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ABSTRACT

For media with inclusions (e.g., precipitates, voids, reinforcements, and others), the difference in lattice parameter
and the elastic modulus between the matrix and inclusions cause stress concentration at the interfaces. These
stress fields depend on the inclusions’ size, shape, and distribution and will respond instantly to the evolving
microstructure. This study develops a phase-field model concerning modulus heterogeneity. The effect of modulus
heterogeneity on the growth process and equilibrium state of the α plate in Ti-6Al-4V during precipitation is
evaluated. The α precipitate exhibits strong anisotropy in shape upon cooling due to the interplay of the elastic
strain and interfacial energy. The calculated orientation of the habit plane using the homogeneous modulus of α

phase shows the smallest deviation from that of the habit plane observed in the experiment, compared to the case
where the homogeneous modulus of β phase is adopted. In addition, the equilibrium volume of α phase within
the system using homogeneous β modulus exhibits the largest dependency on the applied stresses. The stress fields
across the α/β interface are further calculated under the assumption of modulus heterogeneity and compared to
those using homogeneous modulus of either α or β phase. This study provides an essential theoretical basis for
developing mechanics models concerning systems with heterogeneous structures.
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1 Introduction

The close correlation of microstructure with material properties makes it crucial in research and
development [1]. A microstructure is usually composed of precipitates distributed in a solid matrix. The
difference between the precipitates and matrix in lattice parameters and crystal structure generates
elastic strain in both and, in turn, influences the morphology of the microstructure (e.g., shape
and spatial distribution of the precipitates) and thermodynamic driving forces and kinetics of the
precipitation process [2]. In principle, the contributions of the elastic interactions can be calculated by
formulating a total elastic energy functional. A variational derivative of the total energy with respect
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to the microstructural variables (degrees of freedom) gives rise to the local elastic driving force for the
evolution of the microstructure [3].

The elasticity solutions for a given microstructure are primarily deduced in the framework estab-
lished by Eshelby for coherent precipitates [4]. A precipitate is considered coherent if the crystal lattice
planes extend continuously from precipitate to matrix. Mathematically, the condition is specified as
a continuation of the displacements across the precipitate-matrix boundaries. Eshelby’s approach
was generalized and extended to treat multi-particle problems with realistic features in various
microstructural studies [5–7]. Simplifications in numerical microstructure simulations are often made
under an approximation of homogeneous elasticity, ignoring the variation in the elastic modulus
among phases. The choice of the now uniform elastic modulus is taken on the major phase. Elastic
assumptions using homogeneous modulus of the matrix phase (e.g., the parent phase for precipitation,
the base alloys for composites, and others) have been used in systems for slip transmission across the
α/β interface in the titanium alloy [8], the prediction of polarization nanodomains in a ferroelectric
solid [9], and the spatial heterogeneity of precipitates that modulated through concentration gradient
[10]. In addition, the equilibrium morphology concerning defects of dislocations and grain boundaries
is also based on the Eshelby inclusion approach with the same assumption [11,12].

Since the elastic moduli generally differ between precipitates and matrix and among the precipi-
tates (the difference also includes a rotation of the elastic modulus tensors, such as in a polycrystal),
the solution for such problems can be much more complex in anisotropic solids and becomes very
costly in microstructure simulations. Moulinec et al. proposed an iterative numerical method based on
Fast Fourier Transforms and the Green function to investigate the effective properties of periodic
composites [13], and an augmented Lagrangian method was further employed to treat elastically
inhomogeneous solids, including voided materials and power-law materials [14]. The generalization of
the phase-field micro elasticity theory [15] to elastically inhomogeneous systems [16–18] enables a gen-
eral treatment of the elasticity problem in an elastically anisotropic and inhomogeneous solid, where
coherent precipitates can take arbitrary shapes, populations, and spatial distributions. Ultimately, one
can want to know how the homogeneous elasticity approximation can affect the elasticity solution
(e.g., energy and stress) and the microstructure.

With the formulation, numerical calculations are performed for coherent inclusion under various
approximations of elastic modulus, and the effects of the simplification on the elastic energy and
stress distribution are investigated. The Ti-6Al-4V (wt.%), one of the earliest commercial titanium
alloys, exhibits excellent and balanced mechanical and chemical performance [19–21] and is chosen
as the working system. Ti-6Al-4V is a typical two-phase (α + β) titanium, whose properties are
greatly affected by the shape, distribution, and size of both α and β phases [22,23]. The rest of the
paper is organized as follows. Section 2 outlines the phase-field model with an inhomogeneous elastic
modulus of α/β phases. The equilibrium shape of α precipitate with and without applied stresses are
simulated in Section 3.1. The corresponding stresses with different modulus assumptions are presented
in Section 3.2, together with a validation case for the current model. Significant conclusions are
summarized in Section 4.

2 Methods
2.1 Phase-Field Model with Inhomogeneous Elastic Modulus for Precipitate and Matrix Phases

The current work is based on the three-dimensional multi-phase-field model for an elastically and
structurally inhomogeneous system [24] of Ti-6Al-4V alloy. Within the framework of the multi-phase-
field model, 12 order parameters are employed to distinguish β matrix and α phase consisting of 12
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alpha variants (V1 to V12) with different spatial orientations due to symmetry reduction during phase
transformation. Two sets of order parameters, i.e., {ci (x, t)}i=Al,V and

{
ϕp (x, t)

}
p=1∼12

, are adopted for
the description of composition and structural variation. The order parameter ϕp (x, t) takes the value
of 0 within the β phase, 1 within pth variant Vp, and varies from 0 to 1 while crossing the interfaces.
For example, ϕ2 (x, t) = 1 indicates field point x is occupied by V2 at time step t. The total free energy
consists of the chemical free energy Echem, the elastic strain energy Eel and the work done by the external
field W :

Etot = Echem + Eel + W . (1)

This study explores the equilibrium shape of α plate, and only V1 is allowed to evolve from a preset
nucleus, i.e., the order parameter

{
ϕp (x, t)

}
p=1∼12

is now reduced to ϕ (x, t) as the other parameters{
ϕp (x, t)

}
p=2∼12

are all set as zero during the whole simulation. Following Cahn et al. [25], the chemical
free energy function consists of the bulk free energy and the gradient energy:

Echem = 1
Vm

∫ {
fm [T , ci (x, t) , ϕ (x, t)] +

∑
i=Al,V

κi

2
|ci (x, t) |2 +

∑N=12

p=1

κϕ

2
|∇ϕ (x, t) |2

}
dx, (2)

where Vm is the molar volume of Ti-6Al-4V. The first term in the integrand is the local chemical free
energy density that results from short-range chemical interactions, depending on temperature T , com-
positions ci (x, t) , and structural field ϕ (x, t). The second and third terms denote the gradient terms in
the concentration and structure order parameters, with κi and κϕ being the gradient coefficients. These
two terms contribute to the interfacial energy due to the nonuniformity in both the composition and
structure and are nonzero only at and around the interfaces. For Ti-6Al-4V alloy, the local chemical
free energy can be formulated by the summation of the molar Gibbs free energies of α and β phases
f α

m and f β

m :

fm

(
T , c, ϕp

) = h (ϕ) f α

m

(
T , cα

i

) + (1 − h (ϕ)) f β

m

(
T , cβ

i

) + ωϕ2(1 − ϕ)2. (3)

f α

m and f β

m are obtained from the thermodynamics database CALPHAD (CALculation of PHAse
Diagrams) [26]. h (ϕ) = ϕ3(6ϕ2 − 15ϕ + 10) is the interpolation function used in this resesrch,
characterizing the smooth transition of phases across the interface. For the general cases where all
α variants are allowed to evolve, the h (ϕ) function should be replaced by h

(∑
p ϕp

)
, which summarizes

the molar free energy of all existing α variants.

For a system with the assumption that the precipitate and matrix have identical elastic constants
C0

ijkl, the elastic energy can be calculated by Khachaturyan-Shatalov (K-S) microelasticity through
analytical solutions based on the formulation of elastic strain energy density in the Fourier space [15].
However, the elastic modulus and symmetry of the α phase are different from those of the β matrix,
which suggests that Cijkl(x) varies across the α/β interface. Following Wang et al. [18], for cases of
modulus inhomogeneity, a virtual equivalent system with a homogeneous reference modulus C0

ijkl is
introduced, which is usually the value of the bulk phase or the average modulus of the body. The
displacement field u(r) (and thus the strain field ε(r)) and the stress field of the reference system are
identical to the real system of which this study is concerned. The two systems can be bridged by the
following relationship:

Cijkl (x)

[
∂uk

∂xl

− εT
kl (x)

]
= C0

ijkl

[
∂uk

∂xl

− ε0
kl (x)

]
, (4)

where εT
kl (r) is the eigen strain field associated with the stress-free transformation strain from β → α

and the distribution of α phase, ε0
kl (x) is the eigen strain field of the virtual system. Based on Eq. (1),
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the calculation of stress field or elastic strain energy within the modulus inhomogeneity system is
converted to the calculation of ε0

kl (x) within the virtual system. To initiate the numerical calculation,
a guess of ε0

kl (x) is taken as the input of Eq. (4), the stress field corresponding to the left-hand side of
Eq. (4) can be directly obtained. At the same time, the elastic strain energy of the target system can be
formulated as (see details of the deduction in [18]):

Eel =
∫

1
2

C0
ijklε

0
ij (x) ε0

kl (x) dx + V
2

C0
ijklε ijεkl − C0

ijklε ij

∫
ε0

kl (x)

−
{

1
2

∫
k �=0

σ̃ 0
kl (k) njnl · [� (n)]ik σ̃ 0∗

ij (k)
dk

(2π)3

}
k→r

+ 1
2

∫ {−C0
pqklΔSpqmn(x)C0

mnij − C0
ijkl

} [
ε0

kl(x) − εT
kl(x)

] [
ε0

ij(x) − εT
ij (x)

]
dx (5)

where ΔSpqmn (x) = ΔC−1
pqmn(x) with Cijkl (x) ≡ C0

ijkl + ΔCijkl (x), k is a vector in the reciprocal space,
σ̃ 0

ij (k) ≡ C0
ijklε

0
kl(k) with σ̃ 0∗

ij (k) being the complex conjugate. ε ij is the homogeneous part of total
strain in the virtual system that is determined by the boundary condition. ε0

ij (x) keeps updating and
minimizing the elastic strain energy Eel until equilibrium is reached:

∂ε0
ij(x, t)

∂t
= −L

δEel

δε0
ij(x, t)

. (6)

L is a dynamic parameter characterizing the convergency rate of evolving ε0
kl (x). Additional

work performed by applied external stresses will also contribute to the total free energy through the
interaction of stresses with the stress-free transformation strain of V1, ε0

ij:

W = −
∫

σ app
ij (r)ε0

ijϕ (x, t) dx. (7)

The concurrent evolution of composition and structure follow the general form of Cahn-Hilliard
diffusion equation and the Allen-Cahn equation in the multi-phase-field model by Steinbach et al. [27].
When orientations of precipitates are considered, the governing equations in this work is derived as:

1
V 2

m

∂ck(x, t)
∂t

= ∇
∑

j=Al,V
Mkj(T , ci, ϕp)∇ δEchem

δcj(x, t)
+ ζc(x, t), (8)

∂ϕp(x, t)
∂t

= −Mϕ

{
1

Ñ

∑
q�=p

(
δF chem

δϕp(x, t)
− δF chem

δϕq(x, t)

)
+ δ(Eel + W)

δϕp(x, t)

}
+ ζϕ(x, t), (9)

where Ñ is the number of phases that co-exist locally, Mkj denotes the chemical mobility, Mϕ is the
mobility of the structural order parameters characterizing interface kinetics, ζc(r, t) and ζϕ(x, t) are the
Langevin noise terms for composition and the long-range order parameter. This model’s parameters
are identical to those used in the previous work for the same Ti-6Al-4V alloy system [24].

2.2 Working Examples
Using α precipitate in the β matrix as an example, the total elastic energy and stresses can be

calculated with three sets of elastic moduli:

Case-I: homogeneous modulus of the matrix phase: Cijkl (x) → Cβ

ijkl.

Case-II: homogeneous modulus of the precipitate phase: Cijkl (x) → Cα

ijkl.
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Case-III: inhomogeneous modulus that takes the corresponding values of modulus according to
the order parameter: Cijkl (x) ≡ [1 − h (φ)] Cβ

ijkl + h (φ) Cα

ijkl.

During the numerical process of finding the equilibrium elastic state, the elastic moduli concerning
the two phases should not be set strictly equal due to the iteration of Eq. (5), where ΔSijkl (x) =
ΔC−1

ijkl(x) is required. In addition, with a smaller ΔCijkl, longer iteration time is needed.

3 Results and Discussion
3.1 Equilibrium Shape of α Precipitate under Different Modulus Assumptions

During the β → α phase transformation, the α precipitates usually exhibit a specific OR with the
β matrix, referred to as the Burgers OR [28], i.e., (101)β || (0001)α and [111]β||[1120]α. The coordinate of

the simulation unit in this study is set to x|| [010]β−y||
[
101

]
β

−z|| [101]β. Under three different modulus

approximations, the α precipitate grows and relaxes in the phase-field model described in Section 2.
Minimizing the total free energy determines the equilibrium shape (size and habit plan orientation).
The elastic constants used for Case-III are: Cα

11 = 115.1 GPa, Cα

12 = 75.0 GPa, Cα

13 = 95.0 GPa, Cα

33 =
157.0 GPa, Cα

44 = 26.0 GPa; Cβ

11 = 97.7 GPa, Cβ

12 = 82.7 GPa, Cβ

44 = 37.5 GPa [29]. To approach
the two cases with homogeneous modulus, in Case-I, the Cα

ijkl = 1.005Cβ

ijkl is assigned and in Case-II
Cβ

ijkl = 1.005Cα

ijkl. The assignment of ΔCijkl (x) with 0 will lead to iterative divergence. For all cases
the simulation box is 64 × 64 × 64 nm3, with the initial nucleus of α phase set as a small sphere with
radius of 3 nm. Upon aging at 1073 K, such nucleus starts to evolve with the habit plane gradually
forming and a precipitate of plate shape comes into being, as shown in Fig. 1, where inhomogeneous
modulus is set in the model. Subsequently, Fig. 2 compares the shape of α precipitates at t = 20 (where
t is the dimensionless time) for all three cases mentioned above with different modulus assumptions.
It indicates that the cross sections (d–f) corresponding to the 3D morphology (a–c), the system with
homogeneous modulus of α phase (Case-II) sprouts the sharpest α plate. At the same time, thickened
α plate is observed for Case-I. The volume change during aging is shown in Fig. 3a, which confirms
that α plate in Case-I with β modulus occupies the largest volume fraction. The black solid lines in
Figs. 2d through 2f represent experimentally observed habit plane normal of α plate, i.e., (11, 13, 11)β

[30]. Compared to the habit planes of the simulated α plates (indicated by dashed white lines), the
orientation of the habit plane for Case-II is closest to that of the experimental observation. In contrast,
Case-I with homogeneous β modulus shows the largest deviation. It should be mentioned that in most
cases it is more likely to assume the system with modulus of the matrix phase, which occupy the largest
proportion. However, for α/β phases with different crystal structures, information concerning the
crystal symmetry can be lost under homogeneous modulus assumption. For example, five independent
elastic constants in α phase with α structure are now reduced to three when homogeneous β modulus
is assumed, which can cause larger deviation.
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Figure 1: Growth of α precipitate within the β matrix at T = 1073 K from t = 1 to t = 20

Figure 2: (a–c) Equilibrium shape of α precipitate with different assumptions of elastic modulus, (d–f)
Corresponding cross-section of α precipitate along the slides shown in (a–c). The black lines in (d–f)
represent the habit plane orientation obtained by the experiment [30], and the dashed lines represent
the calculated habit planes

External stresses can also alter the equilibrium shape or size of α precipitate by adding further
work to the elastic strain energy. Therefore, stress along the x|| [010]β direction is applied with the
magnitude of σ

app
11 = ±500 MPa to the simulation unit upon the growth of α. The volumes of α at t =

20 are then calculated and compared in Fig. 3b with cases where applied stresses are absent. For Case-
I and Case-III, while compressive stress of 500 MPa suppresses the growth of α precipitate, tensile
stresses show the opposite effect. However, the α precipitate in Case-II with homogeneous α modulus
is insensitive to the applied load. The different choice of the elastic assumptions will not affect the work
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done by the external field. It will indeed later the elastic strain energy expressed by Eq. (5), where the
elastic modulus appears directly and indirectly (involved in the ε ij through general Hooke’s law). Fig. 3
suggests that for Case-II (with homogeneous α modulus), the work performed by the current external
stress with the magnitude of 500 MPa is so trivial, as compared to the elastic strain energy expressed
in Eq. (5), that it is unable to promote or suppress the growth of the alpha plate. Significant change in
the alpha size would be possible if a much larger stress is applied.

Figure 3: (a) Volume development during α precipitate growth; (b) Volume fractions of α plates at t =
20

3.2 Stress Fields of α Precipitates
Due to the mismatch of lattice parameters of α precipitate and β matrix, stresses are concentrated

at the α/β interface, which depends on the elastic moduli of two phases and the shape of α precipitates.
In order to validate the accuracy of the current model, an isotropic medium is considered to contain a
spherical cavity (with a modulus of zero) at the center with radius R = (1/10)l0, with l0 being the length
scale. Under uniaxial loading of σ 0

zz, the three-dimensional profile of the stress field σ num
zz calculated

using the current model based on Eq. (4) is shown in Fig. 4a. The simulation results indicated that the
stresses are concentrated at the edges of the cavity, where the modulus undergoes a sharp variation
from zero to that of the isotropic media. The corresponding cross-section of the stress is shown in
Fig. 4b. The calculation result is compared to the analytical solution derived by Lee et al. concerning
the identical problem [31]. The relative stresses represented by the rates of σzz/σ

0
zz within the cross

section of z = 0, along x direction and away from the origin of 0.2R (the blue line in (b)) and 1.1R
(the red line in (b)) are respectively present in Figs. 4c and 4d. The relative stress along the blue line
increases fast when approaching the interface and suddenly decreases to zero within the cavity region.
However, along the red line outside the cavity, the rate varies more smoothly and reaches a minimum
of around 0.35 at the position right above the cavity. The calculation results of the developed model
agree well with those of the analytical solution indicated by circles.
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Figure 4: Distribution of stress component σ num
zz calculate by the current model within: (a) 3D

simulation box; (b) 2D cross-section of z = 0; (c–d) Distribution of σzz/σ
0
zz along the line within z = 0

plane and parallel to the x-axis with a distance to the center of the spherical void of 0.2R and 1.1R,
respectively

For titanium alloy with α precipitate embedded in β matrix, the evolution of stress fields of
component σ11 are shown in Fig. 5 with t =1, 10 and 20. At the nucleus stage, both tension and
compression stresses are observed. This stress concentration field keeps expanding along with the
growth of the plane. At t = 20, the stresses are concentrated at the tips of the α plates and present certain
symmetry due to the crystallography of α crystals. More specifically, stresses across the plate (along
the white line in Figs. 4a–4c) are out-extracted and shown in Fig. 5d, indicating that the magnitude of
stresses reaches the maximum when approaching the α/β interface, and almost keeps constant within
the α plate.
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Figure 5: (a–c) Evolving stress component σ11 at the surface of α plate; (d) the stress distribution over
the white line (in unit of nm) in the 3D morphology of (a–c)

However, when the homogeneous modulus assumption is applied, the stress field can be distinct
from that with the inhomogeneous modulus shown above due to the variation in ΔCijkl(x) (as well as
ΔSijkl(x)) and thus the elastic strain energy in Eq. (5). In Fig. 6, the stress fields of different components
across the α/β interface associated with cases using α modulus or β modulus are shown and compared
to the case where inhomogeneous moduli of α and β phases are strictly assigned, where σ23 and σ13 are
almost zero, and therefore, only the other four components are present for comparison. For all these
components, stresses using α modulus exhibit small deviations within the α phase region. Especially
for σ33, the magnitude is significantly large within the α plate when β modulus is used. Matrix stresses
using β modulus exhibit small deviations. All the stresses are approaching zero when moving away
from the interface.
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Figure 6: Stresses across the α/β interface along the direction shown in Figs. 5a–5c under different
modulus assumptions

4 Conclusions

The assumption of the elastic modulus for elastically and structurally inhomogeneous solids
is critical to the phase transformation process and the corresponding elastic state. The effect of
modulus heterogeneity on the equilibrium shape and stress field of grown α precipitate within the β

matrix during aging is systematically investigated. Three cases are considered for the calculation and
comparison in this work, i.e., Case-I with a homogeneous modulus of β, Case-II with a homogeneous
modulus of α, and Case-III with a heterogeneous modulus of α + β through interpolation. The main
findings include:

• The equilibrium shape (e.g., habit plane and size) of α precipitate calculated using homogeneous
β modulus shows a more significant deviation from that in the heterogeneous modulus case,
compared to the case where homogeneous α modulus is assumed. The size of α precipitate in
Case-II with α modulus shows little dependency on the magnitude or direction of the external
applied stress.

• The local stresses across the α/β interface are calculated carefully, suggesting that stresses in
Case-I show better accuracy in the β matrix, but Case-II is closer to the theoretical value within
the α phase.

• In general, for transformation from the phase of high symmetry structure to the phase of
low symmetry, using elastic modulus of the low symmetry phase would give more accurate
calculation results on the equilibrium morphology of the precipitate.
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