9-node collocation elements in ZGFREM

Besides, the relevant equations of the zonal Galerkin free element method for thermal-mechanical
problem are as follows:
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where βij is the temperature-stress coefficient. Dijmn is the stress-strain tensor. u is mechanical displace-
ment. T is temperature. fi is body force. �u and �σ are the boundaries to the specific displacements
and tensions. Through the generalized format of the Galerkin method and taking the shape function
as the weighted function Nc = w, the governing equation for thermal-mechanical coupling problems
is changed into∫
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which can be further written as∫
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5.4 Finite Line Method (FLM)
Finite line method (FLM) is a new concept numerical method [155], which sets up the solution

scheme based on a finite number of lines crossing the collocation node. As in the free element method
[154], the solution domain in FLM is still discretized into a series of collocation nodes and a line-set
consisting of 2 or 3 lines is defined for each collocation node in 2D or 3D problems, respectively. Fig. 8
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shows three 2D line-sets defined at three different positions for the 2D case. The first-order and high-
order partial derivatives of physical variables with respect to the global coordinates can be derived
by the arclength derivative over each line [166]. For example, the first-order partial derivative of the
physical variable u can be derived and expressed as follows:
∂u(xc)

∂xi

= dcα
i uα, dcα

i uα = N ′
i
α(xc) (61)

where uα is the α-th nodal value of u over the line-set defined for the collocation node xc, and
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in which, d=2 or 3 for 2D or 3D problems, Lα

I is the Lagrange interpolation function of node α

defined over the I-th line measured by the arclength l, and [J] is the Jacobian matrix from l to global
coordinates xi [166]. High-order spatial derivatives can be obtained by recursively using Eq. (61).

Internal collocation node

Boundary collocation node

Figure 8: 2D line system in FLM

It is very simple to use Eq. (61) to set up a discretized system for PDEs. For example, the governing
Eq. (50) with boundary conditions (51) and (52) can be discretized as

dcβ
i λβ

ijd
βα

j Tα = −Q(xc), xc ∈ � (63)

T(xc) = T̃(xc), xc ∈ �1 (64a)

− λij(xc)ni(xc)dcα
j Tα = q(xc), xc ∈ �2 (64b)

FLM not only can get rid of constructing high-dimensional elements for 2D or 3D problems
but also can compute high-order partial differential problems with geometrically complex models by
means of flexible line sets. It is also noted that FLM only has the strong-form scheme, without weak-
form formulation, and experience shows that FLM is the most stable one in the strong-form numerical
methods.
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6 A Demonstration Example
6.1 Heat Conduction Analysis for a 2D Plate

A 2D plate with homogeneous material is considered and its geometry and boundary conditions
are shown in Fig. 9. The analytical solution of the temperature at any point in this problem is

T(x, y) =
(

2
π

∞∑
n=1

(−1)
n+1 + 1
n

sin
nπx

L
∗ sinh (nπy/L)

sinh (nπW/L)

)
∗ (T2 − T1) + T1 (65)

where T1 = 300K, T2 = 500K.

EDM, FrEM, and ZGFREM these three methods are all used to calculate this problem. The
contour plot and the temperature along the path EF (E (0, 0.5), F (1, 0.5)) are plotted in Figs. 10 and
11, respectively. In addition, in order to test the global convergence, the three methods are performed
to calculate using the number of 121, 441, and 1681 nodes. The relationship between the L2 norm and
the number of nodes is shown in Fig. 12.

Figure 9: Model for the 2D plate

6.2 Corrugated Sandwich Structure
To better demonstrate the performance of the collocation method, a numerical example for

predicting the responses of corrugated sandwich structures by the zonal Galerkin free element method
proposed by our research group is given. This problem encompasses heat transfer, solid mechanics,
and thermal-mechanical coupling aspects. The zone distribution used in this example is illustrated in
Fig. 13. Geometric details of the model and material properties can be found in Fig. 14, Tables 1 and 2.
Under the premise that the displacement of the bottom surface is fixed in all directions, the upper and
lower surfaces of the structure are subjected to temperature boundary conditions of 317 and 573K,
respectively, while the remaining surfaces are imposed as free boundary conditions.

For comparative purposes, finite element analysis (ABAQUS) is also performed using a similar
number of nodes. Fig. 15 presents the computed temperature distribution and structural deformation.
It is evident that the temperature propagates downward along the sternum. Fig. 16 presents the total
heat flux and mises stress. In Fig. 17, the temperature along line CD and the displacements along line
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PQ are given, with lines formed by coordinates (0.0526,0.16,0.059), (0.0185,0.16,0), (0, 0.16, 0.006),
(0.16, 0.16, 0.006) at points C, D, P, and Q. Notably, substantial displacements are observed on both
sides of the bottom plate, a region of particular interest. Furthermore, in Fig. 17b, the maximum
relative error between the two methods is 1.35%, which validates the accuracy of the zonal Galerkin
free element method.

Figure 10: Contour plots for the temperature of the 2D plate obtained by different collocation methods

Figure 11: The temperature along path EF obtained by different collocation methods
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Figure 12: The curve of L2 norm vs. the number of nodes obtained by different collocation methods

Figure 13: Schematic diagram of zone distribution of the corrugated sandwich structure

(a) (b)

Figure 14: Model of corrugated sandwich structure (a) geometry (b) front view (plane y = 0)
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Table 1: Design parameters for corrugated sandwich structure

Design parameters tT tB tP d l l1 tw θ

Value 3 mm 3 mm 3 mm 50 mm 160 mm 22 mm 1 mm 60◦

Table 2: Material properties for corrugated sandwich structure

Properties CMC-Sic PMC

Elastic constant (Gpa)

E1 70.2 162
E2 70.2 162
E3 60 9.1
G12 26 60
G13 22.2 5.2
G23 22.2 5.2

Poisson

‘

sratio

ν12 0.35 0.35
ν13 0.35 0.35
ν23 0.35 0.35

Thermal expansion constant (K−1)

α 3.0 × 10−6 1.0×10−6

Thermal conductivity coefficient (W · m · K−1)

λ 20 0.41

(a) (b)

Figure 15: Contour plots over the corrugated sandwich structure in the thermal environment (a)
temperature (b) total displacement
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(a) (b)

Figure 16: Contour plots over the corrugated sandwich structure in the thermal environment (a) total
heat flux (b) Huber-von mises

(a) (b)

Figure 17: Structural responses obtained by two different methods (a) temperature along line CD (b)
displacement along line PQ

7 Conclusion and Further Research Perspectives

In this paper, an overview of the origin, development, and application of the collocation method is
presented. The principle and some common approximation techniques in the collocation method are
briefly introduced. Compared with the numerical methods with integral operation, the collocation
method has a more direct processing way, and owing to its node-based characteristic, the collocation
method becomes a powerful tool in dealing with problems such as large deformation, stamping pro-
cess, and explosion problems. Some techniques for improving the stability of the collocation method
are also summarized. Moreover, the collocation method with different approximation techniques can
be combined with some high-precision methods, so as to play their respective advantages. From this
review, it can be seen that the collocation method has a wide range of practical engineering application
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problems including solid mechanics (beam, plate, shell, fracture, etc.), heat conduction and fluid flow
problems, as well as multi-field coupling problems.

To date, there are still some challenging works needing to be done on the collocation method, and
some suggestions for future research directions can be summarized as follows:

(a) The collocation method, attributing to its distinct node-by-node feature, offers a pathway to
performing parallel high-performance computing. Exploring parallel computing techniques
and optimizing algorithms for distributed computing can significantly enhance the collocation
method’s applicability to solving large-scale problems in various engineering and scientific
areas.

(b) Leveraging the advantages of isogeometric collocation methods in computer-aided design
(CAD) modeling, there is potential for relevant work in biomechanical research, particularly in
the study of biological tissues like skeletal structures. The interdisciplinary approach can offer
valuable insights into the behavior of complex biological systems under mechanical loads.

(c) Combining the collocation method with other high-precision numerical techniques can harness
the strengths of each method, ensuring both high accuracy and efficiency. By integrating
complementary methods, it can improve the overall performance of numerical simulations,
especially in scenarios where extreme precision is required.

(d) Coupling the collocation method with artificial intelligence techniques, such as machine
learning, can present an interesting research topic. This integration can enhance the collocation
method’s adaptability, enabling it to self-optimize and adapt to evolving problem domains. The
application of AI methods in guiding adaptive mesh refinement or optimization of collocation
point distributions may be a promising research direction.

(e) Developing commercial software packages centered around the collocation method can pro-
mote its wider adoption in engineering and scientific communities. These softwares can
provide user-friendly interfaces, efficient solvers, and support for a wide range of engineering
applications, making the collocation method more accessible to practitioners.

These suggested research directions aim to further expand the capabilities and applications of
the collocation method, making it a versatile and powerful tool in various scientific and engineering
disciplines. The reviewed collocation method is only a part of numerical methods. More comprehensive
investigations on various numerical methods, especially classified by operation dimensions, can be
found in the reference [167].
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