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ABSTRACT

The multiscale method provides an effective approach for the numerical analysis of heterogeneous viscoelastic
materials by reducing the degree of freedoms (DOFs). A basic framework of the Multiscale Scaled Boundary
Finite Element Method (MsSBFEM) was presented in our previous works, but those works only addressed two-
dimensional problems. In order to solve more realistic problems, a three-dimensional MsSBFEM is further
developed in this article. In the proposed method, the octree SBFEM is used to deal with the three-dimensional
calculation for numerical base functions to bridge small and large scales, the three-dimensional image-based
analysis can be conveniently conducted in small-scale and coarse nodes can be flexibly adjusted to improve the
computational accuracy. Besides, the Temporally Piecewise Adaptive Algorithm (TPAA) is used to maintain the
computational accuracy of multiscale analysis by adaptive calculation in time domain. The results of numerical
examples show that the proposed method can significantly reduce the DOFs for three-dimensional viscoelastic
analysis with good accuracy. For instance, the DOFs can be reduced by 9021 times compared with Direct Numerical
Simulation (DNS) with an average error of 1.87% in the third example, and it is very effective in dealing with three-
dimensional complex microstructures directly based on images without any geometric modelling process.
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Nomenclature

σ Stress
ε Strain
F Body force intensities
u Displacement
uE Nodal displacement of the coarse element
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ue Nodal displacement of the fine element
ΩE Solution domain
Γu Displacement boundary
Γσ Stress boundary
t Time
s Dimensionless time parameter
tk−1 Initial point k-th time interval
Tk Size of k-th time interval
m Expanding coefficient
D Elastic tensor
E1 Elastic modulus
E2 Elastic modulus
ν Poisson’s ratio
η1 Viscosity coefficient
Nn Numerical base function
N

i
Iz Given node displacement of coarse element in z-direction

Gi Transfer matrix
Ke

i Stiffness matrix of the i-th fine element
KG Integral structure stiffness matrix of large-scale
PG Large-scale load vector
PE

j Load vector of the j-th coarse element
AR

j=1 Assembly operator
er Relative error

1 Introduction

Heterogeneous viscoelastic materials, such as concrete [1] and polymers [2], are widely used in
many fields because of their excellent properties. The macroscopic responses of these heterogeneous
materials are known to be significantly influenced by physical phenomena at different scales and the
interaction between different scales [3].

The Direct Numerical Simulation (DNS) method, usually implemented by the Finite Element
Method (FEM) [4–6], is widely used to effectively determine the mechanical responses of heteroge-
neous viscoelastic materials. However, the DNS method could incur high computational costs and
become impractical for numerical analysis of whole structures due to the tremendous amount of
computer memory and CPU time needed to mesh all heterogeneities [7].

Compared with the DNS method, the multiscale methods can effectively reduce the degree of
freedoms (DOFs) of numerical analysis on a coarse-scale mesh without resolving all small-scale
features [8,9]. There are a large number of multiscale methods in literature, including analytical
models and computational multiscale methods. The analytical models focus on obtaining equivalent
performance on a large scale, including variational principles [8–10], self-consistent methods [11–13]
and Mori-Tanaka methods [14–16], etc. Although these methods work well to predict the equivalent
properties of heterogeneous materials with a small volume fraction and simple geometry, most of
these methods contain over-ideal assumptions [17]. To address this issue, the numerical models
were developed and became more popular, including asymptotic homogenization methods [18–20],
computational homogenization methods [21–24] and FE2 methods [25–28]. However, these methods
have some limitations including the assumption of scale separation and periodicity. The multiscale
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finite element method (MsFEM) presented by Babuška et al. [29,30] is another computational
multiscale method. The basic idea of the MsFEM is to construct a bridge between different scales
via the numerical base functions [31–33], and the MsFEM can deal with non-periodic continuum
problems. The MsFEM was firstly used to solve scalar field problems [34] and has been successfully
applied in various heterogeneous multiscale analyses related to dynamic problems [35], elastic-plastic
problems [36], and thermal-mechanical coupling problems [37].

To reproduce more realistic situations for heterogeneous viscoelastic analysis, it is desirable to
develop three-dimensional multiscale approaches under the framework of MsFEM, as the problems
in practical applications are general in 3D cases. However, most of the aforementioned works on
MsFEM are limited to two-dimensional cases. Klimczak et al. presented a three-dimensional MsFEM
for viscoelastic problems, in which conventional FEM is used for the three-dimensional base function
in small-scale [38]. However, the calculation of numerical base functions by conventional FEM
could be very time-consuming due to a large number of degrees of freedom (DOFs) when complex
microstructures exist in small-scale. Besides, for the microstructures with material heterogeneity, the
three-dimensional mesh generation in small-scale could be also very complex as the conforming
conditions on the element/material interfaces are required to be satisfied in transition of different
mesh densities [39].

The Scaled Boundary Finite Element Method (SBFEM) originally presented by Song et al. [40] is
a semi-analytical method for solving partial differential equations. The SBFEM is particularly suitable
for stress singularities and unbounded domain and it has been widely applied into fracture problems
[41,42], dynamics problems [43,44], uncertainty analysis [45,46], optimization problems [47,48], and
parallel computations [49,50]. Recently, the quadtree/octree SBFEMs have been successfully developed
by virtual of the ability of SBFEM to build polygonal elements [51–53]. In our previous works [54,55],
a Multiscale Scaled Boundary Finite Element Method (MsSBFEM) was proposed by integrating the
advantages of quadtree SBFEM and MsFEM, in which the numerical base functions in small-scale
are calculated by SBFEM instead of conventional FEM. However, these works have only addressed
two-dimensional problems, which cannot accurately reflect realistic conditions in many cases. In order
to apply the MsSBFEM into more realistic problems with complex geometries, materials distribution
and, boundary conditions, a three-dimensional MsSBFEM for heterogeneous viscoelastic materials is
further developed by extending the previous basic two-dimensional method. In the proposed method,
the octree SBFEM is used to deal with the three-dimensional calculation of numerical base functions
in small-scale. The Octree-SBFEM has been applied in elastic [56], elastic-plastic [57], and sound field
problems [58] including the development of cutting mesh technique [59] and polyhedral mesh [60–62]
to handle the complex 3D boundary interfaces. However, to the authors’ best knowledge, it is the first
time to develop the three-dimensional MsSBFEM with octree mesh and apply it to the multiscale
viscoelastic analysis. The proposed method has the following advantages:

(1) Using the numerical base function in the framework of the MsFEM, a bridge between the
small-scale and large-scale is established. In this way, the DOFs of numerical computations for three-
dimensional viscoelastic problems can be significantly reduced compared with those of DNS.

(2) The numerical base functions in the proposed model are constructed via image-based analysis
based on the octree SBFEM instead of the conventional FEM with twofold advantages. First, the
mesh can be directly generated from three-dimensional images on a small-scale without a requiring
complex geometric modeling process in conventional FEM. Second, the stiffness matrix can be directly
assembled through extraction from several basic patterns of three-dimensional elements to speed up
the multiscale analysis [63,64].
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(3) The Temporally Piecewise Adaptive Algorithm (TPAA) is used for discretization in the time
domain for three-dimensional viscoelastic analysis [65–67]. In this way, a prescribed accuracy in the
time domain can be maintained by adaptively changing the recursive order without the assumption
that variables remain constant or change linearly at a discretized time interval.

The paper is organized as follows. Section 2 introduces the basic framework of the MsFEM and
the construction process of three-dimensional numerical base functions based on the octree SBFEM
is presented. Section 3 introduces the solution of viscoelastic problems based on the TPAA and its
implementation in the framework of a three-dimensional multiscale SBFEM. Section 4 demonstrates
the effectiveness of the proposed method via three numerical examples, and Section 5 presents some
concluding remarks and discussions of future work.

2 Key Equation of the 3D Multiscale Octree SBFEM for Elastic Problems
2.1 The Introduction on the Framework of MsFEM

The equilibrium equation with boundary conditions for elastic problems can be expressed as [66]

Hσ + F = 0 in ΩE (1)

u = uΓ on Γu (2)

p = pΓ on Γσ (3)

where σ , ε and u represent the vectors of stress, strain, and displacement, respectively, F is the vector
of body force intensities, ΩE denotes the spatial domain to be solved, and H is the differential operator
[65]. uΓ and pΓ are the prescribed vectors along the displacement boundary Γu and stress boundary Γσ ,
respectively.

The strain vector is expressed as

ε = HTu (4)

The constitutive equation is

σ = D ε (5)

where D is the elastic matrix.

According to the basic idea of the MsFEM, a three-dimensional domain can have two levels of
meshes as shown in Fig. 1, i.e., the coarse elements on a large-scale and the fine elements on a small-
scale. The subscript E indicates that the variable belongs to the large-scale element. The FEM equation
for solving the nodal displacement on coarse elements uE is written as

KGuE = PG (6)

where KG and PG are the global stiffness matrix and load vector of the large-scale assembled of all
coarse elements. These can be written as

KG = AR
j=1K

E
j (7)

PG = AR
j=1P

E
j (8)

where AR
j=1 is the assembly operator, KE

j and PE
j are the stiffness matrix and load vector of the j-th

coarse element, respectively, and R is the total number of coarse elements.
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Figure 1: Meshes in 3D MsSBFEM (a) coarse grids on overall structure (b) fine grids inside the coarse
element (c) octree SBFEs

Instead of using regular numerical integration calculations, the KE
j and PE

j are obtained by a
mapping relationship from the corresponding matrix or vector of fine elements inside this coarse
element as [36]

KE
j =

∑r

i=1
GT

j Ke
i Gj (9)

PE
j =

∑r

i=1
GT

j Pe
i (10)

where Gj is the transfer matrix, r is the total number of fine elements, and the subscript e indicates
that the variable belongs to the small-scale element. In this way, this elastic problem is solved on a
large-scale, so the number of DOFs is significantly reduced compared to DNS in small-scale. In the
following section, we introduce how to establish Gj.

2.2 Octree SBFEM Based Numerical Base Functions
The three-dimensional displacement fields within the j-th coarse element can be expressed as [36]

ue
i = GiuE

j (11)

where Gi is the transfer matrix of the i-th fine element, and ue
i and uE

j are the nodal displacement vectors
for the j-th coarse element and the i-th fine element inside this coarse element, respectively.

Gi in Eq. (11) is composed of numerical base functions Nn as

Gi =

⎡
⎢⎢⎣

Ni
1x (1) Ni

1y (1) Ni
1z (1) . . . Ni

Ix (1) Ni
Iy (1) Ni

Iz (1)

Ni
1x (2) Ni

1y (2) Ni
1z (2) . . . Ni

Ix (2) Ni
Iy (2) Ni

Iz (2)

. . . . . . . . . . . . . . . . . . . . .

Ni
1x (n) Ni

1y (n) Ni
1z (n) . . . Ni

Ix (n) Ni
Iy (n) Ni

Iz (n)

⎤
⎥⎥⎦ (12)

where

Ni
Ix (n) = [

Ni
Ixx (n) Ni

Iyx (n) Ni
Izx (n)

]T
(13)

Ni
Iy (n) = [

Ni
Ixy (n) Ni

Iyy (n) Ni
Izy (n)

]T
(14)

Ni
Iz (n) = [

Ni
Ixz (n) Ni

Iyz (n) Ni
Izz (n)

]T
(15)
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where n and I are the numbers of nodes in the fine element and coarse element, respectively. Taking
Ni

Iyz(n) as an example, Eqs. (13)–(15) indicate that the displacement of the I-th node of the j-th coarse
element in the z direction leads to the displacement of the n-th node in the y direction of the i-th fine
element.

Ni
Ix, Ni

Iy and Ni
Iz are solved in the same governing equations but with different boundary conditions

for the fine elements shown in Fig. 1b. Taking Ni
Iz as an example, the governing equations and

boundary conditions can be written as

H
(
DHTNi

Iz

) = 0 in ΩE (16)

Ni
Iz = N

i
Iz on ΓE (17)

I = 1, 2, . . . , R (18)

where R is the nodal number of a coarse element and D is the elastic matrix.

In this paper, the linear boundary conditions are considered [34] as shown in Fig. 2, which means
that we calculate Ni

Iz with I = 1, the boundary conditions are set as Ni
1z = 1 and N

i
2z = N

i
3z = . . . =

N
i
8z = 0, and the z-direction displacement Ni

Iz is assumed to be a linear change on the Surface 1, Surface
3, and Surface 5, as well as the lines 12, 14 and 15 on these surfaces. When constructing the numerical
basis function in the z-direction, the displacements in the x-direction, y-direction and on all boundaries
are fully constrained. The N

i
Ix and N

i
Iy in the x-direction and y-direction can be constructed similarly.

Figure 2: 3D liner boundary conditions for numerical base function of displacement field

The governing equations for the numerical base functions in Eqs. (16) and (17) are solved using
the SBFEM with an octree mesh on a fine grid in the small-scale [55]. The generation of the octree
mesh and the computational scheme for the three-dimensional SBFEM are introduced in the following
sections and the Appendix.

2.3 Image-Based Octree Gridding Technique
In order to solve the numerical base functions introduced in Section 3.1, the octree mesh is used

in the SBFEM based calculation. The octree mesh can be directly generated from 3D images in
small-scale. A detailed introduction of this approach is provided in reference [63] and an example
is shown in Fig. 3. Firstly, a 3D image, usually obtained from imaging techniques such as X-ray
computed tomography (XCT) or produced digitally via random generation and packing of aggregates,
is read to produce a 3D image matrix containing information on color intensity. Secondly, the octree
decomposition is implemented to recursively divide a 3D image matrix into eight equal-sized cells at
a time until all the cells satisfy the criterion of homogeneity or the minimum edge length is reached.
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Figure 3: Image based 3D multiscale mesh generation

When a 2:1 rule is used in the process of octree gridding, a balanced decomposition can be obtained
to limit the number of nodal patterns of one octree mesh. This has significant advantages, as similar
nodal patterns can be precomputed because the element matrices for two octree cells with equivalent
nodal configurations are proportional. In such a balanced decomposition, each element mode only
depends on whether there is a hanging node in the center of each edge of the cube, and if there are four
hanging nodes on any surface of the cube (as shown in Fig. 4), the node in the center of the surface
will be automatically added, and it is proved that the number of total unique nodal patterns for an
octree cell is 212 = 4096 [63].

Figure 4: Several typical three-dimensional octree scaled boundary elements

3 Recursive 3D Multiscale Octree SBFEM for Viscoelastic Problems
3.1 Recursive Governing and Constitutive Equations

To handle time-dependent viscoelastic problems, the discretization in the time domain is achieved
using the Temporally Piecewise Adaptive Algorithm (TPAA) [66], in which all variables are expanded
in each time as follows:

f (t) =
∑
m=0

f msm (19)

where the general variable f (t) is used to represent σ (t), ε(t), F(t), u(t), uΓ(t), p(t) and pΓ(t) in Eqs. (1)–
(5), and

s = t − tk−1

Tk

(20)

where t and s denote the time and dimensionless time parameters, respectively, and tk−1 and Tk are the
initial point and size of the kth time interval, respectively.
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Substituting the expanded variables into Eqs. (1)–(3), we have the following governing equations
for the expansion coefficients

Hσ m + Fm = 0 in Ω (21)

εm = HTum (22)

um = um
Γ

on Γu (23)

pm = pm
Γ

on Γσ (24)

Now, we derive the recursive constitutive relationship for σ (t) and ε(t). In this paper, we consider
the three-parameter solid model as a typical viscoelastic constitutive model, as shown in Fig. 5. The
differential form of the constitutive equation is written as [67]⎧⎪⎨
⎪⎩

σ (t) + q1

∂σ (t)
∂t

= D
(

q2ε (t) + q1

∂ε (t)
∂t

)
(t > 0)

σ (t) = Dε (t) (t = 0)

(25)

where

q1 = η1

E1 + E2

; q2 = E1

E1 + E2

(26)

Considering the relationship between the differentiations with respect to t and s in Eq. (20)

d (·)
dt

= 1
Tk

d (·)
ds

(27)

Therefore, the time derivatives of the stress and strain can be expressed as

∂σ (t)
∂t

=
∑
m=0

m + 1
Tk

σ m+1sm (28)

∂ε (t)
∂t

=
∑
m=0

m + 1
Tk

εm+1sm (29)

Figure 5: Three-parameter solid model

In each time interval, substituting Eqs. (28) and (29), into Eq. (25) and equating the powers of the
two sides of the equation yields

σ m = Dεm + Cm (30)
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where

Cm = Tk

m

(
E1

η1

Dεm−1 − 1
q1

σ m−1

)
(m > 0) (31)

At the first time interval,{
σ 0 = Dε0

C0 = 0 (k = 1) (32)

At the initial point of the (k+1)th time interval⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε0
k+1 = ∑

m=0

εm
k

σ 0
k+1 = ∑

m=0

σ m
k

C0
k+1 = ∑

m=0

Cm
k

(k > 1) (33)

In this way, the time-dependent problems in Eqs. (21)–(25) are transferred into a series of recursive
elastic problems with initial stress and strain, which will be recursively solved by the MsSBFEM
introduced in the following sections.

3.2 Recursive Multiscale Octree SBFEM for Viscoelastic Problems
Using the derived MsSBFEM equations for elastic problems in Section 2, the recursive governing

equations and constitutive equation for three-dimensional viscoelastic problems are naturally solved
for coarse elements at large-scale [54].

KG (um)
E = Pm

G (34)

where the right-term Pm
G contains the term related to Cm in Eq. (31) written as

Pm
G = AR

j=1

[(
PSm

j

)E − (
PCm

j

)E
]

(35)

where(
PSm

j

)E =
∑r

i=1
GT

i

(
PSm

j

)e
(36)

(
PCm

j

)E =
∑r

i=1

(
Ge

i

)T (
PCm

i

)e
(37)

where Gi is the transfer matrix provided by Eq. (12) and(
PSm

i

)e =
∫

Γ

[Ni (s)]
e [

Fm
i (s)

]e
ds (38)

(
PCm

i

)e = T
m

(
−E2i

η1i

Ke
i

(
um−1

i

)e − E1i + E2i

η1i

(
PCm−1

i

)e
)

(39)

where (um−1
i )e is the (m-1)-th order expanding coefficient of the nodal displacement of the i-th fine

element.

Note that (um−1
i )e and (PCm−1

i )e in Eq. (39) are obtained via downscale computation from the
relationship between two-scale variables using a numerical base function(

um−1
i

)e = Gi

(
um−1

i

)E
(40)
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(
PCm−1

i

)e = Gi

(
PCm−1

i

)E
(41)

The (PC0
i )

e
k at the initial points of the k-th time interval is calculated as(

PC0
i

)e

k
= 0 if k = 1 (42)

(
PC0

i

)e

k
=

∑
m

(
PCm

i

)e

k−1
if k > 1 (43)

At each time interval, an adaptive computation is conducted by setting the number of expansion
terms m following the criteria [67]∥∥(um)

E sm
∣∣

s=1

∥∥
2∥∥∥∥m−1∑

h=0

(uh)
E sh

∣∣∣∣
s=1

∥∥∥∥
2

≤ β (44)

where β is a prescribed error tolerance, and ‖·‖2 represents the L2-norm.

4 Numerical Examples

Three numerical examples are provided in this section. The first example demonstrates the
effectiveness of the proposed algorithm in a cubic domain with periodic inclusions. The performance
of the proposed method for non-periodic inclusions is demonstrated in the second example. The third
example applies the proposed method to a concrete beam with CT images of microstructures. To
evaluate the accuracy of the proposed method, the relative error er is defined.

4.1 A Cubic Domain with Periodic Inclusions
Consider a cube domain of heterogeneous viscoelasticity under tension as shown in Fig. 6. There

are 27 small cubic inclusions contained in the cube, and their material parameters are provided in
Table 1. In order to investigate the proposed method for different levels of heterogeneity, two cases of
volumetric ratios of inclusions κ are set with various sizes a as shown in Fig. 6c, i.e., Case I: a = 42, κ
= 28.3%; Case II: a = 50, κ = 47.6%.

Figure 6: A cube with regular cube inclusions (a) heterogeneous material distribution and boundary
conditions (b) coarse mesh (c) the material distribution in one coarse mesh
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Table 1: Material parameters

Mat1 Mat2 v

E1 (MPa) E2 (MPa) η (MPa ∗ s) E1 (MPa) E2 (MPa) η (MPa ∗ s)

2000 2000 2000 1000 1000 1000 0.3

The material distributions in large-scale and small-scale are shown in Figs. 6b and 7, respectively.
In total, 27 uniform coarse elements are used, and three types of coarse elements with different nodal
distributions (coarse nodes marked by red color) are used.

Figure 7: Coarse SBFEs with different number of nodes (a) model A (8 nodes) (b) model B (18 nodes)
(c) model C (26 nodes) (d) section view of octree mesh

Firstly, the computational accuracy is verified by comparing the results of the proposed method
with the reference solution from a converged Abaqus based DNS solution with its mesh in Fig. 8.
Table 2 shows the results of displacement at large-scale feature point 1 (see Fig. 6b) and the results
for displacements at small-scale feature point i of coarse element II (see Figs. 6b and 7d) are also
provided in Table 3. The maximum relative errors of the proposed method are 0.69% and 0.30% in
large-scale and small-scale, respectively, and these relative errors change very slightly when the time
step is increased from 0.001 to 0.1 s.
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Figure 8: FE mesh of reference solution based on Abaqus (a) matrix (b) inclusions (c) section view

Table 2: er for displacement uy at large-scale feature point 1 with different time steps (error tolerance
β = 10−6)

Time
(s)

T = 0.1 T = 0.01 T = 0.001 Reference
(mm)

MsSBFEM (mm) er (%) MsSBFEM (mm) er (%) MsSBFEM (mm) er (%)

0.1 0.8109 0.69 0.8109 0.69 0.8110 0.68 0.8166
0.2 0.8747 0.69 0.8747 0.69 0.8748 0.68 0.8808
0.3 0.9324 0.69 0.9324 0.69 0.9325 0.68 0.9389
0.4 0.9846 0.69 0.9846 0.69 0.9847 0.68 0.9914
0.5 1.0318 0.69 1.0318 0.69 1.0319 0.68 1.0390
0.6 1.0746 0.69 1.0746 0.69 1.0746 0.68 1.0820
0.7 1.1132 0.69 1.1132 0.69 1.1133 0.68 1.1210
0.8 1.1482 0.69 1.1482 0.69 1.1483 0.68 1.1562
0.9 1.1799 0.69 1.1799 0.69 1.1799 0.69 1.1881
1.0 1.2085 0.69 1.2085 0.69 1.2086 0.69 1.2169

Table 3: er for displacement uy at small-scale feature point i with different time steps (error tolerance
β = 10−6)

Time
(s)

T = 0.1 T = 0.01 T = 0.001 Reference
(mm)

MsSBFEM (mm) er (%) MsSBFEM (mm) er (%) MsSBFEM (mm) er (%)

0.1 0.8593 0.30 0.8593 0.30 0.8594 0.30 0.8619
0.2 0.9269 0.30 0.9269 0.30 0.9269 0.29 0.9297
0.3 0.9880 0.30 0.9880 0.30 0.9881 0.29 0.9910
0.4 1.0433 0.30 1.0433 0.30 1.0434 0.29 1.0465
0.5 1.0934 0.30 1.0934 0.30 1.0935 0.29 1.0967
0.6 1.1387 0.30 1.1387 0.30 1.1388 0.29 1.1421
0.7 1.1797 0.30 1.1797 0.30 1.1797 0.29 1.1832
0.8 1.2167 0.30 1.2167 0.30 1.2168 0.29 1.2204
0.9 1.2503 0.30 1.2503 0.30 1.2504 0.30 1.2541
1.0 1.2807 0.30 1.2807 0.30 1.2807 0.30 1.2845
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Fig. 9 shows the variation in displacement with time for large-scale feature point 2 and small-
scale feature point i in coarse element II. The reference solution is provided by the Abaqus with both
automatic and fixed time steps, in which the implicit integration method in the time domain is used.
The comparisons of different time steps T = 0.1, 0.01, and 0.001 s are shown in Fig. 9. When the
time step of Abaqus is relatively large as T = 0.1 s. Obviously, there are errors in the initial stage,
but the proposed method with the same time step still achieves good results which shows that the
TPAA algorithm is capable of adaptively adjusting the expansion order to ensure the accuracy in the
time domain. Fig. 10 shows the comparison of the expansion order under two different prescribed
convergence accuracy parameters, which indicate that the TPAA algorithm can also adaptively adjust
the expansion order to balance the calculation accuracy and efficiency when the given convergence
accuracy changes.

Figure 9: Displacement curves of feature points with different time steps (a) The large-scale feature
point 1 (b) The small-scale feature point i in the coarse element II

Figure 10: The variation of recursive orders with time
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Secondly, the two cases of material properties in case I and case II in Table 1 are tested by using the
coarse element Model A with 8 nodes, as shown in Fig. 7. Table 4 shows the results of uy on large-scale
feature nodes shown in Fig. 6b when t = 10 s and its relative error er. The calculation results show that
for two cases of material properties in case I and case II, although er is less than 3% on nodes 4 and
10, but er on some other nodes are still quite large nearly 10%. We will discuss how to improve the
accuracy by adjusting the types of coarse elements in the following section.

Table 4: Comparisons of uy and er in large-scale with different material proportions (t = 10 s)

The feature
points at
large-scale

Case I (κ = 28.3%) Case II (κ = 47.6%)

Reference (mm) MsSBFEM (mm) er (%) Reference (mm) MsSBFEM (mm) er (%)

1 1.491 1.323 11.28 1.689 1.500 11.17
2 0.794 0.699 11.96 0.899 0.792 11.92
3 1.470 1.360 7.46 1.665 1.542 7.40
4 2.147 2.123 1.11 2.396 2.405 0.40
5 0.794 0.699 11.96 0.899 0.792 11.92
6 1.470 1.303 11.36 1.665 1.477 11.28
7 1.491 1.323 11.28 1.689 1.477 12.50
8 2.183 2.028 7.08 2.456 2.299 6.36
9 2.183 2.028 7.08 2.456 2.299 6.40
10 2.158 2.128 1.38 2.460 2.410 2.05

Thirdly, by comparing the computational results for the coarse element Model A (8 nodes),
Model B (18 nodes), and Model C (26 nodes) as shown in Fig. 7, Tables 5 and 6 show the result of
displacement uy calculated by different models for large feature points and small-scale feature points
of coarse elements I–III (see Figs. 6b and 7d) when t = 10 s. These results demonstrate that when the
number of coarse nodes increases from 8 to 26, the computational accuracy significantly improves as
the maximum error in large-scale decreases from 12.50% to 1.43%. Accordingly, the maximum error
in small-scale also decreases from 11.73% to 1.54%. Notably, we increase only the number of coarse
nodes here but the octree mesh used in the small-scale is not altered.

Table 5: Comparisons of uy and er in large-scale with different coarse element models (t = 10 s)

The feature
points at
large-scale

Model A (8 nodes) Model B (18 nodes) Model C (26 nodes) Reference
(mm)MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%)

Case I (κ = 28.3%)
1 1.323 11.28 1.480 0.75 1.481 0.69 1.491
2 0.699 11.96 0.779 2.00 0.787 0.96 0.794
3 1.360 7.46 1.457 0.85 1.460 0.66 1.470
4 2.123 1.11 2.187 1.86 2.173 1.24 2.147
5 0.699 11.96 0.779 2.00 0.787 0.96 0.794

(Continued)
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Table 5 (continued)

The feature
points at
large-scale

Model A (8 nodes) Model B (18 nodes) Model C (26 nodes) Reference
(mm)MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%)

6 1.303 11.36 1.460 0.65 1.460 0.66 1.470
7 1.323 11.28 1.480 0.75 1.481 0.69 1.491
8 2.028 7.08 2.190 0.32 2.183 0.01 2.183
9 2.028 7.08 2.190 0.32 2.183 0.01 2.183
10 2.128 1.38 2.196 1.79 2.177 0.90 2.158

Case II (κ = 47.6%)
1 1.500 11.17 1.676 0.72 1.677 0.67 1.689
2 0.792 11.92 0.882 1.96 0.891 0.93 0.899
3 1.542 7.40 1.651 0.87 1.654 0.66 1.665
4 2.405 0.40 2.440 1.83 2.427 1.30 2.396
5 0.792 11.92 0.882 1.96 0.891 0.92 0.899
6 1.477 11.28 1.655 0.63 1.654 0.66 1.665
7 1.477 12.50 1.655 1.99 1.664 1.43 1.689
8 2.299 6.36 2.476 0.84 2.462 0.26 2.456
9 2.299 6.40 2.476 0.80 2.462 0.22 2.456
10 2.410 2.05 2.483 0.93 2.453 0.28 2.460

Table 6: Comparisons of uy and er in small-scale with different coarse element models (t = 10 s)

The feature
points at
small-scale

Model A (8 nodes) Model B (18 nodes) Model C (26 nodes) Reference
(mm)MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%)

Case I (κ = 28.3%)
Element I (i) 1.4388 9.19 1.5728 0.73 1.5750 0.59 1.5843
Element I (ii) 1.9534 8.89 2.1024 1.94 2.1227 0.99 2.1440
Element I (iii) 1.9548 8.52 2.1018 1.64 2.1207 0.76 2.1369
Element I (iv) 1.4251 9.67 1.5667 0.69 1.5693 0.53 1.5777
Element II (i) 1.4251 9.68 1.5667 0.70 1.5693 0.54 1.5779
Element II (ii) 1.9548 8.52 2.1018 1.65 2.1207 0.76 2.1370
Element II (iii) 1.9534 8.90 2.1024 1.95 2.1227 1.00 2.1443
Element II (iv) 1.4388 9.17 1.5728 0.71 1.5750 0.57 1.5841
Element III (i) 0.0788 2.18 0.0793 2.88 0.0771 0.06 0.0771
Element III (ii) 0.5092 11.68 0.5704 1.07 0.5681 1.48 0.5766
Element III (iii) 0.5092 11.69 0.5704 1.08 0.5682 1.47 0.5766
Element III (iv) 0.0788 2.54 0.0793 3.25 0.0771 0.42 0.0768

(Continued)
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Table 6 (continued)

The feature
points at
small-scale

Model A (8 nodes) Model B (18 nodes) Model C (26 nodes) Reference
(mm)MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%) MsSBFEM

(mm)
er (%)

Case II (κ = 47.6%)
Element I (i) 1.5914 9.09 1.7372 0.76 1.7402 0.59 1.7505
Element I (ii) 2.2645 7.86 2.4134 1.80 2.4418 0.65 2.4578
Element I (iii) 2.2679 7.65 2.4183 1.52 2.4449 0.44 2.4557
Element I (iv) 1.5725 9.61 1.7266 0.75 1.7293 0.59 1.7396
Element II (i) 1.5725 9.61 1.7266 0.75 1.7293 0.60 1.7397
Element II (ii) 2.2679 7.65 2.4183 1.52 2.4449 0.44 2.4557
Element II (iii) 2.2645 7.87 2.4134 1.81 2.4418 0.66 2.4579
Element II (iv) 1.5914 9.08 1.7372 0.76 1.7402 0.58 1.7504
Element III (i) 0.0563 8.40 0.0567 9.23 0.0524 1.03 0.0519
Element III (ii) 0.6203 11.73 0.6959 0.96 0.6918 1.54 0.7027
Element III (iii) 0.6203 11.71 0.6959 0.95 0.6918 1.53 0.7026

4.2 A Cube Domain with Non-Periodic Spherical Inclusions
Consider a heterogeneous cube with the boundary conditions and geometric parameters shown

in Fig. 11. The cube contains 27 spherical inclusions of different sizes and the material parameters
are shown in Table 7. Accordingly, 27 course elements are used to discretize the cube on large-scale as
shown in Fig. 11b. The reference solution is provided using the convergence results of Abaqus with
the mesh shown in Fig. 12. The coarse grid in large-scale and the fine grid in small-scale are shown in
Figs. 11b and 13, respectively.

Figure 11: A cube with non-periodic spherical inclusions (a) matrix, inclusions and boundary condi-
tions (b) coarse mesh and the material distribution
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Table 7: Material parameters for the cube with aperiodic spherical inclusions

Mat1 Mat2 v

E1 (MPa) E2 (MPa) η (MPa ∗ s) E1 (MPa) E2 (MPa) η (MPa ∗ s)

Case I 2000 2000 2000 1000 1000 1000 0.3
Case II 2000 2000 2000 500 500 500

Figure 12: FE mesh in reference solution based on Abaqus (a) outer surface (b) inclusions (c) profile

Figure 13: SBFEs with different size of spherical inclusions (a) geometric model (b) inclusion diameter
d = 26.59 mm (c) inclusion diameter d = 30.98 mm (d, e) section view of octree mesh

In order to test the influence of quadtree mesh near the interface regions on calculation accuracy,
we use the two sizes of quadtree grids shown in Fig. 14 to calculate four small-scale feature points in
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the coarse elements. Table 8 shows that the maximum relative error is decreased from 1.61% to 1.13%
as the minimal size of the elements in small-scale is refined from 2 to 1 mm.

Figure 14: Two different sizes of small-scale grids (a) course element I (b) course element II

Table 8: Comparisons of uy and er at small-scale with different mesh densities (Case I, t = 10 s)

The feature points at
small-scale

Reference (mm) Original mesh Refined mesh

MsSBFEM (mm) er (%) MsSBFEM (mm) er (%)

Element I (i) 1.993 1.974 0.93 1.982 0.57
Element I (ii) 2.598 2.562 1.38 2.576 0.83
Element I (iii) 2.033 2.024 0.45 2.030 0.14
Element I (iv) 1.591 1.587 0.24 1.591 0.01
Element II (i) 0.287 0.283 1.47 0.284 1.01
Element II (ii) 0.622 0.618 0.75 0.619 0.48
Element II (iii) 0.319 0.313 1.61 0.315 1.13
Element II (iv) 2.033 2.024 0.45 2.030 0.14

The accuracy of the proposed model in large scale is verified by using the two cases of material
parameters (see Table 7). Table 9 shows the displacements at the feature points (shown in Fig. 11b)
and the relative error er when the t = 10 s. When the difference in material parameters between the
two materials increases, the maximum error of large-scale feature points only increases from 1.36% to
2.03%, showing that the proposed algorithm maintains good accuracy for varying material properties.



CMES, 2024, vol.140, no.2 1849

Table 9: Comparisons of uy and er at large-scale with different material parameters (t = 10 s)

The feature
points at
large-scale

Case I Case II

Reference (mm) MsSBFEM (mm) er (%) Reference (mm) MsSBFEM (mm) er (%)

1 1.490 1.486 0.29 1.738 1.727 0.67
2 0.784 0.775 1.14 0.897 0.882 1.68
3 1.442 1.429 0.92 1.655 1.626 1.74
4 2.201 2.215 0.61 2.514 2.549 1.42
5 0.730 0.722 1.17 0.783 0.771 1.47
6 1.575 1.554 1.36 1.926 1.891 1.84
7 1.642 1.625 0.99 2.041 2.000 2.03
8 2.320 2.311 0.37 2.778 2.748 1.08
9 2.200 2.186 0.63 2.537 2.501 1.42
10 2.229 2.241 0.55 2.603 2.622 0.72

To verify the performance of the method in small-scale, we compare the displacement-time curves
of several specific points in different coarse elements with two material parameters in Fig. 15. The
contour of the displacement field for the entire structure at t = 10 s is illustrated in Fig. 16. Here
the coarse element with 26 nodes (Model C) is used. The results show that the proposed method still
performs well in computing the displacement values in small-scale feature points and the displacement
field in the entire structure with non-periodic inclusions.

Figure 15: (Continued)
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Figure 15: Displacement-time curves of different small-scale feature points (a) material parameters
case I (b) material parameters case II

Figure 16: Displacement field cloud map of Case II (t = 10) (a) reference solution for entire structure (b)
MsSBFM solution for entire structure (c) reference solution for inclusion displacements (d) MsSBFM
solution for inclusions
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4.3 A Concrete Beam
Consider a heterogeneous concrete beam under uniaxial tension with the boundary conditions

and geometric parameters shown in Fig. 17. For simplicity, the beam is assumed to have 16 periodic
subdomains for simplicity, and the CT images [68–70] of the microstructure of one subdomain are
shown in Fig. 18 with the material parameters listed in Table 10. A total of 16 coarse elements are
used in large-scale as shown in Fig. 17b.

Figure 17: Image-based mesh generation in small-scale of a concrete beam

Figure 18: Coarse SBFE and its octree mesh (a) SBFEs for coarse element (b) octree mesh for material
1 (c) octree mesh for material 2

Table 10: Material parameters for the concrete beam

Mat1 Mat2 v

E1 (MPa) E2 (MPa) η (MPa ∗ s) E1 (MPa) E2 (MPa) η (MPa ∗ s)

50000 50000 50000 25000 25000 25000 0.3

A fine grid in small-scale is shown in Fig. 18. Similar to the previous example in Section 4.1, a
total of 26 nodes for each coarse element are used. This means that we use 209 coarse nodes in this
example.
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Table 11 shows the displacements at feature points in large-scale (shown in Fig. 17) and their
relative errors er when the t = 10 s. The reference solution is provided by DNS in commercial software
Abaqus with the use of 1885529 nodes as shown in Fig. 19. The average er of the proposed method at
feature points is 1.87%, indicating that the proposed method can still obtain a good accuracy when
the microstructures are very complex.

Table 11: Comparisons of uy and er at large-scale (t = 10 s)

The feature points at large-scale Reference (mm) MsSBFEM (mm) er (%)

1 5.709 5.592 2.05
2 5.614 5.558 1.00
3 5.693 5.605 1.55
4 5.680 5.598 1.44
5 4.258 4.157 2.36
6 4.255 4.174 1.90
7 4.264 4.193 1.66
8 4.247 4.193 1.26
9 2.801 2.741 2.13
10 2.823 2.768 1.94
11 2.802 2.745 2.05
12 1.372 1.345 2.00
13 1.430 1.395 2.46
14 1.383 1.349 2.45
Average er 1.87%

Figure 19: FE mesh in reference solution for DNS by Abaqus (1885529 nodes)

Figs. 20 and 21 show the displacement-time curves of the feature points on different profiles of
one specific coarse element and the contour of the displacement field of this coarse element at various
times, respectively. As shown in the figure, the results of the proposed model also align well with the
reference solution in small-scale.
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Figure 20: Displacement-time curves of different small-scale feature points in a coarse element

Figure 21: Displacement field cloud maps of feature coarse elements at different time steps (a) FE
solution of Abaqus (b) proposed method

Table 12 shows the comparison of computational efficiency between the DNS and the MsSBFEM,
in which Abaqus uses 1885529 nodes and MsSBFEM uses 209 coarse nodes to solve the problem. It
is shown that the DNS solution takes 186541 s and MsSBFEM takes 12214 s, the computational
efficiency has been improved by 154 times.

Table 12: Comparisons of computing time

Solution method Computing time

DNS 186541 s

MsSBFEM
Construction of the numerical base function 7455 s
Viscoelastic solution 4759 s
Total 12214 s
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5 Conclusions

By integrating the advantages of the MsSBFEM and the temporally piecewise adaptive algorithm,
a new numerical algorithm is developed for multiscale analysis of three-dimensional viscoelastic
problems of heterogeneous materials by extending the two-dimensional method presented in our
previous work. The major merits of this study include

1. The proposed multiscale method provides an effective tool for handling three-dimensional vis-
coelastic analysis, that can strongly reproduce realistic situations for heterogeneous viscoelastic
analysis, e.g., in the viscoelastic analysis for concrete structures with complex microstructures
in Example 3.

2. The solution scale for three dimensions can be significantly reduced by the proposed multiscale
model and the computational accuracy is still satisfactory. For instance, in Example 3, only 209
coarse nodes are used in the proposed method instead of 1885529 nodes in the DNS reference
solution, but the average relative error of the proposed method is 1.87%.

3. Using the octree SBFEM to construct the numerical base functions, the image-based analysis
can be conveniently achieved for complex three-dimensional microstructures.

4. In the time domain, the temporally piecewise adaptive algorithm ensures stable computational
accuracy in both large and small scales with different time steps.

5. Based on the flexibility of the octree SBFEM, nodes can be added on large-scale without
changing the mesh on small scale, which can significantly improve the calculation accuracy
of the multiscale three-dimensional viscoelastic analysis.

A limitation of this work is that we currently use regular octree meshes in all of the structures;
therefore, there could be jagged shapes at the interfaces, producing some errors because the smooth
boundaries cannot be exactly described. Although the computational accuracy of the current model is
acceptable compared with reference solutions and can also be increased by mesh refinement, a direct
cutting mesh method will be further studied in order to better describe material interfaces and increase
computational accuracy.

In summary, the proposed method provides an effective new approach for solving three-
dimensional multiscale viscoelastic problems. This method can be extended further to solve other
three-dimensional time-dependent problems, e.g., the dynamics analysis and the transient heat transfer
analysis. Moreover, the extension of the proposed method to nonlinear multiscale analysis is also
underway.
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30. Babuška I, Caloz G, Osborn JE. Special finite element methods for a class of second order elliptic problems
with rough coefficients. Siam J Numer Anal. 1994;31(4):945–81. doi:10.1137/0731051.

31. Coda H, Sanches R, Paccola R. Alternative multiscale material and structures modeling by the finite-
element method. Eng Comput. 2020;38:1–19.

32. Zhelnin M, Kostina A, Plekhov O. Variational multiscale finite-element methods for a nonlinear convection-
diffusion–reaction equation. J. Appl Mech Tech Phys. 2020;61:1128–39. doi:10.1134/S0021894420070226.

33. Ye C, Dong H, Cui J. Convergence rate of multiscale finite element method for various boundary problems.
J Comput Appl Math. 2020;374:112754. doi:10.1016/j.cam.2020.112754.

34. Zhang H, Fu Z, Wu J. Coupling multiscale finite element method for consolidation analysis of heteroge-
neous saturated porous media. Adv Water Resour. 2009;32(2):268–79. doi:10.1016/j.advwatres.2008.11.002.

35. Zhang H, Liu H, Wu J. A uniform multiscale method for 2D static and dynamic analyses of heterogeneous
materials. Int J Numer Meth Eng. 2013;93(7):714–46. doi:10.1002/nme.v93.7.

36. Zhang H, Lu M, Zheng Y, Zhang S. General coupling extended multiscale FEM for elasto-plastic
consolidation analysis of heterogeneous saturated porous media. Int J Numer Anal Met. 2015;39(1):
63–95. doi:10.1002/nag.v39.1.

37. Zhang S, Yang D, Zhang H, Zheng Y. Coupling extended multiscale finite element method
for thermoelastic analysis of heterogeneous multiphase materials. Comput Struct. 2013;121:32–49.
doi:10.1016/j.compstruc.2013.03.001.

38. Klimczak M, Cecot W. An adaptive MsFEM for nonperiodic viscoelastic composites. Int J Numer Meth
Eng. 2018;114(8):861–81. doi:10.1002/nme.v114.8.

39. Kabel M, Merkert D, Schneider M. Use of composite voxels in FFT-based homogenization. Comput
Method Appl M. 2015;294:168–88. doi:10.1016/j.cma.2015.06.003.

https://doi.org/10.1016/j.ijsolstr.2022.112092
https://doi.org/10.1016/j.cag.2021.07.021
https://doi.org/10.1615/IntJMultCompEng.v16.i2
https://doi.org/10.1002/nme.v122.24
https://doi.org/10.1016/j.enganabound.2023.01.039
https://doi.org/10.1016/j.cma.2018.04.037
https://doi.org/10.1002/nme.v122.24
https://doi.org/10.1016/j.compstruct.2020.112926
https://doi.org/10.1137/0720034
https://doi.org/10.1137/0731051
https://doi.org/10.1134/S0021894420070226
https://doi.org/10.1016/j.cam.2020.112754
https://doi.org/10.1016/j.advwatres.2008.11.002
https://doi.org/10.1002/nme.v93.7
https://doi.org/10.1002/nag.v39.1
https://doi.org/10.1016/j.compstruc.2013.03.001
https://doi.org/10.1002/nme.v114.8
https://doi.org/10.1016/j.cma.2015.06.003


CMES, 2024, vol.140, no.2 1857

40. Song C, Wolf JP. The scaled boundary finite-element method—alias consistent infinitesimal finite-element
cell method—for elastodynamics. Comput Method Appl M. 1997;147(3–4):329–55.

41. Jiang S, Sun L, Ooi ET, Ghaemian M, Du C. Automatic mesoscopic fracture modelling of con-
crete based on enriched SBFEM space and quad-tree mesh. Constr Build Mater. 2022;350:128890.
doi:10.1016/j.conbuildmat.2022.128890.

42. Ooi ET, Man H, Natarajan S, Song C. Adaptation of quadtree meshes in the scaled bound-
ary finite element method for crack propagation modelling. Eng Fract Mech. 2015;144:101–17.
doi:10.1016/j.engfracmech.2015.06.083.

43. Zhang P, Du C, Zhao W, Sun L. Dynamic crack face contact and propagation simulation
based on the scaled boundary finite element method. Comput Method Appl M. 2021;385:114044.
doi:10.1016/j.cma.2021.114044.

44. Song C. The scaled boundary finite element method in structural dynamics. Int J Numer Meth Eng.
2009;77(8):1139–71. doi:10.1002/nme.v77:8.

45. Dsouza SM, Varghese TM, Ooi ET, Natarajan S, Bordas SP. Treatment of multiple input uncer-
tainties using the scaled boundary finite element method. Appl Math Model. 2021;99:538–54.
doi:10.1016/j.apm.2021.06.021.

46. Johari A, Heydari A. Reliability analysis of seepage using an applicable procedure based on
stochastic scaled boundary finite element method. Eng Anal Bound Elem. 2018;94:44–59.
doi:10.1016/j.enganabound.2018.05.015.

47. Khajah T, Liu L, Song C, Gravenkamp H. Shape optimization of acoustic devices using the scaled boundary
finite element method. Wave Motion. 2021;104:102732. doi:10.1016/j.wavemoti.2021.102732.

48. Zhang W, Xiao Z, Liu C, Mei Y, Youn SK, Guo X. A scaled boundary finite element based explicit topology
optimization approach for three-dimensional structures. Int J Numer Meth Eng. 2020;121(21):4878–4900.
doi:10.1002/nme.v121.21.

49. Zhang J, Zhao M, Eisenträger S, Du X, Song C. An asynchronous parallel explicit solver based on
scaled boundary finite element method using octree meshes. Comput Method Appl M. 2022;401:115653.
doi:10.1016/j.cma.2022.115653.

50. Genes MC. Dynamic analysis of large-scale SSI systems for layered unbounded media via a parallelized
coupled finite-element/boundary-element/scaled boundary finite-element model. Eng Anal Bound Elem.
2012;36(5):845–57. doi:10.1016/j.enganabound.2011.11.013.

51. Yu B, Hu P, Saputra AA, Gu Y. The scaled boundary finite element method based on the hybrid
quadtree mesh for solving transient heat conduction problems. Appl Math Model. 2021;89:541–71.
doi:10.1016/j.apm.2020.07.035.

52. Song C, Ooi ET, Natarajan S. A review of the scaled boundary finite element method for two-dimensional
linear elastic fracture mechanics. Eng Fract Mech. 2018;187:45–73. doi:10.1016/j.engfracmech.2017.10.016.

53. Zou D, Chen K, Kong X, Liu J. An enhanced octree polyhedral scaled boundary finite ele-
ment method and its applications in structure analysis. Eng Anal Bound Elem. 2017;84:87–107.
doi:10.1016/j.enganabound.2017.07.007.

54. Wang X, Yang H, He Y. A temporally piecewise adaptive multiscale scaled boundary finite element method
to solve two-dimensional heterogeneous viscoelastic problems. Eng Anal Bound Elem. 2023;155:738–53.
doi:10.1016/j.enganabound.2023.07.006.

55. Wang X, Yang H, He Y. A multiscale scaled boundary finite element method solving steady-state
heat conduction problem with heterogeneous materials. Numer Heat Tr B-Fund. 2023;83(6):345–66.
doi:10.1080/10407790.2022.2160850.

56. Zhang J, Eisenträger S, Zhan Y, Saputra A, Song C. Direct point-cloud-based numerical analysis using
octree meshes. Comput Struct. 2023;289:107175. doi:10.1016/j.compstruc.2023.107175.

https://doi.org/10.1016/j.conbuildmat.2022.128890
https://doi.org/10.1016/j.engfracmech.2015.06.083
https://doi.org/10.1016/j.cma.2021.114044
https://doi.org/10.1002/nme.v77:8
https://doi.org/10.1016/j.apm.2021.06.021
https://doi.org/10.1016/j.enganabound.2018.05.015
https://doi.org/10.1016/j.wavemoti.2021.102732
https://doi.org/10.1002/nme.v121.21
https://doi.org/10.1016/j.cma.2022.115653
https://doi.org/10.1016/j.enganabound.2011.11.013
https://doi.org/10.1016/j.apm.2020.07.035
https://doi.org/10.1016/j.engfracmech.2017.10.016
https://doi.org/10.1016/j.enganabound.2017.07.007
https://doi.org/10.1016/j.enganabound.2023.07.006
https://doi.org/10.1080/10407790.2022.2160850
https://doi.org/10.1016/j.compstruc.2023.107175


1858 CMES, 2024, vol.140, no.2

57. Liu L, Zhang J, Song C, He K, Saputra AA, Gao W. Automatic scaled boundary finite
element method for three-dimensional elastoplastic analysis. Int J Mech Sci. 2020;171:105374.
doi:10.1016/j.ijmecsci.2019.105374.

58. Liu L, Zhang J, Song C, Birk C, Saputra AA, Gao W. Automatic three-dimensional acoustic-structure
interaction analysis using the scaled boundary finite element method. J Comput Phys. 2019;395:432–60.
doi:10.1016/j.jcp.2019.06.033.

59. Liu Y, Saputra AA, Wang J, Tin-Loi F, Song C. Automatic polyhedral mesh generation and
scaled boundary finite element analysis of STL models. Comput Method Appl M. 2017;313:106–32.
doi:10.1016/j.cma.2016.09.038.

60. Ya S, Eisenträger S, Song C, Li J. An open-source ABAQUS implementation of the scaled boundary
finite element method to study interfacial problems using polyhedral meshes. Comput Method Appl M.
2021;381:113766. doi:10.1016/j.cma.2021.113766.

61. Talebi H, Saputra A, Song C. Stress analysis of 3D complex geometries using the scaled boundary
polyhedral finite elements. Comput Mech. 2016;58:697–715. doi:10.1007/s00466-016-1312-0.

62. Zhang J, Natarajan S, Ooi ET, Song C. Adaptive analysis using scaled boundary finite element method in
3D. Comput Method Appl M. 2020;372:113374. doi:10.1016/j.cma.2020.113374.

63. Saputra AA, Eisenträger S, Gravenkamp H, Song C. Three-dimensional image-based numerical homogeni-
sation using octree meshes. Comput Struct. 2020;237:106263. doi:10.1016/j.compstruc.2020.106263.

64. Gravenkamp H, Saputra AA, Eisenträger S. Three-dimensional image-based modeling by
combining SBFEM and transfinite element shape functions. Comput Mech. 2020;66(4):911–30.
doi:10.1007/s00466-020-01884-4.

65. Wang CS, He YQ, Yang HT. A SBFEM and sensitivity analysis based algorithm for solving inverse
viscoelastic problems. Eng Anal Bound Elem. 2019;106:588–98. doi:10.1016/j.enganabound.2019.06.014.

66. He Y, Yang H. Solving viscoelastic problems by combining SBFEM and a temporally piecewise adaptive
algorithm. Mech Time-Depend Mat. 2017;21:481–97. doi:10.1007/s11043-017-9338-z.

67. Wang C, Long X, He Y, Yang H, Han X. An adaptive recursive SBFE algorithm for the sta-
tistical analysis of stochastic viscoelastic problems. Comput Method Appl M. 2022;395:114878.
doi:10.1016/j.cma.2022.114878.

68. Ren W, Yang Z, Sharma R, Zhang C, Withers PJ. Two-dimensional X-ray CT image based meso-scale
fracture modelling of concrete. Eng Fract Mech. 2015;133:24–39. doi:10.1016/j.engfracmech.2014.10.016.

69. Yang Z, Ren W, Sharma R, McDonald S, Mostafavi M, Vertyagina Y, et al. In-situ X-ray computed
tomography characterisation of 3D fracture evolution and image-based numerical homogenisation of
concrete. Cement Concrete Comp. 2017;75:74–83. doi:10.1016/j.cemconcomp.2016.10.001.

70. Huang Y, Yang Z, Ren W, Liu G, Zhang C. 3D meso-scale fracture modelling and validation of concrete
based on in-situ X-ray computed tomography images using damage plasticity model. Int J Solids Struct.
2015;67:340–52.

Appendix A. Calculation of Stiffness Matrix of a 3D SBFE

In this paper, the octree grid is used in the small-scale solution, each octree cell is modeled as a
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coordinates within the domain
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)
are described by scaling the coordinates on the boundary
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Figure A1: Scaled boundary coordinate system

system, the surface element is divided into tetrahedral element and triangular element. For local radial
coordinates ξ , at the scaling center ξ = 0, on the boundary ξ = 1.

Assuming that the center of the Cartesian coordinates coincides with the scaling center of scaled
boundary coordinates, the transformation relationship between the two coordinate systems is⎧⎨
⎩

x̂ (ξ , η, ζ ) = ξx (η, ζ ) = ξN (η, ζ ) x
ŷ (ξ , η, ζ ) = ξy (η, ζ ) = ξN (η, ζ ) y
ẑ (ξ , η, ζ ) = ξz (η, ζ ) = ξN (η, ζ ) z

(A1)

where N (η, ζ ) is the two-dimensional shape function and x, y, z is the node coordinate vector of each
surface.

The governing differential equations of 3D elasticity problems in the absence of body forces can
be formulated as

LTσ = 0 (A2)

where σ is the stress vector inside the cube element and L is the linear differential operator, L can be
written as

L = b1 (η, ζ )
∂

∂ξ
+ 1

ξ

[
b2 (η, ζ )

∂

∂η
+ b3 (η, ζ )

∂

∂ζ

]
(A3)

where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 (η, ζ ) = 1
|J|G1

b2 (η, ζ ) = − 1
|J| (η G1 + G2)

b3 (η, ζ ) = − 1
|J| (ζ G1 + G3)

(A4)

|J| = x
(
y,ηz,ζ − z,ηy,ζ

) + y
(
z,ηx,ζ − x,ηz,ζ

) + z
(
x,ηy,ζ − y,ηx,ζ

)
(A5)

In Eq. (A4), G1, G2 and G3 are the coordinate correlation matrix of the surface element.
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The displacement solution of any point in the element can be obtained by radial displacement
u(ξ) interpolation.

u (ξ , η, ζ ) = Nu
(η, ζ ) u (ξ) (A6)

where Nu
(η, ζ ) is the displacement shape function matrix, its specific expression is as follows:

Nu
(η, ζ ) = [N1 (η, ζ ) I, N2 (η, ζ ) I, . . . , Nn (η, ζ ) I] (A7)

where I is identity matrix and n are the total number of nodes on a surface element. Thus, the strains
can be expressed using Eqs. (A3) and (A7) as

ε (ξ , η, ζ ) = B1u (ξ),ξ + 1
ξ

B2u (ξ),ξ (A8)

where{
B1 = b1 (η, ζ ) Nu

(η, ζ )

B2 = b2 (η, ζ ) Nu
(η, ζ ),η + b3 (η, ζ ) Nu

(η, ζ ),ζ

(A9)

According to the principle of virtual work, the three-dimensional SBFE equation without body
forces can be written as

E 0ξ
2u (ξ),ξξ + (

2E0 − E1 + E1
T
)
ξu (ξ),ξ + (

E1
T − E2

)
u (ξ) = 0 (A10)

The coefficient matrix is as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E0 = ∫ +1

−1

∫ +1

−1
BT

1 CB1 |J| dηdζ

E1 = ∫ +1

−1

∫ +1

−1
BT

2 CB1 |J| dηdζ

E2 = ∫ +1

−1

∫ +1

−1
BT

2 CB2 |J| dηdζ

(A11)

where C is the 6×6 elasticity matrix for three-dimensional problems. The internal node forces on each
surface element can be written as

q (ξ) = ξ
(
E0ξu (ξ),ξ + E1

Tu (ξ)
)

(A12)

Transforming Eqs. (A10) and (A12) into a system of first-order ordinary differential equations

ξ

{
ξ 0.5u (ξ)

ξ−0.5q (ξ)

}
,ξ

= −Z
{
ξ 0.5u (ξ)

ξ−0.5q (ξ)

}
(A13)

where Z is the Hamiltonian matrix, it can be expressed as

Z =
[

E0
−1E1

T − 0.5I −E0
−1

−E2 + E1E0
−1E1

T − (
E1E0

−1 − 0.5I
)] (A14)

The matrix Z is decomposed using a Schur decomposition with block diagonalization

ZV = VS (A15)

where S and V are the real Schur form matrix and the transformation matrix, respectively. Divide the
matrices S and V into submatrices of the same size, as shown in following equation:

S =
[

S11 0
0 S22

]
(A16a)
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V =
[

V11 V12

V21 V22

]
(A16b)

All the eigenvalues of submatrix S11 have negative real parts which corresponds to the solution of
a bounded domain. Therefore, the general solutions for the displacements and internal nodal forces
of the bounded domain are

u (ξ) = V11ξ
−S11−0.5Ic (A17a)

q (ξ) = V21ξ
−S11+0.5Ic (A17b)

where c is a vector of integration constants. Consequently, the static stiffness matrix K is defined as

K = V21V11
−1 (A18)
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