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ABSTRACT

Topology optimization of thermal-fluid coupling problems has received widespread attention. This article proposes
a novel topology optimization method for laminar two-fluid heat exchanger design. The proposed method
utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,
ensuring separation between the two fluid domains. Additionally, a Gaussian function is employed to construct an
interpolation function for the thermal conductivity coefficient. Furthermore, a computational program has been
developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers. This program
leverages parallel computing, significantly reducing the time required for the topology optimization process. To
enhance computational speed and reduce the number of constraint conditions, we replaced the conventional
pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.
The 3D optimization results demonstrate the characteristic features of a surface structure, providing valuable
guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive
pressure loss. At the same time, a new structure appears in large-scale topology optimization, which proves the
effectiveness and stability of the topology optimization program written in this paper in large-scale calculation.
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Nomenclature

u Fluid velocity vector
p Fluid pressure
Re Reynolds number
α Flow resistance coefficient
αmax Flow resistance coefficient of solid
Da Darcy number
qu Parameter of permeability function

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.048877
https://www.techscience.com/doi/10.32604/cmes.2024.048877
mailto:yanjun@dlut.edu.cn


1950 CMES, 2024, vol.140, no.2

γ Design variable
γ p Helmholtz filter density
γ h Heaviside projected density
T Temperature field
Pe Peclet number
Pr Prandtl number
ρ Material density
cp Specific heat capacity
U Characteristic velocity
l Characteristic length
k Material thermal conductivity
kf Thermal conductivity of fluid
ks Thermal conductivity of solid
C Objective function
r Filter radius
β Projection slope
η Threshold value
A Field integral function
B Boundary integral function
s Parameter of thermal conductivity function

1 Introduction

Heat exchangers are widely used in various industries, such as aerospace, petrochemicals, and
integrated circuits. For instance, in aircraft engines, as the flight speed increases, the engine’s internal
temperature gradually rises. However, designing a lightweight heat exchanger with a layout that fits
within a limited space has become a challenge. A noteworthy solution is to utilize the topology
optimization [1] method to obtain the optimal heat exchange structure during the conceptual design
stage. Thanks to the rapid development of additive manufacturing technology [2], the optimized
structure can also be manufactured and applied in engineering.

In the 1980s, Cheng et al. [3,4] introduced the concept of material microstructure into the
optimization of structures and explored the problem of maximizing the stiffness of variable-thickness
plates. In 1988, Bendsoe et al. [5] proposed a structural topology optimization method based on
homogenization. This work is regarded as a fundamental achievement in continuous topology opti-
mization. Since then, topology optimization has significantly progressed and been applied to almost
all physical problems described by partial differential equations, such as acoustics, electromagnetics,
heat and mass transfer, and fluids.

In 2003, Borrvall et al. [6] first applied topology optimization to the optimization problem of
Stokes flow, studying the relevant issues of fluid topology optimization to minimize energy dissipation.
Subsequently, Gersborg-Hansen et al. [7] extended this research to Navier-Stokes flow. They found
that the obtained equations are similar to the Brinkman model in Darcy’s law when applied to porous
media. This means that when dealing with two-dimensional problems of finite depth, solid materials
can be represented by regions with very low permeability.

Thanks to the development of fluid topology optimization, topology optimization problems
based on thermal-fluid coupling have also been widely researched. The earliest work in this area
was carried out by Dede et al. [8], who used the commercial finite element software COMSOL to
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study topology optimization problems in heat conduction and conjugate heat transfer. Subsequently,
Yoon [9] proposed a two-dimensional topology optimization formula for optimizing thermal sink
designs. McConnell et al. [10] studied the topology optimization problem of a double-layer pseudo-
three-dimensional cooling channel based on the lattice Boltzmann method. Matsumori et al. [11]
proposed a topology optimization for a forced convection radiator with constant input power
and ensured that the heat source is only effective in the solid by interpolation methods, studying
both temperature-independent and temperature-dependent heat sources. Yaji et al. [12] used the
level set method of replacement materials to study the topology optimization problem of a three-
dimensional forced convective heat exchanger and, based on Tikhonov’s regularization scheme, can
qualitatively control the geometric complexity of optimizing configurations. Wei et al. [13] used the
level set method to study the topology optimization of steady-state Navier-Stokes flow. Baniewski-
Wołłk et al. [14] proposed a discrete adjoint formula applicable to the lattice Boltzmann method based
on the multi-GPU framework and carried out large-scale three-dimensional topology optimization
research. Yu et al. [15] used the Moving Morphable Component (MMC) method to study the topology
optimization of a two-dimensional thermal groove, while Yu et al. [16] also carried out a parallel
computational study of topology optimization based on the density method for thermal flow-solid
coupling. Gallorini et al. [17] researched the topology optimization of thermal-fluid coupling with
dynamic adaptive mesh refinement on the OpenFOAM platform.

Meanwhile, significant progress has been made in topology optimization considering, the
natural convection effect. This problem was first investigated by Alexandersen et al. [18]. Then,
Coffin et al. [19] combined the explicit level set method with the extended finite element method for
steady-state and transient natural convection cooling problems. Alexandersen et al. [20] extended the
initial work to large-scale three-dimensional heat sink optimization problems with 330 million degrees
of freedom under a parallel framework. Pollini et al. [21] proposed a simplified model for describing
steady-state incompressible fluid flow, significantly reducing the computational time per core by 80%–
95% by ignoring the inertia and viscous boundary layer. It is worth mentioning that Dilgen et al. [22]
and Yeranee et al. [23] have carried out research on heat transfer topology optimization considering
turbulence.

Currently, the most commonly used method for designing heat exchangers is considering the
topological optimization of heat flow coupling. Based on the different driving forces of the flow field,
it is divided into forced convection heat transfer and natural convection heat transfer. However, this
optimization is mainly based on a single-flow field cooling structure with a relatively narrow scope
of application. In engineering applications, heat exchangers involve the transfer of heat between two
fluids. Therefore, in recent years, some scholars have conducted topological optimization studies on
heat transfer between two fluid streams.

Tawk et al. [24] proposed a novel permeability interpolation format suitable for double-fluid heat
transfer, which can ensure that each fluid occupies its flow channel and can maintain the required
minimum wall thickness. Kobayashi et al. [25] used a design variable to describe three states, which can
ensure that the two fluids are always separated and carry out three-dimensional topology optimization
calculations. Høghøj et al. [26] used erosion expansion technology to identify solid wall surfaces. This
method can effectively control the thickness of the solid domain and carry out three-dimensional shell-
and-tube heat exchanger topology optimization calculations, resulting in higher heat transfer efficiency
than traditional heat exchangers. Feppon et al. [27] proposed a topology optimization method based
on display grid discretization. This method is based on the level-set grid evolution theory and can
satisfy wall thickness constraints and prevent the two fluids from mixing. Galanos et al. [28] proposed
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a method that combines topology optimization with shape optimization. The method uses the Spalart-
Allmaras model to consider the effect of turbulence. This method has been proven in the design of
compact dual-fluid heat exchangers.

It should be noted that current research on the topology optimization of two-fluid heat transfer is
mainly based on the finite element method (FEM) and commercial software. On the other hand, the
finite volume method (FVM) is widely used in fluid-related calculations due to its natural conservation
in the discrete process. At the same time, commercial software has significant limitations in large-
scale calculations, making it difficult to carry out engineering actual computations due to its reliance
on computational resources [29]. Therefore, we developed large-scale parallel topology optimization
programs on the OpenFOAM [30] platform. OpenFOAM adopts FVM to discretize the partial
differential equation (PDE), ensuring calculation accuracy. Additionally, with the help of a portable,
extensible toolkit for scientific computation (PETSc) [31], large-scale parallel computation can be
achieved, thus ensuring computational efficiency as a basis for practical engineering applications.

2 Topology Optimization of Two-Fluid Heat Exchanger
2.1 Governing Equation

This article researches the topology optimization of heat exchangers using two-fluid heat transfer
equations. Two different permeability interpolation functions are constructed using a density field to
form two Navier-Stokes (NS) equations, which are solved separately. After calculating the flow field
distribution over the entire model, the convective heat transfer equation is constructed by linearly
superimposing the two flow fields to calculate the temperature distribution. The dimensionless steady-
state incompressible flow equation used in this paper is shown below:

−∇ · ui = 0

(ui · ∇) ui = −∇pi + υi∇2ui − αiui

(1)

when i = 1 represents the hot fluid, and i = 2 represents the cold fluid; u is the fluid velocity, p is the
ratio of fluid pressure to its density; υi = 1/Rei represents the viscosity term, Re is the fluid Reynolds
number; α is the reciprocal of permeability for porous materials, which is multiplied by the velocity and
added to the NS equation as a volumetric force term to construct the Brinkman equation. To simplify
the calculation process, this paper uses one density field to construct two permeability interpolation
functions to represent the two fluid states.

α1 = αmax

qu (1 − γ )

qu + γ

α2 = αmax

quγ

qu + 1 − γ

(2)

Among them, γ represents the artificial density field, which is the design variable; qu is the
interpolation curvature factor, and the value of qu determines the convexity of the interpolation
function. The smaller the qu, the stronger the convexity and the interpolation function tends to
approach an 0–1 distribution (Fig. 1). However, when qu is petite, the differences in permeability
corresponding to the intermediate density unit are also minor, reducing the distinguishability of this
unit for the two fluid streams. Therefore, this paper chooses qu = 0.05 to ensure the convexity of
the interpolation function while enhancing the distinguishability of the intermediate density unit for
the two fluid streams. αmax = 1/(Re·Da) is the maximum permeability, and Da is the Darcy number.
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According to the study by Yu et al. [15], it is considered that Da should be less than 10−6 to effectively
avoid the occurrence of water walls during the optimization process.

Figure 1: Interpolation curves of permeability under different qu values

After obtaining the distribution of the flow field, the two velocity fields are linearly superimposed
to construct a global velocity field, leading to the formulation of the following convective heat transfer
equation:(∑

ui · ∇
)

T − ∇ · K∇T = 0 (3)

where T represents the temperature field and K is the reciprocal of the Peclet number (Pe), which is
defined as follows:

Pe = Pr ·Re = ρcpUl
k

(4)

where Pe is the Peclet number, Pr is the Prandtl number, ρ is the material density, cp is the material’s
specific heat capacity at constant pressure, U is the characteristic velocity, l is the characteristic length,
and k is the thermal conductivity of the material. The interpolation function is constructed using a
Gaussian function:

k = kf + (
ks − kf

)
e

−(γ−0.5)2
s (5)

where kf is the thermal conductivity of the fluid, ks is the thermal conductivity of the solid, and s is
the curvature influence factor of the interpolation function, illustrated in Fig. 2.
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Figure 2: Interpolation curve of thermal conductivity under different s values

When s takes a more considerable value, the intermediate density units (0.3 < γ < 0.7) have higher
thermal conductivity. However, in the initial optimization stages, there are many intermediate-density
units. This means these units have strong heat conduction capabilities, which weakens the demand
for convective heat transfer. As a result, the distribution of the flow channels becomes relatively
straightforward, contradicting the original intention of the topology optimization design. Therefore, in
the initial stage of the optimization design, it is necessary to consider setting the thermal conductivity
of the intermediate density units to the same value as the thermal conductivity of the fluid. This can
be achieved by setting a small value for s. When s is small, it can be assumed that only units within a
minimal interval around a density of 0.5 are solid units. This provides greater freedom for convective
heat transfer, resulting in more complex channel designs. Moreover, when s is small, the distribution
of unit properties (i.e., fluid and solid differences) is more precise. In this paper, s is ultimately chosen
to be 0.0001.

2.2 Optimized Formulation
The physical background of the optimization is to maximize the heat transfer between the hot

and cold fluids under a specific pressure drop. There are two ways to handle the pressure drop
constraint. (1) The pressure drop function is a constraint in the optimization problem. (2) Setting the
inlet boundary condition as a constant pressure condition. In the first method, the viscous dissipation
of fluid flowing through the design domain is added to the constraint function to control the pressure
drop, which not only brings more workload to the sensitivity calculation but also needs to solve
more adjoint equations. The second approach constrains the pressure drop and does not require the
sensitivity information of the constraint function, which can reduce computational complexity. This
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paper uses the second approach to constrain the pressure drop. Therefore, only the volume constraint
needs to be considered. The optimization formulation in this paper is as follows:

Find γ

max C
s.t.

∫
�
γ d�/V ≤ 0.5

Eqs. (1) and (3)

(6)

where C is the objective function, and V is the model volume. For hot and cold fluids, the total heat
exchange capacity is:

Q = ρ1Cp1

∫
Γhout

u1 (T − Thin) · ndΓ + ρ2Cp2

∫
Γcout

u2 (Tcin − T) · ndΓ (7)

Since both density and specific heat capacity at constant pressure are constant, Eq. (7) can be
simplified as the following:

C =
∫

Γhout

u1 (T − Thin) · ndΓ +
∫

Γcout

u2 (Tcin − T) · ndΓ (8)

2.3 Filtering and Projection
In the topology optimization calculation presented in this paper, three density fields were

considered, namely, the design variable density field γ (0 ≤ γ ≤ 1), Helmholtz filter [32] density field
γ p, and the Heaviside projected [33] density field γ h, which satisfies the following relationship:

γp = γ + r2∇γp (9)

γh = tanh
(
β

(
γp − η

)) + tanh (βη)

tanh (β (1 − η)) + tanh (βη)
(10)

The Helmholtz equation employs a filter radius denoted as r. At the same time, the Heaviside
function incorporates a projection slope denoted as β, with all projection slopes consistently set to
8 throughout this paper. Additionally, η represents the threshold value set at 0.5. Specifically, the
projected density penalty tends towards 0 when the filter density is below this threshold and tends
towards 1 when it exceeds this value. The utilization of the Helmholtz filter aims to mitigate the
checkerboard phenomenon, while the projection of the Heaviside function serves to diminish gray
units within the optimization results. The projection density, denoted as γ h, is employed for computing
the material thermal coefficient, objective function, sensitivity, and other relevant information.

2.4 OpenFOAM Implementation Process
This paper develops a parallel topology optimization computation program using the Open-

FOAM platform and the PETSc library. Thanks to the efficiency of PETSc library functions, the
program can fully leverage the parallel computing capabilities of the OpenFOAM platform for large-
scale structural topology optimization calculations.

Fig. 3 illustrates the computational process of topology optimization for heat transfer between
two fluid streams. The simpleFoam solver in OpenFOAM is used to solve the NS equations with
certain modifications to the adjoint NS equations. The ScalarTransportFoam solver is used to solve
the convective heat transfer equation and its adjoint equation with appropriate modifications.
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Figure 3: Two-fluid heat transfer topology optimization process

The process starts by reading the material properties, including viscosity μ, thermal conductivity k,
etc. It then creates physical fields such as the artificial density field γ , velocity fields u1, u2, temperature
field T , etc. The control and adjoint equations are discretized using the fvm namespace for implicit
discretization of partial differential equations. The body force term in the NS equations is treated as
a source term with explicit discretization.

The program first solves the NS equations. After obtaining the velocities of the two fluid streams,
they are linearly combined to construct the overall velocity field for the convective heat transfer
equation. Then, the convective heat transfer equation and its adjoint equation are solved. The adjoint
NS equations are solved based on the obtained adjoint temperatures. Finally, sensitivity values are
obtained and passed to the Moving Asymptotes Method (MMA) algorithm for updating the design
variables, and the iteration process continues until convergence.

The sensitivity formulas are presented as explicit functions, allowing their direct incorporation
into OpenFOAM to extract sensitivity information. It is essential to emphasize that the derived
sensitivity formulas represent the derivatives of the objective function about the projected density,
which is based on the Heaviside function. The reverse application of the chain rule is necessary to
compute the objective function’s derivatives concerning the design variables. The obtained sensitivity
information is then transformed into the MMA to update the design variables. The solver used in this
study makes use of a parallel MMA algorithm that Yu et al. created within the PETSc framework
[15,16]. The MPI library employed for PETSc compilation is openMPI. Following the update of the
design variables, a PDE filtering process is executed.



CMES, 2024, vol.140, no.2 1957

3 Sensitivity Analysis

Obtaining accurate sensitivity information is a core aspect of topology optimization because
the simple algorithm is segregated, meaning the stiffness matrix is not fully assembled during the
computation process. Therefore, this paper uses the continuous adjoint method to solve the sensitivity
problem. The specific expressions for the adjoint equation and sensitivity formulas are provided
directly, and the detailed derivation process can be found in the Appendix. This paper’s objective
function is the total heat transfer, as described in Section 2.2. The symbols A and B in the objective
function represent:

A = 0; B = au1 (T − Thin) · n + bu2 (Tcin − T) · n (11)

where

a =
{

1 if Γ ∈ Γhout

0 else , b =
{

1 if Γ ∈ Γcout

0 else (12)

Substitute (12) into the general form of the adjoint equation and adjoint boundary conditions to
obtain specific forms of sensitivity formulas, adjoint equations, and boundary conditions.

The sensitivity formula for specific forms is as follows:

dC
dγ

= ∂

∂γ

∫
Ω

α1u1 · ua1dΩ + ∂

∂γ

∫
Ω

α2u2 · ua2dΩ + ∂

∂γ

∫
Ω

k∇T · ∇TadΩ (13)

The specific form of the equation is as follows:

∇u1 · ua1 − (u1 · ∇) ua1 − υ∇2ua1 + α1ua1 + ∇pa1 + cpTa∇T = 0
∇ · ua1 = 0
∇u2 · ua2 − (u2 · ∇) ua2 − υ∇2ua2 + α2ua2 + ∇pa2 + cpTa∇T = 0
∇ · ua2 = 0
∇ · (uTa) + k∇2Ta = 0

(14)

The specific form of the accompanying boundary conditions is as follows:

1) Boundary conditions for the convection heat transfer equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inlet : Thin = 1, Tcin = 0

hOutlet : (uTa + k∇Ta) · n = −u1 · n

cOutlet : (uTa + k∇Ta) · n = u2 · n

walls : ∇Ta · n = 0

(15)
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2) Boundary conditions associated with the NS equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inlet : Normal pa : pai = (uin) uain + μ
∂uain

∂xn

;

Tangential ua : uinuait + υ
∂uait

∂xn

= 0

hOutlet : Normal pa : pa1 = (u1n) ua1n + υ
∂ua1n

∂xn

+ T − Thin;

Tangential ua : u1nua1t + υ
∂ua1t

∂xn

= 0

hOutlet : Normal pa : pa1 = (u1n) ua1n + υ
∂ua1n

∂xn

+ Tcin − T ;

Tangential ua : u1nua1t + υ
∂ua1t

∂xn

= 0

walls : ua1n = ua1t = ua2n = ua2t = 0; pa1, pa2 : zeroGradient

(16)

where hOutlet represents the hot fluid outlet, and cOutlet represents the cold fluid outlet.

OpenFOAM’s built-in classes can be used to achieve the first-type and homogeneous second-type
boundary conditions. However, for special boundary conditions, custom boundary conditions need to
be written by inheriting the built-in classes or using third-party libraries to implement the application
of special boundary conditions. The second and third terms of Eq. (16) are applied through groovyBC
in swak4Foam.

Compared with solving the adjoint control equations, which can make full use of the built-
in simpleFoam solver, implementing adjoint boundary conditions at the inlet requires inheriting
and deriving OpenFOAM’s fixedValueFvPatchScalarField boundary condition class. It should be
noted that currently, there is no formula for adjoint pressure inlet boundary conditions in topology
optimization research on fluids. This paper derives the corresponding adjoint condition for pressure
inlet and provides the corresponding code in OpenFOAM to define this boundary condition. Due to
space limitations, this section omits declaration definitions about derived classes. Code 1 only shows
key calculation steps of the updateCoeffs() function in the adjoint pressure boundary condition class.

Code 1: The critical calculation steps in the boundary condition member function of the accompanying
pressure inlet

4 Numerical Example
4.1 A Two-Dimensional Benchmark Example

Firstly, a two-dimensional model, as shown in Fig. 4, is designed for the topology optimization
study of two-fluid heat transfer. The inlet temperature of the hot fluid is set to 1, and that of the cold
fluid is set to 0. It is assumed that the boundary conditions are adiabatic with no slip. The optimization
objective is to maximize the heat transfer between the two fluids. The initial density value is set to 0.5.
That is, the permeability of the design domain to both fluids is the same. 40,000 quadrilateral grids are
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used to discretize the design domain. The solution is carried out on four Intel i5-13500H CPU core
computers. The optimization process takes 500 iterative steps, with an average optimization time of less
than 1 s. This shows that the topology optimization program in this paper has a very high calculation
speed.

Figure 4: Two-dimensional topology optimization example

The optimized results are shown in Figs. 5 and 6. It can be observed that the optimized flow
channel is Ω-like, and according to Fig. 7b, the two fluids are separated. The optimization results
here preliminarily show the effectiveness of the optimization algorithm proposed in this paper, and
the optimization iteration can be completed in a very short time, and each iteration takes less than one
second. This provides a solid foundation for the subsequent 3D topology optimization calculation.

Figure 5: Two-dimensional topology optimization results and permeability distribution map under
Re = 100 (a) α1 distribution map (b) α2 distribution map
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Figure 6: Two-dimensional topology optimization results: (a) temperature distribution map under
Re = 100; (b) velocity distribution map

Figure 7: Graph of objective function and iteration steps under Re = 100

According to Fig. 7, the objective function initially experiences a decreasing phase, followed by
a gradual increase, and then decreases until convergence. During the initial decreasing phase, the
unclear flow channel structure and vigorous mixing of the two fluids gradually enhance heat transfer
capability, decreasing the objective function. Subsequently, as the flow channel structure becomes
clearer and separates the two fluids, heat transfer capability decreases compared to the initial stage,
increasing the objective function value. Finally, with optimization progress, increasing the accessible
surface area of the flow channel enhances its heat transfer capability, causing a decrease in objective
function until convergence.

4.2 Three-Dimensional Benchmark Example
Subsequently, we conducted topological optimization research on three-dimensional heat

exchangers under different Re. The model is shown in Fig. 8, and the characteristic dimension of Re
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is the length one, that is, the width of the heat exchanger. The calculation process uses dimensionless
equations with corresponding boundary conditions, as shown in the figure. Based on the model’s
symmetry, only half of it is calculated to reduce computational complexity. The entire model uses a
regular hexahedral mesh with a total grid count of 4.86 × 105, as shown in Fig. 9. Due to increased
complexity, this paper used 30 HYGON 7185 physical cores for parallel computing, with an average
iteration time of 30 s per step and a total of 400 steps.

Figure 8: Three-dimensional topological optimization model of heat transfer between two fluids

Figure 9: 486,000 standard hexahedral structured grids are used to discretize the design domain; only
half of the model is discretized according to symmetry

Taking Reynolds number 100 as an example, to ensure that Da is less than 10−7, it should be noted
that during the initial computation stage, permeability values need to be relaxed so that flow has higher
degrees of freedom and can obtain complex flow channel structures. In this paper, we set the initial
inverse permeability rate at one percent of its maximum value. At the same time, in filtering operations,
interpolation function slope control factors are gradually increased with the relevant parameters
shown in Table 1.
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Table 1: Piecewise function of permeability and slope of the projection function in the iterative process

Step Iter < 100 Iter >= 100

αmax αMax ∗ (Iter/7.0 + 1.0) min (αMax ∗ 1.05, αMAX)
β min (0.2 ∗ Iter, 100)

Firstly, topology optimization studies were conducted for different Reynolds numbers (Re = 100,
200, 300). Fig. 10 shows the iteration history of different cross-sectional density values at Re = 300.
The red part represents hot fluid, the blue part represents cold fluid, and the middle density represents
solid elements. As shown in Fig. 11’s results, with the increase in Reynolds number, the flow channel
structure becomes more complex, and the heat transfer area increases significantly. This enhances the
convective heat transfer capability of the structure. According to control equations, when the Reynolds
number increases, viscosity weakens. Thus, under a specific pressure inlet boundary condition, fluids
have incredible energy to fill more complex spatial structures. At the same time, according to the results
on the right side of Fig. 11, it can be seen that when Re is small, the fluid in regions far from the inlet
has a smaller velocity. In contrast, as Re increases, the velocity in this region also increases. Therefore,
with increasing Re, both heat transfer area and velocity increase, which improves the heat transfer
capacity of the heat exchanger.

Figure 10: Iterative history of different section density values under Re = 300, where the red area
represents hot fluid, and the blue area represents cold fluid

At present, structure observation reveals that there are some small diameter channels in the middle
region of the structures shown in Figs. 11b and 11c. According to Bernoulli’s equation, the fluid
velocity in this region is higher than that in more expansive areas. Thus, although the heat transfer
area decreases here due to the increased flow rate, the overall convective heat transfer capability does
not decrease.
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Figure 11: Optimization results under different Reynolds numbers (a) Re = 100, (b) Re = 200,
(c) Re = 300
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Observing the above results, we found that the flow channel tends to narrow in the central part
of the structure while presenting a broad flow channel form in areas closer to the inlet and outlet.
This is because the size of the inlet and outlet of the flow channel will affect its distribution form.
When the inlet and outlet sizes are significant, topology optimization results will promote adaptation
between near-field flow channel sizes and inlet and outlet sizes to avoid abrupt changes in flow
channel size. However, increasing dimensions will reduce fluid velocity and weaken convective heat
transfer. Therefore, at the center of the structure, structural contraction increases the flow rate through
narrowing channels, which enhances convective heat transfer capability.

Although such a heat exchange structure has strong heat exchange ability, its uneven distribution
of structural channels could be more conducive for subsequent geometric reconstruction. Therefore,
we reduced the inlet and outlet area to 1/4 of the original size and set the inlet and outlet in a diagonal
position, as shown in Fig. 12. The topology optimization calculation was carried out at Re = 300,
with the results illustrated below. When reducing entry/exit dimensions, the influence on the transition
section from inlet/outlet to channel dimension weakens, allowing more uniform-sized channels to be
distributed within the design domain.

Figure 12: Three-dimensional topology optimization result after narrowing the size of the inlet and
outlet

Fig. 12 illustrates that employing symmetric calculations results in a final optimized configuration
featuring two isolated islands. The purpose of these islands is to facilitate the proximity of hot fluids to
cold ones and augment their velocities. However, in practical scenarios, the viability of these isolated
islands is compromised due to the absence of solid wall connections and separate supports. It is
essential to emphasize that topology optimization outcomes are not directly implemented in actual
design processes but rather undergo tailored adjustments. To exemplify, the isolated islands can be
construed as floating entities. In the design phase, a streamlined component can be incorporated into
the channel structure in this region to optimize convective heat transfer.

It is worth mentioning that in this example, the solid wall is often fragile. Therefore, to simplify
the calculation, we assume that the thermal conductivity of the solid thin wall is equal to that of the
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fluid. The optimized result is shown in Fig. 13. In zones A and B of the result, although the velocity of
cold fluid is small, it does not mean there is no fluid in this area. This area is filled with fluid flowing
at a deficient speed. At the same time, since the overall Reynolds number is in a laminar state, there
will be no vortexes in this area. Therefore, this area will not cause too much flow loss but will further
promote heat exchange between two streams of fluids.

Figure 13: Topological optimization results when the thermal conductivity of fluid and solid is the
same. (a) density isosurface colored by temperature; (b) velocity field distribution of z = 0.2 cross-
section; (c) velocity field distribution of z = 0.22 cross-section; (d) velocity field distribution of
z = 0.24 cross-section

Zone A’s fluid near the hot inflow section can be fully heated by a hot stream first; then, part
of its flow mixes into the mainstream while another part transfers heat to the mainstream through
conduction to provide enough heat for cold fluid. Zone B’s fluid, with a lower temperature and closer
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proximity to the hot outflow section, can ensure the hot stream transfers more heat to the cold one at
the outlet segment. Therefore, zones A and B do not cause additional flow loss but strengthen heat
exchange between the two streams.

4.3 Cross Flow Heat Exchanger Example
Next, we carry out a topology optimization design for the cubic heat exchanger with the cross-

flow; according to the model’s symmetry, 416,000 hexahedral grids are used to divide the design
domain. The optimized designs are shown in Fig. 14. By comparing the optimization results under
different Pe, we can find that with a decrease in Pe, the number of bifurcations in the flow channel
increases, and the distance between the two fluids decreases. This is because Pe represents the relative
size of convection and diffusion, and the smaller the value, the weaker the convection and the stronger
the diffusion. Therefore, the topology optimization results show more flow bifurcation to enhance
the contribution of flow terms to heat transfer. At the same time, reducing the distance between the
two fluids also reduces the heat transfer thermal resistance, which can further the heat transfer effect
between the two fluids. At the same time, according to the optimization result in Fig. 15, the flow
channel size is more significant in the peripheral part of the design domain than in the central area.

Figure 14: (Continued)
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Figure 14: Topology optimization results with different Pe numbers colored by temperature (a)
optimization model with cross flow (b) optimization results with Pe = 350 (c) optimization results
with Pe = 700 (d) optimization results with Pe = 1400

Figure 15: Distribution diagram of hot and cold fluids colored by temperature when Pe = 350 (a) +y
view of hot fluid (b) +x view of cold fluid

Furthermore, 4,128,000 hexahedral grids are used to divide the design domain, and large-scale
topology optimization calculations are carried out. The results are shown in Fig. 16. Observing
the distribution characteristics of cold fluid is similar to the optimization results with hundreds of
thousands of grids; the flow channels are distributed in the design domain in tabular form. However,
under large-scale optimization, the distribution form of hot fluid channels has changed, and a new
flat channel form has appeared based on tubular distribution. Under large-scale calculation, the
flow channel’s characteristic size decreases, the fluid’s space in the design domain increases, and the
heat exchange area between the two fluids also increases, improving the structure’s heat exchange
performance. The appearance of the above new structure is also significant for carrying out large-scale
topology optimization in this paper, and it also proves the effectiveness and stability of the topology
optimization program written in this paper in large-scale calculation.
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Figure 16: The results of large-scale topology optimization of 4,128,000 grids colored by temperature
are (a) +x view of cold fluid, (b) +y view of hot fluid, (c) -x view of cold fluid, and (d) -y view of hot
fluid, in the case of Pe = 700

5 Conclusion

This article studies two fluid heat transfer problems. Firstly, two permeability interpolation func-
tions described by a single physical field are given, and two independent NS equations are constructed.
The article discusses using the Gaussian function to construct an interpolation function for the
thermal conductivity coefficient. It also analyzes the impact of different interpolation parameters on
the optimization process. The study reveals that only small interpolation parameters yield reasonable
optimization results.

The results of two-dimensional topology optimization preliminarily verify the effectiveness of the
optimization method in this paper. At the same time, the optimization program written in this paper
has a very high calculation speed. In the three-dimensional topology optimization problem, with an
increase in Re, the surface area of the flow channel increases. A large-scale calculation is carried out
in the topology optimization of cross-flow heat exchangers, and the optimization results in this paper
also show the effectiveness and efficiency of the optimization method.
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In summary, this chapter obtains topological optimization results that have guiding significance
for designing new efficient heat exchangers and demonstrates their valuable contribution to our work.
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Appendix

This paper uses the continuous adjoint method to solve the sensitivity problem. Firstly, the
augmented Lagrangian function is constructed:

L = C+ < θ , R >

= C + ∫
Ω

pa1 (−∇ · u1) dΩ + ∫
Ω

ua1 [(u1 · ∇) u1 + ∇p1 − υ∇2u1 + α1u1] dΩ

+ ∫
Ω

pa2 (−∇ · u2) dΩ + ∫
Ω

ua2 [(u2 · ∇) u2 + ∇p2 − υ∇2u2 + α2u2] dΩ

+ ∫
Ω

Ta [(u · ∇) T − ∇ · k∇T ] dΩ

(17)

where pai, uai, and Ta are adjoint pressure field, adjoint velocity field and adjoint temperature field,
respectively. According to the chain derivative rule, the sensitivity formula is as follows:
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dγ

= dL
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The domain integral term in the augmented Lagrange function is integrated by parts:

L = C + ∫
Ω

pa1 (−∇ · u1) dΩ + ∫
Ω

ua1 [(u1 · ∇) u1 + ∇p1 − υ∇2u1 + α1u1] dΩ

+ ∫
Ω

pa2 (−∇ · u2) dΩ + ∫
Ω

ua2 [(u2 · ∇) u2 + ∇p2 − υ∇2u2 + α2u2] dΩ

+ ∫
Ω

Ta [(u · ∇) T − ∇ · k∇T ] dΩ

= C + ∫
Ω

pa1 (−∇ · u1) dΩ + ∫
Ω

[(u1 · ∇) u1 · ua1 − p1∇ · ua1 + υ∇u1 : ∇ua1 + α1u1 · ua1] dΩ

+ ∫
Ω

pa2 (−∇ · u2) dΩ + ∫
Ω

[(u2 · ∇) u2 · ua2 − p2∇ · ua2 + υ∇u2 : ∇ua2 + α2u2 · ua2] dΩ

+ ∫
Ω

[(u · ∇T) Ta + k∇T · ∇Ta] dΩ

+ ∫
Γ

ua1 · [p1I − υ∇u1] · ndΓ + ∫
Γ

ua2 · [p2I − υ∇u2] · ndΓ − ∫
Γ

kTa∇T · ndΓ

(19)

According to the KKT condition of optimization under the constraint of partial differential
equations, the Gato derivative needs to be equal to 0; the formula in brackets in (19) is 0 and has
the following formula:

Lu1
= lim

h→0

L (u1 + hv1) − L (u1)

h
= 0

Lp1
= lim

h→0

L (p1 + hq1) − L (p1)

h
= 0

Lu2
= lim

h→0

L (u2 + hv2) − L (u2)

h
= 0

Lp2
= lim

h→0

L (p2 + hq2) − L (p2)

h
= 0

LT = lim
h→0

L (T + ht) − L (T)

h
= 0

(20)

where vi, pi, t are the derivative directions of the corresponding variables, respectively, and the Gato
derivatives of (20) are as follows:

Lu1
= Cu1

+ ∫
Ω

pa1 (−∇ · v1) dΩ + ∫
Ω

cp (v1 · ∇T) TadΩ

+ ∫
Ω

[(v1 · ∇) u1 · ua1 + (u1 · ∇) v1 · ua1 + υ∇v1 : ∇ua1 + α1v1 · ua1] dΩ

Lp1
= Cp1

− ∫
Ω

q1∇ · ua1dΩ + ∫
Γ

q1ua1 · ndΓ

Lu2
= Cu2

+ ∫
Ω

pa2 (−∇ · v2) dΩ + ∫
Ω

cp (v2 · ∇T) TadΩ

+ ∫
Ω

[(v2 · ∇) u2 · ua2 + (u2 · ∇) v2 · ua2 + υ∇v2 : ∇ua2 + α2v2 · ua2] dΩ

Lp2
= Cp2

− ∫
Ω

q2∇ · ua2dΩ + ∫
Γ

q2ua2 · ndΓ

LT = CT + ∫
Ω

[(u · ∇t) Ta + k∇t · ∇Ta] dΩ

(21)
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Eq. (22) is transformed into the following formula:

Cu1
+ ∫

Ω
∇pa1 · v1dΩ + ∫

Ω

(
cpTa∇T

)
v1dΩ

+ ∫
Ω

[∇u1 · ua1 − (u1 · ∇) ua1 − υ∇2ua1 + α1ua1] v1dΩ + ∫
Γ

[(u1 · n) ua1 − pa1I · n + υ∇ua1 · n] v1dΓ = 0

Cp1
− ∫

Ω
q1∇ · ua1dΩ + ∫

Γ
q1ua1 · ndΓ = 0

Cu2
− ∫

Ω
∇pa2 · v2dΩ + ∫

Ω

(
cpTa∇T

)
v2dΩ

+ ∫
Ω

[∇u2 · ua2 − (u2 · ∇) ua2 − υ∇2ua2 + α2ua2] v2dΩ + ∫
Γ

[(u2 · n) ua2 − pa2I · n + υ∇ua2 · n] v2dΓ = 0

Cp2
− ∫

Ω
q2∇ · ua2dΩ + ∫

Γ
q2ua2 · ndΓ = 0

CT − ∫
Ω

[∇ · (uTa) + k∇2Ta] tdΩ + ∫
Γ
(uTa + k∇Ta) · ntdΓ = 0

(22)

For a general objective function, its Gato derivative with respect to variables is as follows:
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= ∫
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(23)

The adjoint equation is obtained as follows:

∇u1 · ua1 − (u1 · ∇) ua1 − υ∇2ua1 + α1ua1 + ∇pa1 + cpTa∇T = − ∂A
∂u1

+ ∇ · ∂A
∂∇u1

∇ · ua1 = ∂A
∂p1

∇u2 · ua2 − (u2 · ∇) ua2 − υ∇2ua2 + α2ua2 + ∇pa2 + cpTa∇T = − ∂A
∂u2

+ ∇ · ∂A
∂∇u2

∇ · ua2 = ∂A
∂p2

∇ · (uTa) + k∇2Ta = ∂A
∂T

− ∇ · ∂A
∂∇T

(24)
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Adjoint boundary condition is:

Ta = 0

(uTa + k∇Ta) · n = − ∂A
∂∇T

· n − ∂B
∂T

(25)

ua1 · n = − ∂B
∂p1

(u1 · n) ua1 − pa1I · n + υ∇ua1 · n = − ∂A
∂u1

T
· n − ∂B

∂u1

(26)

ua2 · n = − ∂B
∂p2

(u2 · n) ua2 − pa2I · n + υ∇ua2 · n = − ∂A
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T
· n − ∂B

∂u2

(27)
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