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ABSTRACT

Mobile Edge Computing (MEC) is a technology designed for the on-demand provisioning of computing and
storage services, strategically positioned close to users. In the MEC environment, frequently accessed content
can be deployed and cached on edge servers to optimize the efficiency of content delivery, ultimately enhancing
the quality of the user experience. However, due to the typical placement of edge devices and nodes at the
network’s periphery, these components may face various potential fault tolerance challenges, including network
instability, device failures, and resource constraints. Considering the dynamic nature of MEC, making high-quality
content caching decisions for real-time mobile applications, especially those sensitive to latency, by effectively
utilizing mobility information, continues to be a significant challenge. In response to this challenge, this paper
introduces FT-MAACC, a mobility-aware caching solution grounded in multi-agent deep reinforcement learning
and equipped with fault tolerance mechanisms. This approach comprehensively integrates content adaptivity
algorithms to evaluate the priority of highly user-adaptive cached content. Furthermore, it relies on collaborative
caching strategies based on multi-agent deep reinforcement learning models and establishes a fault-tolerance model
to ensure the system’s reliability, availability, and persistence. Empirical results unequivocally demonstrate that FT-
MAACC outperforms its peer methods in cache hit rates and transmission latency.

KEYWORDS
Mobile edge networks; mobility; fault tolerance; cooperative caching; multi-agent deep reinforcement learning;
content prediction

1 Introduction

With the exponential growth of data traffic generated by Internet of Things (IoT) devices, existing
networks and infrastructure are facing significant challenges [1]. The traditional cloud-based model
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is increasingly proving to be inadequate, with its lack of agility and efficiency becoming particularly
evident in the face of growing demands and data loads. In conventional cloud computing systems,
data must traverse the Internet to reach cloud servers for processing, leading to significant latency
issues, which are intolerable for real-time applications [2]. To overcome these limitations, Mobile Edge
Computing (MEC) technology has emerged [3], enabling the caching of resources at the network edge
and providing computing and storage services close to the requests. This enhances the responsiveness
of latency-sensitive applications and ensures users experience rapid system responses. However, due to
its reliance on unreliable wireless communication and distributed resource infrastructure, applications
based on MEC are more susceptible to various types of system failures or faults, including MEC
overload and software or hardware failures, all of which further contribute to a poor Quality of
Experience (QoE) perceived by users [4].

Despite the numerous benefits of edge computing, its highly distributed and dynamic nature,
coupled with the diversity of user preferences, service requests, and mobility patterns, make ensuring
high cache utilization and user satisfaction through effective fault tolerance mechanisms a complex
and challenging task. To address this challenge and ensure reliable and seamless content delivery to
users, several key issues need to be addressed:

(i) Edge servers have limited capacity and cannot cache all the content that users might request.

(ii) Edge servers must provide collaborative services with both caching and communication
functions, rather than building isolated services for individual users.

(iii) Accurately predicting user preferences, considering the differences in content preferences
among individuals, is essential.

(iv) The caching mechanism should align with user mobility, ensuring that the requests of mobile
users are met with guaranteed service efficiency.

(v) Edge nodes are susceptible to malicious activities, physical damage in harsh environments, or
temporary disruptions in network connectivity when frequently exchanging tasks, which can impact
real-time data communication.

As a response, we introduce a mobile-aware caching approach that integrates fault tolerance
mechanisms. This paper primarily focuses on caching strategies aimed at reducing latency and
enhancing cache hit rates and proposes a fault tolerance mechanism to optimize the performance of
MEC systems, ultimately improving user experience and system efficiency. Through extensive large-
scale simulation experiments, we have validated the superior performance and effectiveness of the
FT-MAACC method compared to conventional approaches.

The remaining part of this paper is organized as follows: a summary of related work is provided in
Section 2. The system model and problem formulation are presented in Section 3. Section 4 discusses
the proposed primary methods. Simulation results will be discussed in Section 5. Finally, closing
remarks and prospects are provided in Section 6.

2 Related Work

In recent years, with the advancement of MEC, content caching technology has garnered signifi-
cant international research interest as an effective solution for reducing data traffic. This technology
reduces latency and network congestion by enabling servers to quickly fulfill user requests through
the local storage of popular content. Consequently, the research community has developed numerous
MEC caching strategies. For example, Reiss-Mirzaei et al. [5] considered the social and behavioral
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characteristics of users that affect caching strategies and proposed an edge caching mechanism based
on social relationships and user behavior characteristics, aimed at reducing network traffic and latency
in accessing popular content. Zhang et al. [6] developed a collaborative edge caching framework that
integrates intelligent vehicles for multimedia services in modern wireless networks, enhancing mobile
edge computing resource utilization. Ndikumana et al. [7] addressed mobile network latency issues and
proposed collaborative cache allocation and computation offloading strategies to maximize resource
utilization.

In the context of enhancing network performance and user satisfaction, personalized caching
and mobility-aware MEC caching have garnered significant attention. These approaches are crucial
in meeting user requirements, optimizing network efficiency, and providing personalized services and
content recommendations. Tang et al. [8] addressed the efficient use of edge computing and IoT devices
for caching multimedia content in Information-Centric Networks, proposing a solution integrating
machine learning-based location prediction, intelligent caching, and optimized caching replacement
algorithms. Wu et al. [9] explored collaborative caching in Vehicle Edge Computing (VEC), using asyn-
chronous joint learning and deep reinforcement learning to optimize caching locations and improve
the global model’s accuracy. Wei et al. [10] introduced user destination prediction with trajectory
information, integrated with a caching decision algorithm for creating efficient cache deployment
plans. Given the scale and complexity of MEC caching, deep reinforcement learning algorithms, like
Q-learning [11], have shown significant potential in optimizing these problems. Jiang et al. [12] delved
into collaborative content caching in MEC, proposing a reinforcement learning-based architecture and
a Multi-Agent Reinforcement Learning (MARL) algorithm to manage content caching, particularly
for unknown user preferences inferred from historical demand patterns.

Although multi-agent deep reinforcement learning has its advantages, utilizing the shared expe-
riences among agents to improve learning efficiency, it also has limitations, mainly due to insufficient
consideration of user mobility characteristics. As Ostrowski et al. [13] proposed, in dynamic network
environments, mobile fog nodes and end users exhibit time-varying characteristics, including dynamic
network topology changes, which pose additional challenges to the effectiveness and applicability
of deep reinforcement learning algorithms. In contrast, Zhong et al. [14] proposed a system model
encompassing both centralized and decentralized caching systems, introducing a deep learning-
based Actor-Critic framework to optimize content delivery latency. Their model, however, is static,
differing from the dynamic approach in this paper. Additionally, Song et al. [15] focused on static
users within MEC environments, using a single-agent learning mechanism to optimize collaborative
caching models. Single-agent deep reinforcement learning focuses on individual learning in isolated
environments, not fully exploiting the collaborative potential among multiple agents, which is a key
focus of multi-agent deep reinforcement learning in this study.

In the distributed and heterogeneous environment of edge computing, where numerous edge
nodes and devices are present, risks such as hardware malfunctions, network disruptions, or power
outages are common. Given the inevitability of failures in this environment, fault tolerance becomes a
crucial aspect. Consequently, researchers have developed various strategies to address this challenge.
For instance, Zhang et al. [16] introduced an online offloading framework utilizing multi-step
reinforcement learning, featuring fault detection, recovery strategies, backup-based fault recovery,
and checkpoint techniques. Sun et al. [17] proposed a fault-tolerant Quality of Service (QoS)-
aware scheduling model for mixed-edge-cloud environments, evolving the traditional Primary-Backup
(PB) model into a reliability-oriented time-constrained approach. Concurrently, Mitsis et al. [18]
presented a multi-user-multi-server-multi-access edge computing operational framework based on
prospect theory, game theory, and reinforcement learning principles. Their framework focuses on
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enabling MEC servers to determine their optimal published prices in a semi-autonomous and fully
autonomous manner, marking a significant advancement in our research field. However, compared
to our proposed FT-MAACC, Mitsis et al.’s study primarily concentrates on pricing strategies and
behavioral awareness, while our work is more focused on integrating content adaptability algorithms,
collaborative caching strategies, and fault tolerance models to address fault tolerance challenges in the
MEC environment.

Our approach combines a multi-agent deep reinforcement learning (DRL) model with collabora-
tive caching strategies, integrating fault tolerance mechanisms to address base station failures. In the
dynamic landscape of distributed edge computing, where user and base station mobility frequently
alter network conditions [19], a single-agent learning approach might struggle to keep pace with these
changes. This is where the advantage of multiple DRL agents becomes evident. They independently
explore and learn in diverse environments, effectively adapting to these shifts, meeting user demands
more efficiently and enhancing overall network performance. Unlike single-agent methods, multi-
agent DRL not only offers greater potential in adapting to such dynamic environments but also
brings forth new challenges in cooperation and communication, which are vital for optimizing content
caching and delivery processes. The integration of fault tolerance mechanisms concurrently plays a
crucial role, in mitigating the effects of base station failures and ensuring the stability and reliability
of the system.

3 System Model and Problem Formulation

In this section, we provide a detailed exposition of the system model and the formulation of the
problem.

3.1 System Model
In this paper, we deploy an MEC environment where each base station is equipped with an edge

server with a storage capacity denoted as T . Each mobile user establishes a connection with a specific
MEC server, and within any given time slot, a user can only communicate with one base station. MEC
servers are interconnected with each other through X2 or Xn links and connected to the cloud via
backhaul links [20]. The set of base stations is denoted as BS = {bs1, bs2, bs3, . . . , bsi}, the set of users
is denoted as U = {

u1, u2, u3, . . . , uj

}
, and the cloud server serves as the source server for content. It is

assumed that content requests are mutually independent, and each user can request only one content
item within a specific time slot, with user locations remaining fixed during the given time slot. The
system model comprises four key components: the cache model, transmission delay model, mobility
model and fault model. This comprehensive framework is designed to address user demands in high-
mobility environments, with the goals of reducing user request latency, improving cache hit rates, and
optimizing MEC system performance through fault tolerance mechanisms. Reference to Table 1 is
provided for annotations in this paper.

Table 1: Summary of the key notations

Notation Definition

T The capacity of each edge server
t ∈ T Time slot
BS = {bs1, bs2, bs3, . . . , bsi} Set of base stations

(Continued)
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Table 1 (continued)

Notation Definition

bsk The k-th base station, k ∈ [1, i]
U = {

u1, u2, u3, . . . , uj

}
Set of users

ub The b-th user, b ∈ [1, j]
C = {c1, c2, c3, . . . , cn} The set of content
cp The c-th content, p ∈ [1, n]
wt

bsk ,ub ,cp
The content cp requested by user ub from base
station bsk at t

�t
k,p The caching status of cp at bsk

ξp The size of pth content
Dt

k,local, Dt
k,neighbor, Dt

k,cloud Delay from local, neighbour and cloud server
Dt Total transmission delay
Lt

ub
The moving trajectory of the b-th user

PFk Failure probability of the k-th base station
TFk The probability of the k-th base station failing to

process tasks
FTK Delay caused by failure of the k-th base station
St, Agt, At The set of state, agent, action
R (St, At) Reward function
κ Content type
fκ (tm) Access content
Rfκ (tm) Corresponding content’s request count
Ptm

fκ Content fitness
Chaκ(tm) Retrieve the relevant attributes of the content
Sκ Content feature adaptation degree

As illustrated in Fig. 1, the system architecture can be divided into three fundamental layers
[21]. At the topmost tier is the cloud server layer, consisting of high-performance servers with ample
storage capacity. The intermediate layer is the edge server layer, comprising various base stations,
each equipped with data storage, caching capabilities, and computational resources. The bottom
layer is composed of mobile vehicle users. These base stations are distributed randomly within the
simulated area, interconnected through wireless networks, and linked to the cloud servers via backhaul
connections. When a user initiates a content request, the request is initially transmitted to the nearby
base station. The base station then searches its local cache for the requested content. If the content is
available in the local cache, the base station promptly delivers it to the mobile user. In cases where the
desired content is not found in the local cache, the base station attempts to request the content from
neighboring base stations. Only if adjacent base stations cannot provide the requested content does
the base station forward the request to the cloud center [22].
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Figure 1: Edge computing system model

3.2 Cache Model
Edge servers face limitations related to storage capacity and computational resources, which

necessitate the selective caching of content to ensure quality of service for users [23]. At t, the cache
status of edge server bsk can be represented as:

Ck (t) = {
�t

k,1, �t
k,2, . . . , �t

k,m

}
(1)

where, the binary variable �k,j is used to denote whether content cp is cached in bsk, with �k,p defined
as:

�t
k,p =

{
0, if cp is cached in bsk

1, otherwise
(2)

Considering the constraints imposed by hardware resources and storage capacity, the cache
capacity of edge servers should not exceed their total available space. Hence, edge servers must adhere
to Eq. (3). This implies that, at t, if content cw is to be cached in bsk, it is necessary for the current
server’s capacity to be sufficiently available, as defined by the equation:

n∑
p=1,p�=w

�t
k,p · ξp + ξw ≤ T (3)

where, ξp represents the size of content cp and Tk represents the cache capacity of bsk.

3.3 Transmission Delay Model
Transmission delay refers to the time delay experienced by data during its transfer across a

network. This delay can be categorized into three primary components: firstly, the delay associated
with data transmission within local caches; secondly, the delay arising from collaborative transfers
between various edge servers; and lastly, the delay incurred when data is transmitted from the cloud
to end users. These three components collaboratively contribute to the reduction of the overall
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transmission delay [24]. In t, the three components of transmission delay for bsk are defined as Dt
k,local,

Dt
k,nighbor, and Dt

k,cloud, and their specific mathematical expressions are as follows:

Dt
k,local =

n∑
p=1

j∑
b=1

wt
bsk ,ub ,cp

· ξp · �t
k,p/rlocal (4)

Dt
k,neighbor =

n∑
p=1

j∑
b=1

wt
bsk ,ub ,cp

· ξp · (
1 − �t

k,p

) · �t
Nk ,p/rneighbor (5)

Dt
k,cloud =

n∑
p=1

j∑
b=1

wt
bsk ,ub ,cp

· ξp · (
1 − �t

k,p

) ·
(

1 − �t
Nk ,p

)
/rcloud (6)

where, ξp represents the size of content cp, wt
bsk ,ub ,cp

represents the content cp requested by user uj from
base station bsk at time t, rlocal, rneighbor, rcloud represent the transmission rates from the local, neighbor,
and central servers, respectively. �p indicates whether content cp is cached at the current base station,
and �t

Nk ,p indicates whether content cp is cached at neighboring nodes.

The total transmission delay is defined as:

Dt =
i∑

k=1

Dt
k,local + Dt

k,neighbor + Dt
k,cloud (7)

3.4 Mobility Model
In this assumption, we consider that the mobility of a mobile user exhibits an arbitrary pattern,

with the direction and angle of movement varying over time. This implies that the user’s movement
trajectory is not constrained to a specific pattern or path and can change dynamically based on various
factors or influences. Thus the user’s path is expressed in terms of latitude and longitude as follows:

Lt
ub

= {lonub
(t) , latub

(t)} (8)

Lt
ub

denotes the moving trajectory of the bth user in t. Where latub
(t) denotes the longitude point of

the mobile trajectory of the bth user in t, and lonub
(t) denotes the latitude point of the mobile trajectory

of the bth user in t.

3.5 Fault Model
The failure probability of edge servers is a multifaceted issue that is influenced by various factors.

The failure probability is affected by multiple factors, such as the quality of hardware equipment,
environmental conditions, operating time, and workload status [25]. This paper assumes that the
failure events of edge servers are independent and follow a Poisson process. Consequently, the failure
probability of an edge server equipped with base station bsk in a single time slot, denoted as PFk(X),
can be further elaborated as:

PFk(X) = (eλt − 1) fk
x

x! eλtTk

0 ≤ PFk(X) ≤ 1

x ∈ {0, 1, 2, . . . , n}

(9)
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where X represents the number of failure occurrences, e is the base of the natural logarithm, λ is the
failure rate (the average rate of failure events), fk represents the number of failures in base station bsk,
and Tk is the time during which bsk failures occur.

The probability of task processing failure TFk(X) on the edge server bsk, when a user requests
resources, can be estimated using queuing theory:

TFk(X) = ρCN(1−ρ)

eρtTk

(10)

where ρ represents the system’s utilization rate (the ratio of task arrival rate to task processing rate),
and CN denotes the capacity of the server.

When a base station fails, it ceases to accept user request tasks. However, if a failure occurs after
receiving a user request, resulting in the inability to process the received task, it leads to a delay in task
execution:

FTt
k =

i∑
k=1

wt
bsk ,ub ,cp

· ξp · dbsk ,ub

Capk

(1 + TFk(X)) (11)

where Capk the processing capacity of the k-th base station and dbsk ,ub
denotes the distance of

communication between the base station and the b-th user.

3.6 Problem Formulation
The content caching problem involves minimizing content delivery latency in scenarios that

consider additional requirements or constraints. Our goal is to minimize latency to the greatest extent
possible while meeting the time constraints and capacity limits of each MEC, all the while ensuring
the effective delivery of the required content. Consequently, this problem is formally formulated as:

Min
1
T

T∑
t=1

(Dt + FTk) (12)

s.t. C1.
∑n

p=1 �k,p · ξp ≤ T
C2. �k,p ∈ {0, 1}
C3. 0 < dub

≤ dmax

C4. FTk < Tneighbor

Constraint C1 indicates the size of the content requested by the user cannot exceed the capacity
size of the edge server. Constraint C2 is to constrain the non-negativity and integrity of the variable.
Constraint C3 indicates the maximum distance of the user request content. Constraint C4 states that
the delay caused by a base station failure, leading to the inability to process an individual user request
task, must be shorter than the time it takes for a user to successfully send a request to the base station.

4 Primary Methods
4.1 Content Prediction

To fulfill user requests and minimize content transmission latency, edge servers can proactively
predict the content that users are likely to request and cache it locally. While highly popular content is
more likely to be requested, it fails to account for users’ personal preferences [26]. Therefore, simply
predicting based on popularity is not always realistic. In the context of users’ mobility, accurately
predicting content that aligns with their preferences and caching the target content accordingly is a
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challenging problem that aims to further enhance the QoS for users. Based on this, we propose an
adaptive content prediction algorithm (ACP) that takes into account user preferences. The specific
algorithm is depicted in Algorithm 1.

Algorithm 1: ACP algorithm
1: κ: Content type
2: fκ (tm): Access content
3: Rfκ (tm): Number of requests for the corresponding content
4: Ptm

fκ : Content fitness
5: Chaκ(tm): Retrieve the relevant attributes of the content
6: Sκ : Content feature adaptation degree
7: for each ui ∈ Users do

8: Ptm
fκ = Rfκ (tm)∑

κ
Rfκ (tm)

9: Predict P̂tm+1
fκ from

{
Pt0

fκ , Pt1
fκ , . . . , Ptm

fκ

}
10: P̂tm+1

fκ for fκ (tm + 1)

11: Predict f̂κ(tm + 1)

12: Predict ̂Chaκ(t + 1) from f̂κ(tm + 1)

13: Calculate Sκ =
√∑

κ
θκ(̂Chaκ(tm + 1) − Chak(tm))2

14: Calculate Pfκ (tm + 1) =
∑N

z=0 Sκ,z, Ptm
fκ,z

N
15: Uploads Ptm

fκ to the local BS
16: end for
17: Content suitability assessment and selection for inclusion in CN
18: return CN

Initially, collect the historical records of user content access within time period T . The cumulative
number of content accessed by users is denoted as W . Time period T is then divided into o time slots,
denoted as {t0, t1, . . . , to}. For each time tm (0 < m < o), calculate the content fitness Ptm

fκ of user content
access. The calculation formula is as follows:

Ptm
fκ

= Rfκ (tm)∑
κ

Rfκ (tm)
(13)

where, κ represents the category of content accessed by users, fκ represents the content accessed by users
during time tm, and Rfκ (tm) indicates the number of requests made by users for content fκ (tm) during
time tm. By inputting the collection of content matching degrees

{
Pt0

fκ , Pt1
fκ , . . . , Ptm

fκ

}
into an exponential

smoothing prediction model, we can obtain the predicted content matching degree P̂tm+1
fκ for users in

the next time slot. Consequently, the predicted content f̂κ (tm + 1) for user clusters in that time slot can
be determined.

The content feature adaptation degree Sκ represents the degree of match between the predicted
content f̂κ (tm + 1) for users in time tm + 1 and their accessed content fκ (tm) in time tm. The calculation
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formula is as follows:

Sκ =
√∑

κ

θκ

(
̂Chaκ (tm + 1) − Chaκ (tm)

)2

(14)

where θκ represents the weights of different features. Chaκ (tm) denotes the corresponding feature of the
accessed content fκ (tm) by users in time tm. ̂Chaκ (tm + 1) represents the corresponding feature of the
predicted content f̂κ (tm + 1) based on the content adaptation degree prediction value P̂tm+1

fκ for users

in tm + 1.

Based on the content feature matching, the content adaptation degree Ptm+1
fκ for predicting the

content of the user cluster at tm + 1 is calculated using the following formula:

Ptm+1
fκ

=
∑Z

z=0 Sκ,z · Ptm
fκ,z

N
(15)

where, Sκ,z represents the content feature matching degree of the κth content category for the zth user
cluster; Ptm

fκ,z represents the content adaptiveness of the zth user cluster for the κth content category in tm.

4.2 Multi-Agent Deep Reinforcement Learning Model
DRL is a technique that merges deep learning and reinforcement learning to train intelligent

agents [27]. By engaging in ongoing interactions with the environment, these agents learn optimal
strategies to make decisions. Multiple DRL agents refer to the presence of multiple independent intel-
ligent agents simultaneously in a reinforcement learning environment [28]. In traditional reinforcement
learning, typically only one agent interacts with the environment and learns the optimal strategy.
The objective of multiple deep reinforcement learning agents is to learn and optimize their strategies
through collaboration or competition, aiming to achieve global optimality or specific goals. Each agent
perceives the environmental state, selects actions, and interacts with the environment, continuously
improving its strategy through trial and error and learning [29].

In this paper, we use a multi-intelligent deep reinforcement learning framework (Fig. 2), and par-
tially incomplete observable reinforcement learning problems can be modeled as Partially Observable
Markov Decision Processes (POMDP) [30] modeled as a six-tuple {S, A, R, P, ζ , δ}. S represents the
set of states, A denotes the set of actions, R represents the reward function, and P corresponds to the
state transition probability matrix.

Figure 2: Schematic illustration of the Multi-Agent Actor-Critic framework
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P =
⎡⎢⎣P11 · · · P1h

...
. . .

...
Ph1 · · · Phh

⎤⎥⎦
In this context, ζ refers to the set of observations, while δ represents the set of observation

probabilities. The state, action, and reward can be defined as follows:

1) State: at time t, the specific state of the edge cache nodes is denoted as St = {
St

1, St
2, · · · , St

M

}
.

The set of agents is defined as Agt = {
agt

1, agt
2, . . . , agt

N

}
, where N represents the number of agents.

Each agent is placed on a specific edge server device and engages in interactions and competitions
with other agents to enhance its strategy. Through continuous learning, the agents strive to improve
their performance over time.

2) Action: The action set At = {
at

s, at
f

}
represents the decisions made by the agent based on its

perception of the environmental state regarding whether to cache content. In this context, at
s denotes

the action of caching the content, while at
f represents the action of discarding the content.

3) Reward: The reward function R (St, At) represents the reward obtained by the agent for
selecting a particular action in the current state. The agent utilizes this reward to adjust its exploration
strategy. The general procedure involves the agent first interacting with the environment to obtain the
state St. Based on the input state St, the agent selects an action At and receives an immediate reward.
Finally, the agent accumulates the previous immediate rewards to obtain the current cumulative
reward. The primary objective of the reward function is to minimize content delivery latency. When
an action meets the requirements, the reward value increases, while it decreases when the action fails
to meet the requirements. The reward function is directly tied to the optimization objective and can be
defined as follows:

R
(
St, At

) =
{

e− min( 1
T

∑T
t=1(Dt+FTk)), at

s−1, at
f

(16)

4.3 Fault-Tolerant Multi-Agent Actor-Critic Algorithm for Content Caching
Algorithm 2, referred to as FT − MAACC , innovatively integrates fault tolerance with multi-

agent reinforcement learning to enhance collaboration and learning among agents within distributed
environments, while simultaneously increasing the system’s resilience to faults and errors. In traditional
multi-agent reinforcement learning settings, failures in one or more agents can significantly impact
the overall performance and stability of the system. FT − MAACC addresses this challenge by
incorporating fault-tolerance mechanisms that enable the system to adapt and continue learning in
the face of such failures. At the heart of this algorithm is the Actor-Critic architecture, which assigns
the responsibility of decision-making based on the current state to the Actor, and the task of evaluating
the outcomes of actions to the Critic. This division of responsibilities ensures that each agent in the
system is equipped with its Actor and Critic, thereby addressing the critical challenge of maintaining
system integrity and performance amidst potential agent failures.

Understanding the computational complexity of FT − MAACC is crucial for assessing its appli-
cability across multi-agent systems of varying scales. The complexity is primarily influenced by several
key factors, including the number of neurons in each layer of the Actor and Critic networks, the number
of layers, and the dimensions of the input and output layers. For instance, the total computational com-

plexity of the Actor-network can be expressed as O
(

ds × h1,1 + ∑w1−1

m=1 h1,m × h1,m+1 + h1,w1
× ι

)
, where ds

represents the size of the input layer, h1,m denotes the number of neurons in the m-th layer, and ι is the
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dimension of the output layer. Similarly, the Critic network, which is tasked with evaluating the value of

selected actions, follows a parallel complexity expression as O
(

ds × h2,1 + ∑w2−1

m=1 h2,m × h2,m+1 + h2,w2

)
.

When considering n agents within the system, the overall computational complexity becomes n times
the sum of the complexities of the Actor and Critic networks for all agents.

Beyond its architectural design, FT − MAACC proactively estimates the probabilities of base
station malfunctions and task processing failures to ensure fault tolerance. This assessment enhances
the system’s reliability and stability. By understanding the likelihood of base station outages and
the risks associated with task processing errors, FT − MAACC can implement targeted strategies to
mitigate potential failure scenarios. This approach contributes to reduced content delivery latencies
and an improved overall user experience within edge computing environments.

Algorithm 2: FT-MAACC algorithm
Require: Number of iterative rounds T, learning rate δ, discount factor γ , actor-critic network structure.
1: Initialization: Initialize system parameters, hyperparameters, edge server and mobile user cache

spaces, network parameters θ k, φk, target networks θ
′
k ← θ k, φ

′
k ← φk, and a random process for

action exploration.
2: if edge server bsi is operational then
3: Perform caching tasks.
4: for each episode do
5: for t = 1 to T do
6: Randomly generate q ∈ [0, 1].
7: for each agent k in N agents do
8: Choose actions agt

k based on policy or randomly for exploration.
9: Gather local observations and states St

k.
10: end for
11: Interact with the environment to obtain rewards ̄(t) and new states St

k∗.
12: t = t + 1.
13: end for
14: Store the events for each agent.
15: Update the target network parameters as per a predefined formula (not specified here).
16: Update content properties and cache states.
17: Update network parameters θ k, φk.
18: end for
19: else
20: Change the state of edge server bsi.
21: Select the next base station bsi+1 for task processing.
22: Queue tasks at bsi+1 for processing.
23: end if
Ensure: Optimal strategy Ω.

5 Performance Evaluation
5.1 Parameters Setting

To assess the FT-MAACC method and simulate content requests and user behavior in mobile
environments, we integrated mobile user access event logs and mobility trajectories from the Shanghai
Telecom dataset [31] with user content preferences from the Movielens 1M [32]. The Shanghai dataset
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comprises over 7.2 million content access event records and their corresponding mobility trajectories
from 9,481 mobile users across 3,233 edge sites over six months, reflecting users’ mobility patterns
and behavioral habits. By incorporating rating information from the MovieLens dataset, we attributed
specific content preferences to these mobility trajectories, simulating users’ interests in movies or video
content at various locations and times. This approach enabled the construction of a comprehensive
model that reflects both the realities of the mobile environment and user preferences. Fig. 3 shows
the distribution location of edge nodes in Shanghai. Fig. 4 is an example recording the trajectory of a
taxi in the city heart of Shanghai. We use Python to implement the proposed FT − MAACC method.
The neural network model is built upon a network of evaluated actors and commenters, as well as a
network of target actors and commenters. The target network is updated with the Adam optimizer,
with learning rates of 0.001 for the critic network and 0.0005 for the actor network, and a discount
factor of 0.9. The relevant parameters are shown in Table 2.

Figure 3: Blue coordinate icons represent each edge node in Shanghai’s downtown area showing the
general distribution of the whole network

5.2 Comparison Algorithms
FT − MAACC is compared against the following benchmark algorithms: Thompson sampling

(TS) [33], Random Selection Algorithm (RSA) [34], Greedy Algorithm (GA) [35], MARL [12], and
MAACC (The algorithm in this paper does not consider fault tolerance).

5.3 Performance Analysis
For performance analysis, we configured an environment where each base station was equipped

with an edge server. Different base stations cached corresponding contents according to corresponding
caching strategies to test the resource requests of mobile vehicles.
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Figure 4: The green lines represent the route trajectory of a taxi in the city heart of Shanghai on a
certain day

Table 2: Parameter table

Parameter Value

Number of users 30
Coverage radius (m) 100–200
Basic transfer data size (KB) 8
Basic run time per task (ms) 20
Total bandwidth (Mbps) 50
Number of rounds of training 30
Size of cache 0–500
The number of local epochs 10
Local batch size 50
Actor and critic learning rate 0.001, 0.0005
Network update rate 0.01
Discount 0.9

As shown in Fig. 5, different kinds of applications are represented by different shapes, such as
triangles, prototypes, and squares. Different colors indicate the resources cached by different edge
servers. When the vehicle moves, the resource hit rates of MAACC and MARL cache are higher than
others, which means the vehicle can obtain resources from the nearest base station. On the contrary,
TS/RSA/GA request resources from adjacent edge servers resulting in increased latency. Crossed-
out base stations indicate a failure in the system, while dashed lines represent the inability to acquire
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resources from the faulty base stations. The FT − MAACC algorithm proactively detects base stations
with a high probability of failure, selecting the nearest operational base station to provide resources.
This approach aims to enhance the hit rate and reduce latency.

Figure 5: Cached resources using different algorithms
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Fig. 6 shows the cache hit rates under various caching strategies and cache capacities in a
fault-free base station scenario. As the capacity of the edge server increases, the cache hit ratio is
observed to increase. By increasing the cache capacity of the edge server, the number of cached
resources also increases. Consequently, mobile users are more likely to retrieve resources from local
and adjacent edge servers, enhancing overall resource availability and accessibility. This results in a
higher hit ratio. Since FT − MAACC solely incorporates fault tolerance mechanisms in comparison
to MAACC , the cache hit rates of FT − MAACC and MAACC are identical in the scenario where
the base station is free from faults. FT − MAACC and MAACC outperform TS/RSA/GA/MARL
by 22.2%/37.1%/15.2%/12.8%, respectively. This is because FT − MAACC and MAACC utilize multi-
depth reinforcement learning agents and introduce mechanisms of cooperation and competition,
allowing agents to compete, cooperate, or collaborate in their learning process. This promotes mutual
learning and interaction among the agents, thereby improving overall performance.

Figure 6: Cache hit rates of FT-MAACC/MAACC/TS/RSA/GA/MARL under different cache capac-
ities (Absence of Failures)

Fig. 7 showcases the cache hit rate considering different cache capacities, various cache poli-
cies, and the occurrence of a random node failure. By incorporating fault tolerance mechanisms,
FT − MAACC considers the probability and impact of node failures, giving priority to resource
requests from base stations that are less susceptible to failures. This approach effectively mitigates
cache misses caused by node failures, leading to an improved cache hit rate. The hit rates of other
algorithms showed fluctuations primarily due to the inherent randomness of cache misses when
user requests need to access cache data located on a failed node. FT − MAACC outperformed
MAACC/TS/RSA/GA/MARL by 8.3%/18.4%/37.4%/17%/11.9%, respectively.

Fig. 8 reveals the request latency with different caching strategies under different cache capacities
in the scenario where the base station is fault-free. An increase in the cache capacity of an edge server
leads to a decrease in resource transfer latency for all cache strategies. This observation suggests a
direct relationship between cache capacity and the reduction of latency in resource transfers. This is
because the larger the cache capacity, the higher the cache hit ratio of the edge server, the higher the
possibility of mobile users obtaining resources from the local and neighboring servers, and the lower
the corresponding resource transmission delay. Based on Fig. 8, it is evident that both FT − MAACC
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and MAACC demonstrate comparable and lower latency compared to other methods. This can
be attributed to the adoption of a multi-agent mechanism in FT − MAACC and MAACC , which
enhances the exploration capabilities of the training environment by incorporating diverse intelligent
agents. Each agent can independently explore the environment and acquire unique strategies. This
comprehensive exploration approach enables the system to discover optimal strategies and effectively
reduce latency.

Figure 7: Cache hit rates of FT-MAACC/MAACC/TS/RSA/GA/MARL under different cache capac-
ities (Presence of Failures)

Figure 8: Request latency of FT-MAACC/MAACC/TS/RSA/GA/MARL under different cache capac-
ities (Absence of Failures)

Fig. 9 depicts the request latency in the scenario where a random node failure occurs, considering
different cache capacities and cache policies. When an edge node experiences a failure, the access
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latency for users to that node increases. Among the evaluated strategies, FT − MAACC exhibits the
lowest latency. However, its latency is higher compared to the scenario where no failures occur. This is
primarily due to the time required for detecting and diagnosing faulty nodes. In contrast, the latency of
other strategies generally increases and exhibits fluctuations. This can be attributed to the possibility
of user requests being directed to the failed nodes, necessitating redirection to alternative available
nodes, which introduces additional delays in network communication and forwarding. Moreover,
the unavailability of data stored on the faulty nodes necessitates alternative means of data retrieval,
further contributing to increased access latency. In summary, FT − MAACC , with its integrated fault
tolerance mechanisms, effectively mitigates latency to a certain extent, positioning it as a superior
choice compared to other algorithms.

Figure 9: Request latency of FT-MAACC/MAACC/TS/RSA/GA/MARL under different cache capac-
ities (Presence of Failures)

6 Conclusion

This article primarily addresses the challenge of high-speed mobile resource caching in the
MEC environment and introduces a mobile-aware caching approach based on multi-agent deep
reinforcement learning with fault tolerance (FT-MAACC). The strength of this approach lies in
the agents’ capacity to adapt flexibly to changing conditions and real-time feedback, autonomously
updating their behaviors and strategies to suit new contexts, thus providing higher-quality decision-
making and services. Experimental results illustrate the effectiveness of this approach in enhancing
cache hit rates and reducing content transmission latency.

In future research and development, we plan to further fortify the reliability and fault tolerance of
edge computing cache systems. By introducing more robust fault detection and recovery mechanisms,
we aim to ensure the system can promptly identify and respond to potential faults in edge nodes or
the network. Through real-time monitoring of node availability and load conditions, our system will
be capable of automatically switching to backup nodes to ensure the continuity and high availability
of cache services. This approach will help address unforeseen failures, enhance system stability, and
meet the ever-growing user demands.
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