
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.048793

ARTICLE

NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the
Network Flow Holographic Picture-ResNet

Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1 and Yi Zhu1

1School of Cyber Science and Engineering, Sichuan University, Chengdu, 610065, China
2CyberScience Research Institute, Sichuan University, Chengdu, 610065, China
3Chengdu Fengwei Technology Co., Ltd., Chengdu, 610041, China

*Corresponding Author: Xingshu Chen. Email: chenxsh@scu.edu.cn

Received: 18 December 2023 Accepted: 22 February 2024 Published: 16 April 2024

ABSTRACT

Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack
samples, and even those never seen before, make it challenging for traditional rule-based detection methods
to extract universal rules for effective detection. With the progress in techniques such as transfer learning and
meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack
detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement
of deep learning, difficulties in capturing rich information from original flow in the case of insufficient samples,
and the challenge of high-level abstract representation. To address these challenges, a few-shot network attack
detection based on NFHP (Network Flow Holographic Picture)-RN (ResNet) is proposed. Specifically, leveraging
inherent properties of images such as translation invariance, rotation invariance, scale invariance, and illumination
invariance, network attack traffic features and contextual relationships are intuitively represented in NFHP. In
addition, an improved RN network model is employed for high-level abstract feature extraction, ensuring that
the extracted high-level abstract features maintain the detailed characteristics of the original traffic behavior,
regardless of changes in background traffic. Finally, a meta-learning model based on the self-attention mechanism
is constructed, achieving the detection of novel APT few-shot network attacks through the empirical generalization
of high-level abstract feature representations of known-class network attack behaviors. Experimental results
demonstrate that the proposed method can learn high-level abstract features of network attacks across different
traffic detail granularities. Compared with state-of-the-art methods, it achieves favorable accuracy, precision, recall,
and F1 scores for the identification of unknown-class network attacks through cross-validation on multiple datasets.

KEYWORDS
APT attacks; spatial pyramid pooling; NFHP (network flow holo-graphic picture); ResNet; self-attention
mechanism; meta-learning

1 Introduction

Currently, Advanced Persistent Threat (APT) attacks exploit existing or novel vulnerabilities
to infiltrate internal networks and hosts, employing various adversarial techniques that alter their

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.048793
https://www.techscience.com/doi/10.32604/cmes.2024.048793
mailto:chenxsh@scu.edu.cn

930 CMES, 2024, vol.140, no.1

attack behavior patterns. The vulnerabilities, methods, and pathways used in such attacks are often
unprecedented, leading to the emergence of unknown attack characteristics. Limited threat sample
quantities and the absence of samples pose challenges in constructing effective attack detection models.
According to Trojan analysis reports from APT organizations [1], advanced Trojans such as “NOPEN”
employ multiple adversarial techniques, including payload configuration data, resource, and function
encryption, to counteract antivirus and sandbox detection. In terms of network communication, these
Trojans use asymmetric encryption, waiting for network requests to activate, and other characteristics
to counteract network-side detection. Moreover, on the host side, they employ techniques such as
memory residency and forensic self-destruction, making sample extraction difficult and threatening
features challenging to capture.

Conventional deep learning methods require a large amount of labeled data for learning. For
network attack identification, if a particular category of attack samples is scarce, the model struggles
to learn useful attack features for classification. With the development of transfer learning and meta-
learning techniques, few-shot training and detection have greatly improved. However, challenges
persist, such as sample feature loss and insufficient learning from source sample features. Researchers
like Xu et al. [2], Snell et al. [3], Xiang et al. [4], Yu et al. [5], Zamir et al. [6], among others,
have used transfer learning or meta-learning frameworks to learn initialization experience weights
on a large number of similar tasks, effectively enhancing the model’s learning ability on new tasks.
While meta-learning methods address few-shot recognition to some extent, using average difference
values for classification when there is significant fluctuation in intra-class sample features can lead to
misjudgments. Transfer learning methods also face issues such as sample-specific feature loss during
the transfer process.

Additionally, challenges arise in representing attack features suitable for meta-learning frame-
works. These challenges include the inability of time-series sequence traffic features to adapt to
the fixed-length input requirement of deep learning and the difficulty in high-dimensional few-shot
network attack features’ high-level abstract representation. Rong et al. [7] proposed a malicious web
request detection method using character-level Convolutional Neural Networks (CNN), converting
WEB request parameters into indexed matrix feature vectors and inputting them into a CNN detection
model for malicious and benign request determination. Ding et al. [8] introduced an intrusion
detection method based on deep convolutional neural networks, which preprocesses network traffic
data sequences, converts 121-dimensional features directly into 11 × 11 black-and-white images, and
inputs them into a CNN for feature dimension reduction and recognition. The above methods have
taken into account the issue of preprocessing deep learning input data. However, compared to the
automatic extraction of detailed features from the original data and the method of constructing fixed-
length fine-grained multi-channel color image features, there is a gap in terms of time efficiency
and maintaining traffic detail features when considering sequence self-padding transformation and
artificial black-and-white image feature construction methods. Long et al. [9–15] and others generally
use different encoder methods to extract low-level features from flow sequences to achieve attack
classification. The extraction of high-level abstract features in the case of insufficient samples has
not been considered, especially the inadequate consideration of the high-level abstract representation
of contextual features in attack session traffic.

To address these issues, this paper proposes a few-shot attack detection method based on NFHP-
RN. Firstly, it introduces a multi-granularity, multi-channel holographic image feature construction
method (Network Flow Holographic Picture, NFHP) for network traffic data, concretizing network
attacks in the form of visual images. This method overlays multi-granularity detailed traffic context
features, constructing a three-dimensional holographic perspective feature image through images. This

CMES, 2024, vol.140, no.1 931

approach effectively represents details of traffic context relationship features of different granularity
levels while improving the effective utilization of high-dimensional features. Secondly, through an
improved ResNet network, it extracts high-level abstract features of network traffic, efficiently utilizing
holographic image features to address the challenge of expressing unified attack features for few-
shot attacks in the presence of large-scale traffic backgrounds. Thirdly, it constructs a meta-learning
detection model, utilizing the experience gained from classifying known malicious samples to learn
optimal network initialization weights. An attention matching mechanism is introduced to enhance
detection accuracy by calculating the similarity between target samples and known samples. The
contributions of this paper are as follows:

1. For the existing detection methods, it is difficult to express the long-period session relationship
of APT attacks, difficult to construct features, and difficult to meet the needs of fixed-scale
input of deep learning models due to irregular feature sequences. An innovative method based
on Spatial Pyramid Pooling (SPP) is proposed to use convolution kernels of different sizes
respectively to carry out feature pooling calculations of multi-session behavior, such as average,
maximum, minimum, standard deviation and mode. Bilinear interpolation is performed to
upsample the obtained multi-level feature images. The feature images of different levels are
scaled to the same feature space, and the feature images of all levels are spliced to get the
NFHP traffic image features. The final NFHP image contains the original traffic long-period
session relationship feature and the original traffic feature, and has the fixed dimension to meet
the fixed size input requirements of deep learning.

2. NFHP images preposition part of feature construction, which reduces the size of model
network to a certain extent and speeds up the learning speed. In addition, the preposition
image feature construction method can also be accelerated through algorithm optimization
or parallel computation to improve performance. In order to extract higher-order abstract
features of NFHP images, the problems of few-shot attack detection such as few samples,
not rich sample features, and not obvious main features can be solved, and the relationship
between features in traffic can be better expressed. According to the characteristics of NFHP
images, ResNet network is improved to make it perceive the different characteristic eigenvalues
calculated in NFHP, and extract the abstract representation of the key behaviors of network
attacks.

The remainder of this paper is organized as follows. Section 2 provides an overview of related
work, Section 3 details the proposed method, Section 4 presents experimental results and analysis,
and finally, Section 5 concludes with summary remarks.

2 Related Work

With the rapid development of network technology, the network has become an indispensable tool
in people’s lives. But at the same time, such convenient platform has also induced abundant attacks
[16]. For better defending, researchers have proposed various corresponding solutions, benefitting
the industrial [17,18], vehicle [19], mobile [20] scenarios and so on. This work focuses on the attack
detection under the network scenario, which involves two main components. The first component is to
extract and represent features from network traffic, and the second component is to identify malicious
traffic based on limited data. In the following, we review the existing methods for both components.

932 CMES, 2024, vol.140, no.1

2.1 Feature Extraction and Representation on Traffic
Tang et al. [21] and others extracted three decision features from the traffic data, namely the

coefficient of variation of TCP traffic, the wavelet packet energy entropy of TCP (Transmission
Control Protocol) traffic , and the Pearson correlation coefficient between TCP and total traffic,
to distinguish normal traffic from traffic under LDoS attacks. Marques et al. [22] converted the
original traffic data into grayscale images used CNN to extract the spatial features of traffic from
grayscale images. Meanwhile he used recurrent neural network (RNN) to extract the temporal
features of traffic. Demianiuk et al. [23] proposed a contrastive learning-based model to learn an
optimized traffic representation function, using positive and negative sample pairs from the traffic
graph, thus improving the quality of traffic representation. Ma et al. [24] used the density-based
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to divide the
traffic records into different traffic clusters according to the time interval and byte number of the
traffic records. Cai et al. [25] represented the features of network traffic by using a Bidirectional
Temporal Convolutional Network (BiTCN). BiTCN consists of two independent TCN sub-modules,
which perform forward and backward convolution operations on the input network traffic sequence
respectively, to capture the bidirectional semantic features of network traffic. Dodia et al. [26] extracted
the top three most active Tor connections from each PCAP (Packet CAPture) file and used 150 web
fingerprint features to describe the traffic patterns of each connection, while introducing 40 novel
host-level features to capture the behavioral characteristics of malware. Finally, the paper combines the
connection-level features and the host-level features of each Tor connection to form a 190-dimensional
feature vector. Lee et al. [27] selected 21 features from the data stream and converted each feature in
the network traffic data to 0 or 1 using a bitmap rule, dividing them into normal traffic or attack
according to the range of feature values, thereby reducing the size and dimension of the data. Feature
representation methods based on deep learning not only develop rapidly in the field of network attack
detection, but also become the main method of feature representation in other research fields [28,29].

2.2 Attack Detection with Limited Data
One solution is autonomous learning, calibrating samples, and expanding the available infor-

mation space. Tikekar et al. [30], Jiang et al. [31], and others used heuristic feature rule methods
to automatically learn the performance of a small number of existing samples for detecting attacks.
Subsequently, Wang et al. [32] used graphs to address the shortcomings of individual flow structures,
combining similarity detectors and stability-based graph detectors in the flow structure. Li et al. [33]
introduced a pipeline framework using random forest feature selection and DBSCAN clustering
attribute transformation, converting raw network data into attributes, effectively maintaining data
information, and showing excellent results. However, such solutions are ineffective in the case
of 0-day vulnerabilities and zero samples. Another solution is an adaptive detection framework.
Ouyang et al. [34] introduced a novel IDS (Intrusion Detection Systems) based on small sample
learning, named FS-IDS (Few-Shot Intrusion Detection Systems), for detecting network attacks
against SCADA (Supervisory Control And Data Acquisition) networks. Zerhoudi et al. [35] used
zero-shot learning to compensate for missing examples with semantic knowledge to better estimate
unknown user behavior, addressing internal threat detection issues. Zhong et al. [36] proposed a Few-
shot Class-Agnostic Self-Adaptive Anomaly Detection (FCAD) framework with Model-Agnostic
Meta-Learning (MAML) for cases with few labeled samples of new network anomalies. Also, complex
network attacks often hide in a large volume of normal network traffic, sharing similarities with
normal network traffic and exhibiting significant changes in attack features. In scenarios with a lack
of samples, small sample attack detection fails to achieve effective results. Zhu et al. [37] proposed

CMES, 2024, vol.140, no.1 933

a cost penalty layer in the training process to address the unbalance data. Although it can improve
the classification accuracy in unbalance data, it is challenging to directly apply to few-shot attack
detection. Singh et al. [38] proposed a new meta-learning model to solve the problem of data imbalance
by updating weights to reduce errors between target data and measured data.

As shown in Table 1, we compare the above methods in terms of high-level abstraction, importance
of features, and limited data. Existing studies mainly discuss the time relationship between traffic in
the time dimension, and lack consideration of data load, session attributes, communication object
distribution and other characteristics. Especially when a small number of unknown network packets
cannot be effectively identified and correlated, the opportunity to analyze and detect malicious
behavior may be lost. Therefore, the key of small-sample attack detection under the condition of high-
dimensional features is how to extract high-level abstract features to meet the deep learning model’s
comprehensive learning requirements for unknown small-sample attack features.

Table 1: The comparison of different network attack detection models

Method Considering high-level
abstract features

Considering importance
of features

Considering limited
data

Marques et al. [22] × × ×
Ma et al. [24] √ × ×
Cai et al. [25] √ √ ×
Li et al. [33] × × √
Ouyang et al. [34] × × √
Zhong et al. [36] √ √ √
Lan et al. [39] √ × ×
Agrafiotis et al. [40] × √ ×

3 Methodology
3.1 Method Framework

In order to achieve few-shot network attack detection, we propose a feature representation and
extraction scheme based on NFHP-RN. This approach utilizes a multi-channel image to represent
network attack traffic. By enhancing ResNet for feature encoding and employing a meta-learning
approach with a self-attention mechanism, we aim to learn a classification method for unknown-
category attacks from past limited-known attack recognition tasks. The framework of the detection
method is illustrated in Fig. 1.

The methodology workflow is presented as follows:

(1) Traffic IP Grouping: Group traffic by IP addresses and arrange it chronologically. Each group
contains communication traffic between two IPs. Calculate N-dimensional statistical features for each
traffic entry.

(2) Construction of NFHP Image Features: For multiple session traffic within the same IP group,
perform pooling calculations (average, maximum, minimum, standard deviation, and mode) based
on the SPP method for each feature dimension, using convolutional kernels of different sizes. Apply
bilinear interpolation upsampling to the obtained multi-level feature images, bringing different levels

934 CMES, 2024, vol.140, no.1

of feature images to the same feature space. Concatenate all levels of feature images to generate NFHP
traffic image features.

(3) RN (ResNet) High-Level Abstract Feature Extraction: Modify the pooling layer of ResNet,
changing max pooling to average pooling to enable the convolutional network to capture differences
in traffic behavior features. Calculate abstract features for NFHP images.

(4) Meta-Learning Classification: Build a meta-learning model with self-attention for classifying
abstract features of traffic. Achieve classification of few-shot network attack traffic.

Figure 1: Framework for few-shot attack detection based on NFHP-RN

3.2 Network Attack Background Traffic IP Grouping
In a typical network attack, multiple associated flows are often involved. Many existing works

focused on detecting attack traffic only consider a single target flow, neglecting the correlation between
behaviors in multiple session flows. Therefore, to characterize the communication behavior from the
attacking end to the attacked end in a single network attack and to represent the correlation of network
attack traffic features across multiple session flows, we combine multiple normal or abnormal flows
generated by the same IP address as background traffic with the target traffic to be detected. A single
sample is constructed to simultaneously include the target traffic to be detected and the background
traffic generated by the same IP. This enhances the feature representation of correlated traffic. The
steps for network attack background traffic IP grouping are as follows:

(1) Group network traffic samples based on the same source IP and destination IP addresses, with
each group containing communication traffic between two IP addresses.

CMES, 2024, vol.140, no.1 935

(2) Sort the traffic sequences within a group based on time to reconstruct the temporal process of
communication between IP addresses.

(3) Save the grouped and sorted traffic sequences for feature construction.

3.3 Construction of NFHP Image Features
The grouped background traffic sequences contain statistical features for each traffic entry

but are challenging to represent the overall behavioral characteristics of traffic sequences and the
correlation between different flows. Additionally, due to varying traffic quantities between different
IPs, the directly computed feature lengths differ, making it unsuitable for deep network models.
Furthermore, it is necessary to consider the granularity of feature extraction for background traffic
of different lengths, with longer background traffic sequences yielding fewer detailed features after
compression. To address these issues and enable the feature extractor to fully capture the overall
behavioral characteristics of background traffic sequences and the correlation features between flows,
we employ the SPP method for multi-scale, multi-attribute feature pooling of background traffic of
different lengths. The obtained pooled features are transformed into images of uniform size and fused
and concatenated to generate a multi-modal NFHP (Network Flow Holographic Picture). The image
features encompass multi-scale behavioral characteristics of background traffic sequences as well as
target traffic features, facilitating the feature extractor in capturing relationship features between flows.
Meanwhile, the samples have a uniform size. The method for constructing NFHP image features is
illustrated in Fig. 2, with the following steps:

(1) Assume the traffic grouping between two IP addresses is represented as A = {f1, f2, . . . , fi, . . . , fn},
where fn is the nth traffic record. Let Xi = {xi

1, xi
2, . . . , xi

m, . . . , xi
k} be the feature values of traffic fi, where

xi
m is the mth feature. The feature matrix of this background traffic is given by Eq. (1).

A′ =

⎡
⎢⎢⎢⎢⎢⎣

x1
1 · · · x1

m · · · x1
k

...
.

...
xi

1 · · · xi
m · · · xi

k
...

.
...

xn
1 · · · xn

m · · · xn
k

⎤
⎥⎥⎥⎥⎥⎦ (1)

(2) Suppose all the pooling levels of SPP are denoted by L = {1, 2, . . . , j, . . . , z}. Let xm =
{x1

m, . . . , xi
m, . . . , xn

m} represent the mth column feature set in A′, where the length of xm is lxm . When
calculating features for level j of xm, start by slicing the feature values in xm in sequential order into an
average of j portions. If the elements in xm are less than j, fill the remaining portions with zeros. This
process results in a set of feature slices Pj = {p1, p2, . . . , pi, . . . , pj}, where each slice pi is a continuous
set of feature values in xm represented as pi = {xa

m, xa+1
m , . . . , xa+c

m } with a ≥ 1. This satisfies the condition
specified in Eq. (2).⎧⎪⎨
⎪⎩

lxm ≥ j, (j ∈ N
+)

lxm − �lxm/j� × j = 0
c = lxm/j − 1

(2)

(3) Calculate the average, maximum, minimum, standard deviation, and mode for each feature
slice pi. The set of these five statistical features is represented as∅m

pi
= {avgm

pi
, maxm

pi
, minm

pi
, stdm

pi
, modem

pi
},

and the calculation methods for each feature are shown in Eq. (3), respectively.

936 CMES, 2024, vol.140, no.1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

avgm
pi

= μ =
∑a+c

i=a xi
m

j

maxm
pi

= max{xa
m, xa+1

m , . . . , xa+c
m }

minm
pi

= min{xa
m, xa+1

m , . . . , xa+c
m }

stdm
pi

=
√∑a+c

i=a (x
i
m − μ)2

c + 1

modem
pi

= mode(xa
m, xa+1

m , . . . , xa+c
m)

(3)

Figure 2: NFHP Image feature construction method

(4) For each pi in Pj, repeat the previous step to obtain �m = {�m
p1

, �m
p2

, . . . , �m
pi

, . . . , �m
pj
}. The

number of feature values in �m is j × 5. Then, for all feature columns xm in A′, calculate the feature
matrix based on the 5 statistical features at the j-th level, as shown in Eq. (4).

CMES, 2024, vol.140, no.1 937

�j =

⎡
⎢⎢⎣

�1

�2

...
�m

⎤
⎥⎥⎦ (4)

(5) Use all SPP levels L = {1, 2, . . . , j, . . . , z} to repeat the above steps for A′, obtaining the feature
set for each level � = {�1, �2, . . . , �j, . . . , �z}, where �j is the jth feature with dimensions (m, 5 × 1).
Therefore, the dimensions of each element in � are given by Eq. (5).

S� = {(m, 5 × 1), (m, 5 × 2), . . . , (m, 5 × j), . . . , (m, 5 × z)} (5)

(6) Consider each feature matrix in � = {�1, �2, . . . , �j, . . . , �z} as an individual feature image.
Use bilinear interpolation and upsampling to scale each modality image to a uniform size and
concatenate them to obtain the multi-modal NFHP background features. Bilinear interpolation
oversampling allows flow feature layers with different granularities to be scaled to a uniform size while
retaining the corresponding relationship between different layers. This alignment of flow behavior
information aids in detecting information of different granularities within the same receptive field,
allowing effective extraction of locally abstracted representations of flow behavior.

Bilinear interpolation uses four points (2 × 2) in the original image to compute a new point in the
target image. It involves calculating three single linear interpolations in both directions, resulting in the
value of the target point. This method achieves a balance between processing speed and effectiveness,
as illustrated in Fig. 3.

Figure 3: Bilinear interpolation upsampling of image

Let the four adjacent pixels in the image be denoted as Q11(x1, y1), Q12(x1, y2), Q21(x2, y1), and
Q22(x2, y2). First, calculate the linear interpolation point R1(x, y1) using Q11 and Q21, as given by Eq. (6).

f (R1) = x2 − x
x2 − x1

f (Q11) + x − x1

x2 − x1

f (Q21) (6)

Next, compute the linear interpolation point R2(x, y2) using Q12 and Q22, as expressed in Eq. (7).

f (R2) = x2 − x
x2 − x1

f (Q12) + x − x1

x2 − x1

f (Q22) (7)

Finally, determine the value of the target point P (x, y) through the two points R1 and R2, as given
by Eq. (8).

f (P) = y2 − y
y2 − y1

f (R1) + y − y1

y2 − y1

f (R2) (8)

938 CMES, 2024, vol.140, no.1

(7) When considering different flows within the traffic group A as targets for classification, the
traffic feature fi is up-sampled to match the size of the NFHP background image. Subsequently, it is
merged into the first color channel of the NFHP image, resulting in the final NFHP visual feature
specific to the target traffic. The constructed NFHP visual features effectively capture the overall
behavioral characteristics of the background traffic. This facilitates the feature extractor in extracting
potential relationships between the target traffic and the background traffic. Furthermore, under the
same background traffic conditions, NFHP images accurately express different target traffic scenarios.

3.4 High-Order Abstract Feature Extraction Based on Improved ResNet for NFHP
NFHP visual features consist of multiple layers, where the first layer represents the characteristics

of the target traffic, and other layers represent the fusion features of the target traffic’s spatiotemporal
relationships at different granularities. The higher the level of the layer, the more details it contains
about the relationship features, and the overall feature image contains more feature dimensions. To
fully utilize these detailed features, an appropriate image feature encoder is needed. ResNet has shown
good performance in image feature encoding, especially on small-scale datasets. For optimizing NFHP
flow visual features, ResNet18 network is adjusted to precisely perceive different characteristic feature
values calculated within NFHP. This adjustment helps in retaining the details of traffic behavior
features and extracting abstract representations of critical behaviors in network attacks. The modified
ResNet18 network is illustrated in Fig. 4.

Figure 4: Model architecture of NFHP image feature encoder based on ResNet18

CMES, 2024, vol.140, no.1 939

The ResNet18 network has been adjusted by removing the max-pooling in the Conv1 layer and
replacing it with a convolutional layer. The Conv2-Conv5 network layers remain unchanged. Simul-
taneously, the final fully connected layer is replaced with a 1 × 1 convolutional layer, followed by a
flattening operation (Squeeze) on the output to transform the feature dimensions into a 1-dimensional
vector suitable for subsequent classification networks. The original max-pooling layer in the ResNet18
network may compromise the effectiveness of average, minimum, and mode characteristics in NFHP
samples. The modified ResNet18 can perceive and extract the five NFHP characteristics. This network,
acting as an NFHP feature encoder, captures the behavioral patterns of background traffic and the
relationships between multiple flows.

3.5 Construction of Meta-Learning Model Based on Self-Attention Mechanism
A meta-learning classifier is constructed based on an attention mechanism. Utilizing the high-

level abstract features extracted by ResNet18, past classification experiences are queried to detect and
classify new types of few-shot network attacks. This approach significantly reduces the demand for
malicious flow samples and enables rapid adaptation to novel variant samples.

Let our meta-learning task for network attack detection have a support set Dtrain = {(xi, yi)}k
i=1 and

a test set Dtest = {(x̂i, ŷi)}n
i=1, where x̂ is the sample to be classified, and ŷ is the predicted label for the

sample, as shown in Eq. (9).

ŷ =
∑k

i=1
a(〈x̂, xi〉) · yi (9)

where a can be viewed as an attention mechanism, and yi can be considered as memory units
constrained by xi. In other words, the attention matching mechanism introduces external memory
to compute and learn more optimal network weights. Based on this principle, the constructed meta-
learning network model is illustrated in Fig. 5.

Figure 5: Diagram of meta-learning classification network based on attention mechanism

940 CMES, 2024, vol.140, no.1

The classifier network comprises a network structure that alternates between causal convolutional
layers and attention layers. In this structure, self-attention layers use the dot-product method to
calculate attention weights. A TimeConvBlock consists of three Denseblocks, each containing two Cal-
sualConv causal convolution blocks, and each CasualConv containing a 1D convolutional network for
receiving the transposed input vector. The size of the convolutional network in the three Denseblocks
is 1, and the padding and dilation maintain two-fold growth, that is, the padding and dilation in the
first DenseBlock are 2, the second is 4, and the third is 8. The parameters of all TimeConvBlocks are
the same, the only difference is that the input tensor size of the next network needs to be based on the
output size of the previous layer network, there is no need to manually set the number of channels of
the input and output tensors. The internal structure maintains gradients through residual links. This
design effectively captures implicit relationships between uplink and downlink traffic samples and
their background traffic. Simultaneously, it aids meta-learning methods in leveraging past experiences
when classifying samples of different categories.

3.6 Training and Application of the Few-Shot Detection Model
The training and validation process of the NFHP-RN attack traffic representation scheme and

meta-learning network is consistent. The entire process is illustrated in Fig. 6.

Figure 6: Workflow of meta-learning network attack detection based on NFHP-RN

The process steps during the model training phase are as follows:

(1) Sample from the support set and query set using the N-Way, K-Shot method. Set the predicted
target sample category as a one-hot label with all zeros and convert all traffic samples to NFHP feature
representation.

(2) Encode NFHP samples based on ResNet18.

CMES, 2024, vol.140, no.1 941

(3) Concatenate the abstract features of the encoded samples with their corresponding one-hot
vector labels.

(4) Input the concatenated samples into the meta-learning classifier to predict the labels of the
target samples.

(5) Calculate the loss between the predicted labels of the target samples and the actual labels for
backpropagation, achieving model network updates. Cross-entropy is used to characterize the distance
between actual and expected output probabilities. The smaller the cross-entropy value, the closer the
two probability distributions. Let p be the expected output probability distribution and q be the actual
output probability distribution. H(p, q) represents cross-entropy, and the loss function is shown in
Eq. (10).

H(p, q) = −
∑

x
(p(x) log q(x) + (1 − p(x)) log(1 − q(x))) (10)

The process during the model testing and usage phase is consistent with the training process. The
model ultimately outputs predicted labels for unknown class target samples, achieving the prediction
classification for few-shot network attacks.

4 Experimental Results and Analysis
4.1 Experimental Setups

The experiment was conducted on 6 data sets. These datasets contain different feature dimensions,
different number of label categories, different attack traffic distribution proportions, different feature
formats, and different industries. We will use these datasets to fully validate our methods, including
accuracy, generalization, extensibility, and robustness.

(1) CICIDS-2017: CICIDS2017 dataset contains benign and the most up-to-date common attacks,
which resembles the true real-world data (PCAPs). It also includes the results of the network traffic
analysis using CICFlowMeter with labeled flows based on the time stamp, source, and destination IPs,
source and destination ports, protocols and attack (CSV files).

(2) CICIDS-2018: CICIDS2018 includes seven different attack scenarios: Brute-force, Heartbleed,
Botnet, DoS, DDoS, Web attacks, and infiltration of the network from inside. The attacking infrastruc-
ture includes 50 machines and the victim organization has 5 departments and includes 420 machines
and 30 servers. The dataset includes the captures network traffic and system logs of each machine,
along with 80 features extracted from the captured traffic using CICFlowMeter-V3.

(3) CIC-ToN-IoT: The BoT-IoT dataset was created by designing a realistic network environment
in the Cyber Range Lab of UNSW Canberra. The network environment incorporated a combination
of normal and botnet traffic.

(4) CIC-BoT-IoT: The datasets were collected from a realistic and large-scale network designed
at the Cyber Range and IoT Labs, the School of Engineering and Information technology (SEIT),
UNSW Canberra @ the Australian Defence Force Academy (ADFA). Including various attacking
techniques, such as DoS, DDoS and ransomware, against web applications, IoT gateways and
computer systems across the IoT/IIoT network.

(5) NF-UNSW-NB15-v2: The NetFlow-based format of the UNSW-NB15 dataset, named NF-
UNSW-NB15, has been expanded with additional NetFlow features and labelled with its respective
attack categories. The total number of data flows is 2,390,275 out of which 95,053 (3.98%) are attack

942 CMES, 2024, vol.140, no.1

examples and 2,295,222 (96.02%) are benign. The attack examples are further classified into nine
subcategories, the table below represents the NF-UNSW-NB15-v2 dataset’s distribution of all flows.

(6) NF-ToN-IoT-v2: The publicly available pcaps of the ToN-IoT dataset are utilised to generate
its NetFlow records, leading to a NetFlow-based IoT network dataset called NF-ToN-IoT. The
total number of data flows is 16,940,496 out of which 10,841,027 (63.99%) are attack examples and
6,099,469 (36.01%), the table below lists and defines the distribution of the NF-ToN-IoT-v2 dataset.

The number of label categories in each dataset as Table 2.

Table 2: Class count and sample count of four datasets

Dataset NFeature NClass NSample Attack (%) Benign (%) Format Industry

CICIDS-2017 82 15 2,830,743 19.37% 80.63% CICFlowMeter-v4 IDS/IPS
CICIDS-2018 82 15 16,232,943 83.07% 16.93% CICFlowMeter-v4 IDS/IPS
CIC-ToN-IoT 82 10 5,351,760 53.00% 47.00% CICFlowMeter-v4 IoT
CIC-BoT-IoT 81 5 13,428,602 99.34% 00.66% CICFlowMeter-v4 IoT
NF-UNSW-NB15-v2 43 9 2,390,275 3.98% 96.02% NetFlow-based IDS/IPS
NF-ToN-IoT-v2 43 10 16,940,496 63.99% 36.01% NetFlow-based IoT

Experimental environment as Table 3.

Table 3: Experimental environment

Items Performance

CPU Intel® Xeon® Silver 4210 CPU @ 2.20 GHz 2.20 GHz (2nd Processor)
GPU Tesla V100 32GB ∗ 2
RAM 128GB DDR4 RAM
OS Ubuntu22.04.1 LTS
Softwares Anaconda 4.12.0, Python 3.9.12, pytorch 1.13.0, scikit-learn 1.1.1

For analysis, we use four following common Information retrieval evaluation metrics.

(1) Accuracy (Ac): It is the ratio of correctly classified instances (TP + TN) in front of all instances
(TP + TN + FP + FN).

Ac = (TP + TN)/(TP + FP + TN + FN) (11)

(2) Precision (Pr): It is the ratio of correctly classified attack flows (TP), in front of all the classified
flows (TP + FP).

Pr = TP/(TP + FP) (12)

(3) Recall (Rc): It is the ratio of correctly classified attack flows (TP), in front of all generated
flows (TP + FN).

Rc = TP/(TP + FN) (13)

CMES, 2024, vol.140, no.1 943

(4) F-Measure (F1): It is a harmonic combination of the precision and recall into a single measure.

F1 = 2/(1/Pr + 1/Rc) (14)

For model parameter settings, we used consistent model structure and hyperparameters across
all experiments except for the input NFHP dimensions. The hyperparameters are set in the following
Table 4.

Table 4: Experimental hyperparameters

Hyperparameters Value

Bs (batch_size) 32
Loss function Cross-entropy
Optimizer adamW
Lr (learning rate) 0.00001
N-Way (Number of meta-learning sampling categories) 5
K-Shot (Meta-learning predicts the number of categories) 1

NFHP-RN network model parameters need to be calculated according to hyperparameters:

(1) ResNet18 feature encoder: The input layer is the batch size multiplied by the NFHP image size
[bs ∗ (N + K) channel, h, w], where N and K are N-Way and K-Shot values, respectively, channle is the
number of NFHP image channels, and h and w are the height and width of NFHP images, respectively.
The rest of the parameters are the same as the native ResNet18 network, except that maximum pooling
in the last layer is replaced with average pooling.

(2) Meta-learning classifier: The structure of the meta-learning classifier is consistent with that
described in Fig. 5. The convolution step of the three denseblocks in each TimeConv block is 1, the
padding and dilation are 2, 4 and 8, respectively, and the convolution network parameters in each
DenseBlock are consistent. Therefore, the parameters of the classifier model are determined by the
output characteristics of the encoder without manual adjustment.

The entire NFHP-RN network model is connected and run according to steps 4 and 5 in Fig. 1.
The structure and parameters will be used in all experiments. The computing power and model
parameters required by different NFHP feature hierarchy models are as follows Table 5.

Table 5: Computing power and model parameters

Model FLOPs (GB) Params (MB)

ResNet18 1.82 11.69
NFHP-RN-Level_1 60.23 15.62
NFHP-RN-Level_2 60.23 15.62
NFHP-RN-Level_4 60.23 15.62
NFHP-RN-Level_8 60.23 15.62
NFHP-RN-Level_16 60.23 15.62
NFHP-RN-Level_32 187.35 15.62
NFHP-RN-Level_1-2 61.24 15.63

(Continued)

944 CMES, 2024, vol.140, no.1

Table 5 (continued)

Model FLOPs (GB) Params (MB)

NFHP-RN-Level_1-2-4 62.25 15.63
NFHP-RN-Level_1-2-4-8 63.27 15.63
NFHP-RN-Level_1-2-4-8-16 64.28 15.64
NFHP-RN-Level_1-2-4-8-16-32 206.61 15.64

4.2 Impact of Background Flow Feature Characteristics on Model Classification Performance
The NFHP samples contain five overall flow characteristic features. We conducted multi-class

experiments on four datasets using four machine learning and deep learning classification models.
Firstly, classification training was performed based on the original features. Secondly, for each sample,
after computing the five characteristic features, these features were directly concatenated to the target
sample, constructing a linear feature sample set NFAF-LN (Network Flow Action Feature-Level N)
for training with different SPP pooling levels. The algorithm process is outlined in Table 6.

Table 6: NFAF-LN feature construction

Algorithm 1: NFAF-LN feature Construction

Input: f as the original features of CICIDS2017 samples.
Output: the NFAF-LN feature xf as multi-level network flow action feature vector.

1: Define F = Select all network flow samples with the same SIP and DIP of f
2: Define ∅i = The max, min, avg, std and mode feature of F calculated by SPP of level i
3: Set L = {a, j, z} as the NFAF levels
4: Calculate the ∅a, ∅j, ∅z on levels a, j and z
5: Then xf = Concatenate(f , ∅a, ∅j, ∅z)

Based on different levels of NFAF samples, the multi-class classification performance is shown
in Table 7. Experimental comparisons were conducted on the KNN (K Nearest Neighbors), RF
(Random Forest), NB (Naive Bayes), and MLP (Multi-layer Perceptron) models. The maximum
number of samples for each class in the dataset was limited to 10,000, leveraging the performance
of machine learning models on small datasets. SIP and DIP were removed from the sample features,
retaining the original 82-dimensional features. Additionally, the NFAF-L1 features were computed
according to Algorithm 1. The training used the same model parameters and underwent 10-fold cross-
validation.

As shown in Fig. 7, the experiments indicate that incorporating NFAF background traffic
behavioral features has a positive impact on the classification performance of the model across the
CICIDS-2017, CICIDS-2018, CIC-ToN-IoT, and CIC-BoT-IoT datasets.

CMES, 2024, vol.140, no.1 945

Table 7: NFAF-LN multi-classify on four datasets

Dataset Model
Original features (82 dims) NFAF-L1 (492 dims)

Ac Pr Rc F1 Ac Pr Rc F1

CICIDS-2017

KNN 99.27 91.97 86.35 87.37 99.6 91.35 91.03 91.12
RF 84.85 90.62 75.66 78.02 98.06 95.47 90.61 92.05
NB 13.07 14.11 9.03 5.08 41.88 37.5 30.42 26.57
MLP 99.45 93.89 91.22 91.38 99.27 94.42 90.89 91.15

CICIDS-2018

KNN 98.22 96.54 93.76 94.7 98.39 97.33 93.68 94.62
RF 88.67 93.33 81.42 82.87 90.00 94.5 83.88 86.36
NB 26.3 14.42 19.84 14.74 26.87 19.49 20.19 16.32
MLP 99.66 95.77 93.14 93.5 99.96 96.27 93.17 93.89

CIC-ToN-IoT

KNN 77.99 64.43 64.31 64.12 79.21 66.77 67.18 66.69
RF 70.05 58.56 60.53 56.56 72.56 58.4 61.86 57.15
NB 27.47 15.48 32.5 14.5 23.64 13.49 29.95 15.28
MLP 78.38 67.96 68.13 65.78 82.67 68.5 69.88 66.72

CIC-BoT-IoT

KNN 68.04 72.56 73.16 72.83 68.15 72.76 73.3 73.0
RF 64.5 66.26 67.79 64.78 65.2 67.2 68.24 64.48
NB 19.35 22.47 22.91 09.10 12.78 14.86 26.46 10.8
MLP 69.86 73.17 74.63 72.62 70.27 73.55 75.16 72.87

Figure 7: NFAF-LN multi-classify on four datasets

946 CMES, 2024, vol.140, no.1

4.3 Impact of NFHP Images on Model Classification Performance
We conducted experiments to investigate the influence of constructing image representations of

sample features on the model’s classification performance after obtaining the 5 background traffic
behavioral features. We compared the training results using the NFAF-LN feature dataset and the
NFHP feature dataset. Additionally, we specifically constructed a one-dimensional convolutional
model (NFAF-RN1d) consistent with the NFAF-RN model structure for comparison. Table 8 and
Fig. 8 indicate that NFHP images can enhance the performance of the feature encoder and classifier.
However, in scenarios with a higher number of feature dimensions, the NFAF-RN1d model may
struggle to extract abstract features effectively, resulting in underfitting.

Table 8: Multi-classify of NFAF-RN1d and NFHP-RN on different datasets

Dataset NFAF-RN1d NFHP-RN

Ac Pr Rc F1 Ac Pr Rc F1

CICIDS-2017 91.06 91.96 91.03 90.43 96.28 96.36 96.28 95.94
CICIDS-2018 90.26 91.08 90.23 89.5 94.76 94.85 94.73 94.25
CIC-ToN-IoT 92.24 92.56 92.19 91.56 95.12 95.15 95.1 94.65
CIC-BoT-IoT 91.53 92.87 91.53 90.96 95.11 95.49 95.07 94.61

Figure 8: Multi-classify of NFAF-RN1d and NFHP-RN on different datasets

4.4 Impact of Different Hierarchical NFHP Features on Model Performance
In order to validate the influence of the granularity of background traffic representation on

the model’s classification performance, we constructed various NFHP feature datasets with different
combinations of pooling layers and validated them on the datasets. Table 9 and Fig. 9 illustrate the
impact of different hierarchical combinations of data on the model’s classification performance.

CMES, 2024, vol.140, no.1 947

Table 9: Effect of different SPP layers on datasets

Level CICIDS-2017 CIC-ToN-IoT

Ac Pr Rc F1 Ac Pr Rc F1

1 92.31 92.7 92.28 91.65 94.57 94.62 94.53 94.06
2 97.14 97.07 97.15 96.81 94.47 94.55 94.31 93.87
4 97.2 97.21 97.15 96.91 95.38 95.7 95.42 95.06
8 97.96 97.96 97.99 97.78 95.6 95.65 95.59 95.21
16 96.73 96.71 96.75 96.4 95.55 95.56 95.55 95.1
32 98.03 98.03 98.05 97.81 95.08 95.08 95.11 94.62
1 + 2 93.69 93.76 93.67 93.11 94.48 94.56 94.37 93.93
1 + 2 + 4 97.16 97.23 97.08 96.84 95.3 95.32 95.33 94.87
1 + 2 + 4 + 8 97.75 97.75 97.75 97.52 95.1 95.15 95.14 94.65
1 + 2 + 4 + 8 + 16 93.69 93.66 93.66 93.0 95.08 95.18 95.1 94.66
1 + 2 + 4 + 8 + 16 + 32 97.96 97.95 97.96 97.75 95.93 95.86 95.88 95.45

Level CICIDS-2018 CIC-BoT-IoT

Ac Pr Rc F1 Ac Pr Rc F1

1 94.51 94.66 94.36 93.94 94.95 95.66 94.87 94.41
2 93.04 93.33 93.01 92.39 95.29 95.29 95.25 94.81
4 94.92 94.99 94.91 94.45 94.93 94.98 94.87 94.41
8 95.41 95.56 95.48 95.05 95.36 95.79 95.35 94.91
16 96.2 96.26 96.2 95.85 95.18 95.63 95.09 94.64
32 93.47 93.6 93.48 92.84 94.93 95.19 94.94 94.49
1 + 2 95.2 95.21 95.11 94.67 95.12 95.69 95.07 94.61
1 + 2 + 4 94.52 94.51 94.51 93.99 95.18 95.49 95.18 94.62
1 + 2 + 4 + 8 94.28 94.29 94.24 93.71 95.22 95.39 95.28 94.79
1 + 2 + 4 + 8 + 16 95.03 95.1 95.08 94.57 94.84 94.98 94.85 94.35
1 + 2 + 4 + 8 + 16 + 32 95.69 95.77 95.7 95.28 95.06 95.21 94.9 94.47

Level NF-UNSW-NB15-v2 NF-ToN-IoT-v2

Ac Pr Rc F1 Ac Pr Rc F1

1 92.74 92.75 92.69 92.1 96.04 96.11 96.01 95.67
2 91.65 91.66 91.55 90.78 94.52 94.51 94.46 93.95
4 91.95 92.44 91.91 91.24 96.64 96.7 96.64 96.32
8 92.9 92.95 92.81 92.23 96.44 96.47 96.45 96.09
16 92.61 92.51 92.5 91.84 97.39 97.33 97.29 97.05
32 91.39 91.88 91.33 90.51 95.69 95.77 95.62 95.24
1 + 2 90.08 90.31 90.06 89.24 95.02 95.02 95.09 94.61
1 + 2 + 4 90.63 91.3 90.58 89.94 95.61 95.71 95.72 95.28
1 + 2 + 4 + 8 89.67 89.93 89.68 88.79 96.62 96.64 96.57 96.25
1 + 2 + 4 + 8 + 16 91.65 91.72 91.61 90.87 96.98 97.11 96.92 96.7
1 + 2 + 4 + 8 + 16 + 32 92.28 92.56 92.24 91.65 96.3 96.25 96.28 95.89

948 CMES, 2024, vol.140, no.1

Figure 9: Effect of different SPP layers on datasets

The experiments indicate that the model’s classification performance is influenced by the granu-
larity of NFHP features. Coarse-grained NFHP features inadequately represent the details of attack
traffic features, while higher levels provide a more refined representation of attack features. This results
in lower classification performance on the 1 and 1-2 feature levels compared to using higher-level
NFHP features such as 4, 8, 16, and 32. This characteristic is evident across all four datasets, showing
that as the NFHP level increases, the model’s classification ability improves.

Furthermore, consistent model structure and parameters were used for validation on different
datasets (ResNet18 and a meta-learning classifier with 3 layers of self-attention and causal convolu-
tion). Higher-level NFHP features have more feature dimensions, causing a slight underfitting when
reaching 16 to 32 layers, resulting in a slight decrease in model classification performance. Finally, since
the number of original sample categories varies in each dataset, the model’s ability to learn “feature
extraction experience for known category samples” is inconsistent. This inconsistency leads to better
performance on datasets with a higher number of original sample categories, such as CIDIDS-2017
and CIDIDS-2018. Therefore, the model effectively leverages the classification experience of multiple
known categories, and the classification performance improves with an increasing number of initial
sample categories, as demonstrated in the next experiment.

CMES, 2024, vol.140, no.1 949

4.5 Cross-Validation on Different Datasets
To validate the performance of our approach in the context of few-shot malicious traffic detection

and the transferability of model knowledge, we trained and cross-validated our model on different-
layer NFHP sample datasets using six datasets. This exploration aimed to assess the model’s detection
performance on unknown-category attack traffic.

We initially trained the model on a single dataset and then conducted abnormal traffic detection
on another dataset. Test results of CICFlowMeter-v4 series data set were averaged for all levels,
and test results of all levels were displayed for NetFlow series data set. The results are presented in
Tables 10–15. Moreover, Fig. 10 clearly illustrates the results of its transformation.

Table 10: Evaluations trained on CICIDS-2017 and test on other datasets (Trained 0 epochs, trained
10 epochs, trained 100 epochs)

Test
dataset

Trained 0 epochs Trained 10 epochs Trained 100 epochs

Ac Pr Rc F1 Ac Pr Rc F1 Ac Pr Rc F1

CICIDS-2018 73.21 77.49 73.14 70.98 92.98 93.18 92.97 92.38 97.57 97.57 97.63 97.36
CIC-ToN-IoT 65.14 70.12 65.26 63.5 93.42 93.54 93.28 92.73 95.97 96.02 95.88 95.53
CIC-BoT-IoT 69.14 73.59 69.0 65.78 94.99 95.36 94.96 94.55 95.57 95.8 95.46 95.08

Table 11: Evaluations trained on CICIDS-2018 and test on other datasets (Trained 0 epochs, trained
10 epochs, trained 100 epochs)

Test
dataset

Trained 0 epochs Trained 10 epochs Trained 100 epochs

Ac Pr Rc F1 Ac Pr Rc F1 Ac Pr Rc F1

CICIDS-2017 78.58 84.97 78.52 77.46 96.85 96.86 96.85 96.53 99.09 99.08 99.12 99.0
CIC-ToN-IoT 83.73 88.29 83.71 83.37 94.22 94.3 94.2 93.66 96.02 96.1 96.07 95.68
CIC-BoT-IoT 73.41 83.91 73.35 72.2 94.94 95.19 94.94 94.42 95.46 95.81 95.44 95.02

Table 12: Evaluations trained on CIC-ToN-IoT and test on other datasets (Trained 0 epochs, trained
10 epochs, trained 100 epochs)

Test
dataset

Trained 0 epochs Trained 10 epochs Trained 100 epochs

Ac Pr Rc F1 Ac Pr Rc F1 Ac Pr Rc F1

CICIDS-2017 84.7 87.32 84.56 83.89 96.45 96.36 96.48 96.07 98.94 98.97 98.93 98.84
CICIDS-2018 83.8 87.05 83.65 83.11 93.33 93.51 93.32 92.69 97.57 97.6 97.57 97.33
CIC-BoT-IoT 82.81 85.67 82.72 81.65 95.09 95.3 95.12 94.67 95.31 95.51 95.25 94.81

950 CMES, 2024, vol.140, no.1

Table 13: Evaluations trained on CIC-BoT-IoT and test on other datasets (Trained 0 epochs, trained
10 epochs, trained 100 epochs)

Test
Dataset

Trained 0 epochs Trained 10 epochs Trained 100 epochs

Ac Pr Rc F1 Ac Pr Rc F1 Ac Pr Rc F1

CICIDS-2017 55.04 62.1 54.84 52.64 93.15 93.37 93.05 92.47 98.22 98.24 98.18 98.04
CICIDS-2018 49.29 53.78 49.6 43.73 90.45 90.73 90.3 89.55 97.01 97.05 97.04 96.75
CIC-ToN-IoT 51.93 56.49 51.73 46.75 91.39 91.75 91.32 90.61 96.24 96.27 96.23 95.88

Table 14: Evaluations trained on NF-UNSW-NB15-v2 and test on NF-ToN-IoT-v2 (Trained 0 epochs,
trained 10 epochs, trained 100 epochs)

Level Trained 0 epochs Trained 10 epochs Trained 100 epochs

Ac Pr Rc F1 Ac Pr Rc F1 Ac Pr Rc F1

1 72.56 75.96 72.34 69.71 94.88 95.28 94.79 94.5 97.53 97.63 97.59 97.39
2 73.66 79.76 73.79 71.47 93.84 93.95 93.7 93.2 98.62 98.63 98.63 98.46
4 77.81 82.73 77.51 75.67 96.5 96.59 96.62 96.25 98.59 98.54 98.46 98.32
8 84.19 85.43 84.16 82.84 96.5 96.58 96.56 96.25 98.09 98.22 98.02 97.93
16 78.75 81.5 78.45 76.45 96.22 96.34 96.34 95.96 98.41 98.61 98.4 98.36
32 75.44 80.04 74.78 72.79 95.22 95.62 95.25 94.96 98.12 98.06 98.23 97.95
1 + 2 80.0 83.11 80.49 78.46 93.75 93.92 93.68 93.06 98.19 98.29 98.29 98.12
1 + 2 + 4 72.88 78.0 72.91 70.03 94.25 94.59 94.32 93.91 97.94 98.12 97.97 97.87
1 + 2 + 4 + 8 83.81 84.42 83.48 82.4 93.5 93.58 93.53 92.92 97.47 97.27 97.42 97.06
1 + 2 + 4 + 8 + 16 79.47 84.24 79.45 78.22 95.81 95.85 95.65 95.27 98.03 98.18 98.07 97.95
1 + 2 + 4 + 8 + 16 + 32 77.97 80.54 78.05 75.97 94.97 95.16 94.85 94.54 97.78 97.9 97.85 97.68

Average 77.87 81.43 77.76 75.82 95.04 95.22 95.03 94.62 98.07 98.13 98.08 97.92

Table 15: Evaluations trained on NF-ToN-IoT-v2 and test on NF-UNSW-NB15-v2 (Trained 0 epochs,
trained 10 epochs, trained 100 epochs)

Level Trained 0 epochs Trained 10 epochs Trained 100 epochs
Ac Pr Rc F1 Ac Pr Rc F1 Ac Pr Rc F1

1 83.66 84.78 84.17 82.86 91.81 91.95 91.68 90.99 95.19 95.48 95.13 94.73
2 83.22 86.95 82.81 82.22 90.66 91.0 90.7 90.03 94.12 94.22 94.15 93.63
4 84.5 87.82 84.68 83.96 92.16 92.18 92.51 91.67 94.97 95.19 94.77 94.49
8 85.38 87.55 85.62 84.63 91.22 91.61 91.05 90.38 94.75 95.01 94.89 94.45
16 84.38 85.91 83.85 83.26 92.53 92.46 92.16 91.63 94.78 94.7 94.65 94.18
32 82.38 84.58 81.71 80.96 92.75 92.95 93.16 92.39 94.03 93.75 93.96 93.23
1 + 2 84.56 86.11 84.59 83.65 91.06 91.22 90.62 90.06 93.16 93.32 93.02 92.5
1 + 2 + 4 84.56 86.01 84.04 83.42 90.81 91.56 90.88 90.29 93.78 93.81 94.27 93.4
1 + 2 + 4 + 8 85.62 88.83 85.95 85.21 91.97 92.45 92.1 91.4 94.16 94.38 94.46 93.83

(Continued)

CMES, 2024, vol.140, no.1 951

Table 15 (continued)

Level Trained 0 epochs Trained 10 epochs Trained 100 epochs
Ac Pr Rc F1 Ac Pr Rc F1 Ac Pr Rc F1

1 + 2 + 4 + 8 + 16 85.97 87.18 85.98 85.01 92.28 92.33 91.95 91.26 94.78 95.0 94.87 94.41
1 + 2 + 4 + 8 + 16 + 32 85.53 86.81 84.98 84.24 92.28 92.25 92.3 91.51 94.47 94.81 94.73 94.23
Average 84.52 86.6 84.4 83.58 91.78 92.0 91.74 91.06 94.38 94.51 94.44 93.92

Figure 10: Evaluations trained on one dataset and test on other datasets

As evident from Tables 10 to 15 and Fig. 10, after training on one dataset and directly performing
classification on another dataset, the model achieved a classification performance of over 80% in 0
epochs on CICIDS-2017, CICIDS-2018, and CIC-ToN-IoT datasets. This indicates that our approach
can effectively transfer the recognition experience of known-category samples and generalize to
unknown categories. However, the performance on CIC-BoT-IoT dataset during 0 epochs training and
validation on other datasets was around 49%–55%. This is attributed to the fewer sample categories in
the CIC-BoT-IoT dataset, preventing the model from fully learning the feature extraction patterns of
network attacks. Nevertheless, in subsequent training rounds, as the model gained exposure to various

952 CMES, 2024, vol.140, no.1

attack categories in other datasets, its classification accuracy quickly increased, reaching over 90%
after 10 epochs.

Moreover, with increasing training epochs, the performance of all datasets rapidly improved at
both 10 and 100 epochs. This indicates that as the model encounters more categories, it significantly
strengthens its ability to extract a general abstract representation of network attacks. Additionally, the
attention meta-learning model better focuses on effective representations in sample features, enabling
accurate classification. This trend illustrates that “the more it sees, the more accurate the recognition”
tendency. In conclusion, our proposed method, after thoroughly learning various categories of
network attack samples, significantly enhances the ability to recognize unknown-category network
attacks, It is robust to traffic data generated in different feature dimensions, different attack traffic
distribution, different feature formats, and different types of network environments ,demonstrating
considerable practical value.

5 Conclusion

In this paper, a series of programmatic methods including feature construction, feature extraction
and detection tasks are proposed to solve several challenges in few-shot network attack traffic
detection. The constructed NFHP flow image feature provides a multimodal representation of
attack traffic and background flow and is suitable for neural networks with fixed-size inputs. The
improved ResNet network uses convolutional layer instead of maximum pooling layer for feature
calculation, extracts abstract features used by attention meta-learning models, and learns general
patterns of different attack classes. The model implements the optimal initialization weights with
different granularity on different data sets. The final classification model achieved high accuracy,
precision, recall and F1 values, over 80% on previously unseen data, was able to adapt quickly to
new samples, and trained with a minimum of unknown class samples. The encoder-decoder structure
is adopted in this method. The encoder is conducive to the convenient expansion of the traffic
preprocessing equipment, and the decoder can also allocate the encoder and classifier to multiple
scalable devices for parallel computation, which is conducive to the operation of the solution in a large-
scale network environment. The solution can be extended from four aspects: Feature preprocessing
parallelism, encoder parallelism, classifier parallelism and feature detail extension. At the same time,
the intermediate features of network traffic generated by this method should be effectively utilized. In
the multi-source and multi-point security joint detection solution, the network traffic features in this
paper are aligned with the software features collected by EDR by contrast learning, so that network or
local threats can be quickly traced, which is one of the next research directions of this paper. However,
our proposed approach has limitations. First of all, when constructing NFHP visual image feature
models with different detail granularity fusion, the same network structure and model parameters
are used, and adjusting the model parameters according to different detail granularity characteristics
may better adapt to the detection of malicious stream samples under this granularity. Secondly, the
data set used in this study contains a large number of attack class samples. Collecting more samples
from different categories and trying to use different data sets for mixed training and detection can
obtain experimental data and further optimize our method. Finally, while the construction of NFHP
features helps reduce the computational load to some extent, it increases the amount of computation
required for data preprocessing. Improving processing performance through methods such as parallel
computing is an area that needs to be considered in the future.

Acknowledgement: None.

CMES, 2024, vol.140, no.1 953

Funding Statement: This work was supported by the National Natural Science Foundation of China
(Nos. U19A2081; 62202320), the Fundamental Research Funds for the Central Universities (No.
SCU2023D008), the Science and Engineering Connotation Development Project of Sichuan Univer-
sity (No. 2020SCUNG129) and the Key Laboratory of Data Protection and Intelligent Management
(Sichuan University), Ministry of Education.

Author Contributions: Study conception and design: Tao Yi, Xingshu Chen; data collection: Tao
Yi; analysis and interpretation of results: Mingdong Yang, Qindong Li, Yi Zhu; draft manuscript
preparation: Tao Yi. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The CICIDS-2017, CICIDS-2018, CIC-ToN-IoT, CIC-BoT-
IoT, NF-UNSW-NB15-v2, NF-ToN-IoT-v2 datasets, which were utilized to back up the study’s
conclusions, are respectively available at: CICIDS-2017: https://www.unb.ca/cic/datasets/ids-2017.
html. CICIDS-2018: https://www.unb.ca/cic/datasets/ids-2018.html. CIC-ToN-IoT: https://staff.itee.
uq.edu.au/marius/NIDS_datasets/#RA13. CIC-BoT-IoT: https://staff.itee.uq.edu.au/marius/NIDS_
datasets/#RA14. NF-UNSW-NB15-v2: https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA6.
NF-ToN-IoT-v2: https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA7.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Laboratory, A. (2022). Revealing the cyber attack arsenal from the depths of “nopen” remote access trojan.

https://www.antiy.com/response/20220315.html (accessed on 15/03/2022).
2. Xu, C., Shen, J., Du, X. (2020). A method of few-shot network intrusion detection based on meta-learning

framework. IEEE Transactions on Information Forensics and Security, 15, 3540–3552.
3. Snell, J., Swersky, K., Zemel, R. S. (2017). Prototypical networks for few-shot learning. https://doi.org/

10.48550/arXiv.1703.05175
4. Xiang, J., Havaei, M., Chartrand, G., Chouaib, H., Vincent, T. (2018). On the importance of attention in

meta-learning for few-shot text classification. https://doi.org/10.48550/arXiv.1806.00852
5. Yu, M., Guo, X., Yi, J., Chang, S., Zhou, B. (2018). Diverse few-shot text classification with multiple metrics.

Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics, vol. 1, pp. 1206–1215.

6. Zamir, A. R., Sax, A., Shen, W., Guibas, L., Savarese, S. (2018). Taskonomy: Disentangling task transfer
learning. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3712–3722.
Piscataway, NJ, USA, IEEE Press.

7. Rong, W., Zhang, B., Lv, X. (2019). Malicious web request detection using character-level CNN. ML4CS
2019: Machine Learning for Cyber Security, pp. 6–16. Xi’an, China, Springer International Publishing.

8. Ding, H., Wan, L., Zhou, K., Long, T., Xin, Z. (2019). Ntrusion detection research based on deep
convolutional neural networks. Computer Science, 46(10), 173–179.

9. Long, C., Xiao, J., Wei, J., Zhao, J., Wan, W. et al. (2022). Autoencoder ensembles for network intru-
sion detection. 2022 24th International Conference on Advanced Communication Technology (ICACT),
pp. 323–333. PyeongChang Kwangwoon_Do, Korea. https://doi.org/10.23919/ICACT53585.2022.9728934

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA13
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA13
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA14
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA14
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA6
https://staff.itee.uq.edu.au/marius/NIDS_datasets/#RA7
https://www.antiy.com/response/20220315.html
https://doi.org/10.48550/arXiv.1703.05175
https://doi.org/10.48550/arXiv.1806.00852
https://doi.org/10.23919/ICACT53585.2022.9728934

954 CMES, 2024, vol.140, no.1

10. Christopher, N., Mohamed, S., Mohamed, H. (2020). Autoencoders: A low cost anomaly detection method
for computer network data streams. Proceedings of the 2020 4th International Conference on Cloud and Big
Data Computing (ICCBDC ’20), pp. 58–62. New York, NY, USA, Association for Computing Machinery.
https://doi.org/10.1145/3416921.3416937

11. Lu, J., Meng, H., Li, W., Liu, Y., Guo, Y. et al. (2021). Network intrusion detection based on contrac-
tive sparse stacked denoising autoencoder. 2021 IEEE International Symposium on Broadband Multime-
dia Systems and Broadcasting (BMSB), pp. 1–6. Chengdu, China. https://doi.org/10.1109/BMSB53066.
2021.9547087

12. Deng, H., Yang, T. (2021). Network intrusion detection based on sparse autoencoder and IGA-BP network.
Wireless Communications and Mobile Computing, 2021, 9510858.

13. Gharib, M., Mohammadi, B., Hejareh Dastgerdi, S., Sabokrou, M. (2019). AutoIDS: Auto-encoder based
method for intrusion detection system. https://doi.org/10.48550/arXiv.1911.03306

14. Dutta, V., Choraś, M., Pawlicki, M., Kozik, R. (2020). A deep learning ensemble for network anomaly and
cyber-attack detection. Sensors, 20(16), 4583.

15. Dai, J., Xu, X., Gao, H., Xiao, F. (2023). CMFTC: Cross modality fusion efficient multitask encrypt
traffic classification in IIoT environment. IEEE Transactions on Network Science and Engineering, 10(6),
3989–4009.

16. Dalmaz, H., Erdal, E., Ünver, H. M. (2023). A new hybrid approach using GWO and MFO algo-
rithms to detect network attack. Computer Modeling in Engineering & Sciences, 136(2), 1277–1314.
https://doi.org/10.32604/cmes.2023.025212

17. AlMasri, E., Alkasassbeh, M., Aldweesh, A. (2023). Towards generating a practical SUNBURST attack
dataset for network attack detection. Computer Systems Science and Engineering, 47(2), 2643–2669.
https://doi.org/10.32604/csse.2023.040626

18. Chen, D., Zhao, Z., Qin, X., Luo, Y., Liu, A. (2022). MAGLeak: A learning-based side-channel attack
for password recognition with multiple sensors in IIoT environment. IEEE Transactions on Industrial
Informatics, 18(1), 467–476.

19. Yang, Y., Wang, W., Liu, L., Dev, K., Qureshi, N. M. F. (2023). AoI optimization in the UAV-aided
traffic monitoring network under attack: A stackelberg game viewpoint. IEEE Transactions on Intelligent
Transportation Systems, 24(1), 932–945.

20. Han, Z. (2023). Smart optimization solution for channel access attack defense under UAV-aided heteroge-
neous network. IEEE Internet Things Journal, 10(21), 18890–18897.

21. Tang, D., Wang, X., Li, X., Vijayakumar, P., Kumar, N. (2021). AKN-FGD: Adaptive kohonen network
basedFine-grained detection of LDoS attack. IEEE Transactions on Dependable and Secure Computing,
20(1), 273–287.

22. Marques, R. S., Al-Khateeb, H., Epiphaniou, G., Maple, C. (2022). APIVADS: A novel privacypreserving
pivot attack detection scheme based on statistical pattern recognition. IEEE Transactions on Information
Forensics and Security, 17, 700–715. https://doi.org/10.1109/TIFS.2022.3146076

23. Demianiuk, V., Gorinsky, S., Nikolenko, S. I., Kogan, K. (2021). Robust distributed monitoring of
traffic flows. IEEE/ACM Transactions on Networking, 29(1), 275–288. https://doi.org/10.1109/TNET.
2020.3034890

24. Ma, H., Xie, Y., Tang, S., Hu, J., Liu, X. (2020). Threat-event detection for distributed networks based
on spatiotemporal Markov random field. IEEE Transactions on Dependable and Secure Computing, 19(3),
1735–1752.

25. Cai, S., Xu, H., Liu, M., Chen, Z., Zhang, G. (2024). A malicious network traffic detection model based
on bidirectional temporal convolutional network with multi-head self-attention mechanism. Computer
Security, 136, 103580.

https://doi.org/10.1145/3416921.3416937
https://doi.org/10.1109/BMSB53066.2021.9547087
https://doi.org/10.48550/arXiv.1911.03306
https://doi.org/10.32604/cmes.2023.025212
https://doi.org/10.32604/csse.2023.040626
https://doi.org/10.1109/TIFS.2022.3146076
https://doi.org/10.1109/TNET.2020.3034890

CMES, 2024, vol.140, no.1 955

26. Dodia, P., AlSabah, M., Alrawi, O., Wang, T. (2022). Exposing the rat in the tunnel: Using traffic analysis for
tor-based malware detection. Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’22), pp. 875–892. Los Angeles, CA, USA. https://doi.org/10.1145/3548606.3560604

27. Lee, Y. R., Park, N. E., Kim, S. Y., Lee, I. G. (2023). Malicious traffic compression and classifi-
cation technique for secure internet of things. Computers, Materials & Continua, 76(3), 3465–3482.
https://doi.org/10.32604/cmc.2023.041196

28. Sharma, S., Saraswat, M., Dubey, A. K. (2022). Fake news detection on Twitter. International Journal of
Web Information Systems, 18, 388–412.

29. Barbosa, L. (2019). Learning representations of web entities for entity resolution. International Journal of
Web Information Systems, 15(3), 346–358. https://doi.org/10.1108/ijwis-07-2018-0059

30. Tikekar, P. C., Sherekar, S. S., Thakre, V. M. (2021). Features representation of botnet detection using
machine learning approaches. 2021 International Conference on Computational Intelligence and Computing
Applications (ICCICA), pp. 1–5. Nagpur, India. https://doi.org/10.1109/ICCICA52458.2021.9697320

31. Jiang, J., Yin, Q., Shi, Z., Wang, Q., Zhou, W. (2019). A new hybrid approach for C&C channel
detection. 2019 IEEE 21st International Conference on High Performance Computing and Communica-
tions; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pp. 583–590. Zhangjiajie, China. https://doi.org/10.1109/
HPCC/SmartCity/DSS.2019.00090

32. Wang, W., Shang, Y., He, Y., Li, Y., Liu, J. (2020). BotMark: Automated botnet detection with hybrid
analysis of flow-based and graph-based traffic behaviors. Information Sciences, 511, 284–296.

33. Li, Z., Qin, Z., Shen, P., Jiang, L. (2019). Zero-shot learning for intrusion detection via attribute repre-
sentation. ICONIP 2019: Neural Information Processing, pp. 352–364. Sydney, NSW, Australia, Springer
International Publishing.

34. Ouyang, Y., Li, B., Kong, Q., Song, H., Li, T. (2021). FS-IDS: A novel few-shot learning based intru-
sion detection system for SCADA networks. IEEE International Conference on Communications (ICC),
pp. 1–6. Electr Network, IEEE.

35. Zerhoudi, S., Granitzer, M., Garchery, M. (2020). Improving intrusion detection systems using zero-
shot recognition via graph embeddings. 44th Annual IEEE-Computer-Society International Conference on
Computers, Software, and Applications (COMPSAC), pp. 790–797. Montreal, QC, Canada, IEEE.

36. Zhong, Y., Gao, Z., Li, R., Que, C., Yang, X. et al. (2021). STRAD: Network intrusion detection algorithm
based on zero-positive learning in real complex network environment. 2021 IEEE Symposium on Computers
and Communications (ISCC), pp. 1–8. Athens, Greece, IEEE.

37. Zhu, S., Xu, X., Gao, H., Xiao, F. (2023). CMTSNN: A deep learning model for multi-classification of
abnormal and encrypted traffic of internet of things. IEEE Internet of Things Journal, 10(13), 11773–11791.

38. Singh, M. N., Khaiyum, S. (2021). Enhanced data stream classification by optimized weight updated meta-
learning: Continuous learning-based on concept-drift. International Journal of Web Information Systems,
17(6), 645–668.

39. Lan, J., Liu, X., Li, B., Sun, J., Li, B. et al. (2022). MEMBER: A multi-task learning model with
hybrid deep features for network intrusion detection. Computers & Security, 123, 102919. https://doi.org/
10.1016/j.cose.2022.102919

40. Agrafiotis, G., Makri, E., Flionis, I., Lalas, A., Votis, K. et al. (2022). Image-based neural network
models for malware traffic classification using PCAP to picture conversion. 2022 17th International Con-
ference on Availability, Reliability and Security (ARES), pp. 1–7. Vienna, Austria. https://doi.org/10.1145/
3538969.3544473

https://doi.org/10.1145/3548606.3560604
https://doi.org/10.32604/cmc.2023.041196
https://doi.org/10.1108/ijwis-07-2018-0059
https://doi.org/10.1109/ICCICA52458.2021.9697320
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00090
https://doi.org/10.1016/j.cose.2022.102919
https://doi.org/10.1145/3538969.3544473

	NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Results and Analysis
	5 Conclusion
	References

