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ABSTRACT

The increasing data pool in finance sectors forces machine learning (ML) to step into new complications. Banking
data has significant financial implications and is confidential. Combining users data from several organizations
for various banking services may result in various intrusions and privacy leakages. As a result, this study employs
federated learning (FL) using a flower paradigm to preserve each organization’s privacy while collaborating to build
a robust shared global model. However, diverse data distributions in the collaborative training process might result
in inadequate model learning and a lack of privacy. To address this issue, the present paper proposes the imple-
mentation of Federated Averaging (FedAvg) and Federated Proximal (FedProx) methods in the flower framework,
which take advantage of the data locality while training and guaranteeing global convergence. Resultantly improves
the privacy of the local models. This analysis used the credit card and Canadian Institute for Cybersecurity Intrusion
Detection Evaluation (CICIDS) datasets. Precision, recall, and accuracy as performance indicators to show the
efficacy of the proposed strategy using FedAvg and FedProx. The experimental findings suggest that the proposed
approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining
accuracy of 99.55% and 83.72% for FedAvg and 99.57%, and 84.63% for FedProx.
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1 Introduction

ML is rapidly gaining popularity in data-influenced environments. It provides the foundation
for many innovations, which have been widely embraced and utilized in our daily lives. The COVID-
19 epidemic has drawn attention to the essential importance of digitization in almost all sectors,
where data privacy and security are critical in sensitive areas like banking and the Defence Research
and Development Organisation (DRDO). When data is dispersed across several parties, it would be
adventurous to consolidate it into one location to collect the necessary data to construct high-quality
models. Banking sectors develop hundreds of gigabytes of financial information daily, implying that
data transmission and storage virtually lead to various data risks. Also, it contains privacy information,
which raises questions about the transmission and storage of data on a central server, and due to
increasing privacy and security concerns, data integration might be challenging.
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FL is a possible solution for all the above challenges, facilitating many stakeholders to train a
model while preserving privacy effectively. FL is an ML paradigm that enables participants to fine-
tune ML models with data distributed over multiple mobile devices rather than consolidating data
in one location. In addition, FL has become prevalent over the past couple of years. The reason for
getting a wide range of acceptance in various fields is its ability to overcome the privacy issues raised by
standard ML methodologies. Additionally, it utilizes multiple strategies to aggregate the global model
[1]. FedAvg [2] is one of the most often used algorithms in the FL process. It is employed widely due
to its ease of use and inexpensive communication costs. A random selection of clients, the aggregation
of local model updates, and the formation of a global model constitute the general operation of
FedAvg [3].

Several modifications to the FedAvg algorithm will provide numerous alternative algorithms,
federated Proximal (FedProx) and quantized Federated Averaging (QFedAvg), use a quantization
process to compress the model updates and reduce communication overhead between clients and
servers. It requires additional computation to quantify the model updates. Federated Averaging
momentum (FedAvgM) uses momentum to accelerate the algorithms convergence. It converges faster
than FedAvg. Fault-Tolerant Federated Averaging (FaultTolerant FedAvg). It is resilient to client
failures without affecting the training process. Federated secure aggregation (FedSecAgg) provides
privacy guarantees for the clients. Federated curvature (FedCurv) improves the model updates.
Federated dynamic weighting (FedDyn) applies a dynamic weighting process to adjust the clients
contribution. It can handle non-IID data distributions [4]. Federated stochastic gradient (FedSGD)
requires a large number of clients to achieve good performance. Federated differential privacy (FedDP)
provides strong privacy guarantees for clients. The advancements offered by FedAvg are beneficial
to several server-side optimization algorithms, including FedAdagrad, FedYogi, and FedAdam [5].
Table 1 provides the related works done using various FedAvg variation algorithms. To address system
heterogeneity, FedProx [6] was proposed as a generalization and reparameterization of FedAvg. It is
another widely employed algorithm. It consists of an additional proximal term that enhances system
stability by reducing the deviation of the averaged model from global optima.

There are multiple barriers to implementing FL in the banking sector. One major issue is the need
to strike a compromise between data privacy and model accuracy. Financial data is sensitive, and it will
be challenging to maintain ideal model training while adhering to rules. It is also difficult to handle the
variability of data among many institutions. The diverse data forms and formats shown by financial
firms provide a challenge in developing a unified FL methodology. Delivering robust security protocols
to thwart any intrusions on the FL mechanism is essential. Upholding the FL system’s integrity and
confidentiality is crucial as financial data is a popular target for criminal activity.

Furthermore, it might be challenging to collaborate and communicate effectively between various
financial organizations without losing the confidentiality of data. Collaborating on FL requires
establishing explicit standards and building trust. Another major challenge is regulatory compliance.
Financial organizations must navigate a multifaceted regulatory environment to guarantee that their
FL implementations comply with industry standards and legal obligations.

Data centralization is one of the traditional approaches used in financial sectors, which provides
practical analytical benefits but also causes significant risks with profound privacy implications on the
transparency of customer details. The present work addresses this issue through FedAvg and FedProx,
using inherent in standard machine learning algorithms by storing the bulk of the data on individual
devices throughout the training phase. This decentralization has various benefits in terms of privacy.

FedAvg and FedProx help to address the issue by:
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i. Reduced attack surface: With data shared among several devices, there is no single point of
vulnerability or central repository to target. This makes it far more difficult for malicious parties to
steal or influence customer details.

ii. Improved data privacy: Users maintain control over their data since only localized model
changes are forwarded to the server for aggregate. This reveals less sensitive information than
transmitting raw data to a central server.

To the best of our knowledge, this is the first research work to use the FedAvg and FedProx
algorithms in financial applications using the Flower framework.

This paper is structured as follows: Section 2 provides a flower framework, while Section 3 dis-
cusses the various related works on FL. Section 4 presents the different specifications for implementing
FL algorithms; the proposed methodology is discussed in Section 5. Section 6 presents the paper’s
conclusions and provides insights into future works.

1.1 Major Distinguishing Features of Federated Learning with Other Technologies
i. Participants with diverse devices and distinct computing abilities: Participants (devices) linked to

the learning network. These devices can be heterogeneous and have varying computational abilities. FL
connects various computing devices into a decentralized network, enabling individual data collection
devices to contribute to model training. Local ML models are trained on local heterogeneous datasets
during training. This improves data protection and cybersecurity.

ii. Federated learning prioritizes privacy and security: FL prioritizes privacy and security by keeping
the data local to the devices that collect it, reducing the risk of data breaches and cyber-attacks [7].

2 Flower Framework

In FL, the flower framework facilitates research with both system-related and algorithmic
difficulties. Flower was developed with AI research in mind since it was produced as a result of
research at the University of Oxford. Many components have grown and overridden to create new
cutting-edge systems. It is a framework for developing FL systems. It provides a stable framework
for independent synthesis of core FL system components and higher-level interfaces, which enable
researchers to investigate and implement cutting-edge concepts on top of a reliable stack. It also allows
the rapid transformation of existing ML model training pipelines to an FL design to analyze their
evolving characteristics and training outcomes in a federal environment. Flower significantly supports
expanding FL implementations to remote and virtual clients with various computing, storage, and
networking capabilities [8]. It is a revolutionary end-to-end FL platform that allows a more seamless
transition of simulation-based and exploratory research to system study on a large cohort of real-
world edge devices. Flower has unique capabilities in both simulation and real-world applications.
The opportunity for experiment implementations to move between the two extremes is required
throughout research and development. Due to system-level restrictions such as network bandwidth in
mobile devices, memory and computing capabilities are significant obstacles. Flower includes built-in
features to solve many of these difficult scenarios in a cloud-based environment, allowing for real-
world scenarios of FL algorithms. Finally, the flower is built for scalability, enabling large-cohort
research using numerous connected clients and training. The ability to do FL on larger scales will
allow for new paths of investigation since the results of small-scale experiments sometimes translate
poorly to large-scale problems. Fig. 1 gives the entities involved in the flower framework.
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Figure 1: Federated flower framework

2.1 Governing Principles of Flower FL
The adaptability of the flower FL architecture is one of its significant potentials; other interesting

features are:

i. Configurable components: Users can customize various options like selecting the training,
updating fusion, and client communication techniques. Determining which clients should divide the
data across cycles and federated analytics.

ii. Flexible framework: Customise the activities of the server, the compressed data, and the client
training. Develop new communication protocols or adapt existing ones.

iii. Indifferent to different machine learning frameworks, such as PyTorch, TensorFlow, etc.
Floweras flexible FL architecture and preferred tools may be used with its seamless integration with
other programs.

iv. Creating communities: Analysing algorithms developed and learning from Floweras active
community assist in customizing and growing the Flower framework. Messages between the server
and the client. The FL loop is crucial to the FL process since it controls the whole learning process.

v. Dependability: Flower’s distributed and fault-tolerant architecture, along with device heartbeat
monitoring and straggler management features, improves handling device failures and network diffi-
culties. It imposes stringent security measures, such as safe aggregation, encryption, and differential
privacy for data protection. Error recovery is ensured by implementing methods for error handling
and node failure recovery. It can resume unsuccessful processes across several devices, ensuring overall
dependability.

vi. Scalability: Flower’s client-server architecture supports horizontally scalable properties, which
add additional devices or servers to meet rising data and computing needs. It uses a distributed strategy
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in which devices train models locally and send changes to a central server for aggregation. It also helps
to improve server-side speed by increasing server resources such as CPU and memory. For device-
side scalability, evaluates devices with higher computing capability. Flower implements methods like
dynamic device selection and adaptive batching to balance workloads among devices, resulting in more
effective utilization of resources.

2.2 The Main Contributions of Current Work Include
i. A novel framework for preserving privacy as 2P3FL was proposed for a distributed network for

maintaining privacy by leveraging FL. Furthermore, we study the impact of two FL methods, FedProx
and FedAvg, on the model performance in privacy preservation.

ii. Federated flower environments integrated with FedAvg and FedProx were applied to the
features extracted from the credit card and CICIDS dataset.

iii. Conduct extensive evaluations of 2P3FL using the aforementioned datasets, using performance
evaluation metrics such as accuracy, precision, and recall.

3 Related Works

This section highlights the major works on Fedavg and FedProx under various circumstances, like
in non-iid environments, where multiple strategies and metrics are applied to protect data privacy. The
following works are considered for the analysis of the current work.

Deng et al. [9] performed experimental evaluations on several criteria in the experimental
study. The proposed method beats basic FL techniques, including FedAvg and Paillier-encryption-
based PPDL, on the MNIST dataset while demonstrating strong convergence properties [10].
Nilsson et al. [11] presented that FedAvg obtains the maximum accuracy among fedAvg algorithms,
according to tests carried out on FedAvg and FedProx. FedProx concerns variances in computing
capacity and other aspects of devices partaking in the FL training iterations. FedProx additionally
includes a proximal term to address non-uniformity in local updates. Xie et al. [12] worked on
asynchronous FedAvg does not need iid data. The restrictions it imposes do not ensure convergence to
the local minimum value. Nilsson et al. Li et al. [13] provided an empirical assessment of the behavior
of FedAvg in common non-IID scenarios.

Sahu et al. [6] presented FedProx, an optimization framework in FL for dealing with statistical
differences, and given convergence assurances in non-iid environments. Additionally, it augments
each local target with a proximal term. FedProx declines in comparison to FedAvg when these
proximal elements are removed. Sattler et al. [14] investigated the non-iid environment, which includes
convergence rate. FL, and hierarchical clustering were presented as a combination to enhance the
learning rate on non-IID data [15]. This method combines comparable individuals’ local models in
order to reduce divergence. FedAvg is used for the initial aggregation, and then the AHC method is
employed to choose clusters of comparable local models.

FedAvg was tested on a range of audio, video, and text datasets to simulate self-reported emotional
experience and perceptual labels [16]. Identified two learning paradigms typically encountered in
emotional computing tasks: modeling self-reports (user-as-client) and modeling perceptual judgments
(rater-as-client), such as labeling sentiment of online comments. FedAvg was used to simulate those
activities, and it presents the FedRater method, which learns client-specific label distributions in
federated environments. The outcomes reveal that FedRater outperforms FedAvg in terms of global
classification performance and gives results to determine proxies of inter-rater agreement in distributed
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environments. Liu et al. [17] examined the performance of two techniques within the Federated
Learning (FL) paradigm: FedAvg a Per-FedAvg using Non-IID data. Rubaie et al. [18] addressed
the important problems involved with ensuring data privacy via FL. It was tackled utilizing practical
attack techniques, and the related answers to the relevant attack are noted. Several research elements
are also highlighted, as well as prospective possibilities and applications with FL. Li et al. [19] proposed
the paper to illustrate the feasibility of the approach for practical data science by conducting evalua-
tions with the proposed MPC protocols for feature selection in a commonly used machine-learning-
as-a-service configuration with semi-honest and malicious adversaries. The authors demonstrate that
secure feature decision-making using the suggested protocols enhances classifier accuracy on real-
world data sets without revealing information about feature values.

Collins et al. in [20] applied FedAvg generalizability was examined in the context of multi-task
linear modeling. Outcomes show that FedAvg output’s generalizability is due to its capacity to identify
the standard information representations across the client’s jobs by taking advantage of the variety
among client data distributions via local updates. Xing et al. [21] proposed an FL methodology as N-
FedAvg based on FedAvg. It chooses clients in a series before every session, decreasing randomization
in client selection and allowing all clients’ data to be involved in federated learning but preventing data
locality from specific clients from partaking in collaboration with less chance of occurring. Optimize
the objective function using gradient descent to achieve the global optimum of the function’s loss
value. The rate of learning was reduced to get the model to be as near to this point as feasible,
and cosine processing can be attained and generates favorable outcomes by the cosine function. The
sparsity technique is a model compression method that not only communicates a limited number of
parameters but also decreases network traffic between the server and clients and may avoid global
model parameter leaking. On the CIFAR-10 dataset, the N-FedAvg method suggested work was found
to be 1.34% more reliable than the standard FedAvg algorithm, and the loss function value was found
to be 2.77% lower. The authors demonstrate that the amount of data heterogeneity, as represented by
a Dirichlet distribution, has a considerable impact on the effectiveness of both techniques, with Per-
FedAvg outperforming FedAvg under settings of high variability. Some impact works on FedAvg and
FedProx are presented in Table 2.

Table 1: Recent evaluation works on various FL algorithms

Ref. Objective Metrics Proposed/applied
method

Outcomes

[22] Secure aggregation
and privacy
preservation

Privacy, model
accuracy

Cryptographic
techniques, FedAvg

Privacy protection
and accuracy
affected by
cryptographic
overhead

(Continued)
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Table 1 (continued)

Ref. Objective Metrics Proposed/applied
method

Outcomes

[23] Adaptive
personalization for
user-specific models

Model accuracy,
personalization
level

Adaptive
regularization,
FedAvg

Higher
personalization,
Potential privacy
concerns with more
data shared

[24] Improve convergence
speed and stability

Model accuracy,
Convergence speed

Federated
averaging with
momentum

Faster convergence,
Improved accuracy
in some cases

[25] Reduce the
communication cost
while maintaining
model accuracy

Communication
cost, model
accuracy

Double gradient
descent, quantized
averaging

Reduced
communication cost,
Balanced accuracy
loss

[26] Faster convergence
with reduced
communication cost

Convergence speed Communication-
efficient
FedSGD

Reduced
communication cost

[27] Robustness against
malicious
participants with
efficient aggregation

Model accuracy,
byzantine fault
tolerance

Partially byzantine
tolerant (PBT)
aggregation,
FedAvg

Strong fault
tolerance, lower
communication
overhead

[28] Ensure secure
aggregation against
malicious
participants

Privacy, byzantine
fault tolerance

Secure multi-party
computation
(MPC), FedAvg

Privacy preservation,
Byzantine fault
tolerance,
Aggregation
overhead

[29] Improve
generalizability and
efficiency

Model accuracy,
communication
cost

Model curvature
estimation, FedAvg

Reduced
communication cost

Table 2: Major works in FL using FedAvg and FedProx

Ref. Objective Metrics Proposed/applied
method

Outcomes

[30] Propose a
privacy-preserving
method for detecting
sensitive data exposure
called data leak
detection (DLD)

Detection rate,
false positive,
negative rate

DLD algorithm Detecting sensitive data
exposure while
preserving user privacy

(Continued)
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Table 2 (continued)

Ref. Objective Metrics Proposed/applied
method

Outcomes

[31] Privacy preservation
intrusion detection
(PPID) with correlation
coefficient and
expectation
maximization(EM)

Detection rate,
false positive rate

Correlation
coefficient and EM
clustering
mechanisms

Select important
portions of data and
recognize intrusive
events

[32] Optimized federated
learning for energy
constrained devices

Energy
consumption,
model accuracy

FDMA Reduced energy
consumption while
maintaining accuracy

[33] Propose a
privacy-preserving
intrusion detection
system based on
federated learning for
IoT networks.

Accuracy, privacy
loss

Federated learning Achieve high accuracy
while preserving data
privacy

[34] Minimize global loss,
balance local model
updates

Accuracy, loss FedAvg and
FedProx

Proposed a
non-parametric view of
FedAvg and FedProx by
finite-sum optimization

[35] Improve patient data
privacy

Accuracy Auto-FedAvg Proposed approach
validated by current FL
methods

[36] Optimization of
compute-
communication and
data importance-aware
resource-monitoring
systems, as well as
evaluation of
performance of training

Mean accuracy FedAvg, FedMeta Implemented models
for individual clients

[37] Heterogeneity in IoT
gives chance to
attackers

Accuracy
measured for
different epochs

PAG-FL When training over a
non-IID data set in an
asynchronous FL,
privacy is ensured

[38] Reduce the training cost
of models

Accuracy and loss FedAwo
optimization
algorithm

Proposed the FedAwo
optimization algorithm
that combines adaptive
learning with federated
learning

(Continued)
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Table 2 (continued)

Ref. Objective Metrics Proposed/applied
method

Outcomes

[39] Users automatically
alter the local iterations
in every global interval
and will not lose out
due to lack of resources

Loss, and accuracy FedProx Reduced
communication cost
and fast convergence

4 Federated Learning Algorithm Specifications

The following are major advantages of federated learning algorithms:

i. Security and Privacy Data privacy and security are crucial features of FL, required for federated
gradient updates and aggregation processes through encryption and other ways, and they can also be
reflected in stand-alone optimizations.

ii. Collaboration Effectiveness The FL algorithms consider the data holders network diversity,
enhance communication efficiency, and decrease communication impairment without sacrificing
reliability.

iii. Support Nonindependent and Identically Decentralised Data This is a fundamental aspect of
federated learning algorithms. The FL method must function effectively with non-independent and
identically distributed data. In practice, the data quality and dispersion of the data are uncontrolled.
The FL methods handles non-independent and identically distributed data because the data holders
data cannot be compelled to fulfill independent and identical distribution.

iv. Support for Complex Users Complex users refer to many users and an unbalanced or variation in
user data. This is achievable in the actual application of FL, and the federated optimization algorithm
must have a good scalability impact in this circumstance.

v. Rapid Convergence In global modeling, achieving model convergence while increasing conver-
gence speed.

4.1 FedAvg
FedAvg is an ML approach that allows training a model across a large number of decentralized

devices without transferring the data to a central server. This method is helpful in the banking sector,
where data privacy is crucial. Additionally, it allows multiple devices to develop a collective, reliable
ML model without exchanging data. The following Algorithm 1 shows the working of the FedAvg:

Algorithm 1: FedAvg
1: Input: D, I t, LR, e, V 0, N, PD, D = 1, . . . , N
2: for t = 0, . . . , It − 1 do
3: Server selects a subset St of D devices at random (each device D is chosen with probability PD)
4: Server sends V t to all chosen devices {k ∈ St}
5: Each device D ∈ St updates V t for e epochs of SGD on FD with step-size LR to obtain V t+1

D

(Continued)
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Algorithm 1 (continued)
6: Each device D ∈ St sends V t+1

D back to the server

7: Server aggregates the V ’s as Vt+1 = 1
D

∑
D∈St

V t+1
D

8: end for

The notations used in the algorithm are D is the total number of devices, It is the number of
iterations, μ is the step size or learning rate, e is the number of epochs, and V0 is the initial value
of the optimization variable. N is the number of functions to be minimized. PD is the probability of
choosing device k. St: The subset of D devices chosen at random by the server. wt is the current value
of the optimization variable at iteration t. FD(V) is the function that device D can minimize. V t+1

D is the
updated value of the optimization variable for device k at iteration t+1, SGD is the stochastic gradient
descent. μ is the step size or learning rate for SGD [40]. Vt+1: The updated value of the optimization
variable at iteration t+1, which is the average of the updated values of the optimization variables of
all the devices in St.

The algorithm works as follows: At each iteration t, the server selects a subset St of D devices
randomly, with each device k chosen with probability PD. The server then sends Vt to all chosen devices.
Each chosen device D ∈ St updates Vt for e epochs of SGD on FD with step-size LR to obtain V t+1

D .
Finally, each device k ∈ St sends V t+1

D back to the server, and the server aggregates the V values as Vt+1

= (1/D) ∗ ∑
D ∈ St V D

t+1.

4.2 FedProx
FedProx is an extension of FedAvg, which can be used in distributed environments to increase the

accuracy of models. It is designed to address the issues raised by heterogeneity in the system variables
on each device correlated to the network. The Algorithm 2 specifies FedProx working.

Algorithm 2: FedProx
1: Input: D, I t, μ, γ , w0, N, PD, D = 1, . . . , N
2: for t = 0, . . . , It − 1 do
3: Server selects a subset St of D devices at random (each device D is chosen with probability PD)
4: Server sends V t to all chosen devices. Each chosen device D ∈ St finds a V t+1

D

5: which is a γ t+1
D -inexact minimizer of: V t+1

D ≈ arg minwhD(V ; Vt) = FD(V) + μ

2
||V − VtD||2

6: Each device D ∈ St sends V D
t+1 back to the server. Server aggregates the V values as

7: V t+1 = 1
D

∑
D∈St

V t+1
D

8: end for

The notations used in the algorithm are D, the total number of devices. It is The number of
iterations. μ is step size or learning rate. γ is the inexactness parameter. V0 is the initial value of
the optimization variable. N is the number of functions to be minimized. PD is the probability of
choosing device V. St is the subset of D devices chosen randomly by the server. Vt is the current value
of the optimization variable at iteration t. FD(V): The function to be minimized by device D. γ t+1

D is
the inexactness parameter for device D at iteration t. V D

t+1 is the updated value of the optimization
variable for device D at iteration t + 1. hD(V ; Vt) is the objective function for device D at iteration t.
is the squared Euclidean distance between V and VtD. Vt + 1 is the updated value of the optimization
variable at iteration t + 1, which is the average of the updated values of the optimization variables of
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all the devices in St. The algorithm works as follows: At each iteration t, the server randomly selects a
subset St of D devices, with each D chosen with probability PD. The server then sends Vt to all chosen
devices. Each chosen device D ∈ St finds a V t+1

D which is a γ t+1
D inexact minimizer of the function

hD(V ; Vt) = FD(V) + μ

2
||V − VtD||2. Finally, each device D ∈ St sends V D

t+1 back to the server, and the

server aggregates the V value as V t+1 = 1
D

∑
D ∈ StV t+1

D .

||V − VtD||2

5 Proposed Methodology

To conduct the experiment on the proposed approach, adopted Flower, the new framework for
FL developed by the University of Oxford. Flower is a Python 3 library for FL that is Deep Learning
framework-agnostic. Training of statistical models may be done with any deep learning framework,
such as TensorFlow or PyTorch, via a plugin mechanism. The quality of training data is a crucial
factor in the accuracy and performance of machine learning models. Poor quality data can lead to
inaccurate models and wasted time. In the case of financial transaction datasets, poor data quality can
arise due to various reasons, such as missing data, incorrect data, or data that is not representative
of the population. These issues can lead to biased models that do not generalize well to new data.
Therefore, it is essential to ensure that the data is clean, complete, and representative of the population
before using it to train ML models. Inaccurate, incomplete, or noisy data might negatively impact
model performance on unseen data. This may result in erroneous predictions, decreased accuracy, and
difficulties generalizing to new scenarios. It hinders FL algorithms from achieving optimum results.
The training process may get trapped in suboptimal local optima or fluctuate indefinitely without
finding a stable equilibrium. It may lead to privacy implications in FL. Increased noise or biases in
the data may leak private information about individual participants from model updates sent during
training. PCA (Principal Component Analysis) helps in this case. It is a technique used to reduce the
dimensionality of large datasets while retaining as much of the original information as possible. It
reduces the number of features by identifying the most informative ones, leading to a smaller and
easier-to-manage dataset. This improves the efficiency of subsequent data processing and analysis,
especially for tasks like visualization, clustering, and machine learning. Removing redundant or
irrelevant features helps reduce overfitting in machine learning models. PCA focuses on capturing the
underlying structure of the data, which can help to filter out random noise and outliers. This can lead
to more accurate and reliable results in tasks like trend analysis and anomaly detection. PCA Improves
Interpretability by identifying the principal components that explain most of the variance in the data.
PCA can provide insights into the key features and relationships within the data. This can be helpful
for understanding the data better and making informed decisions. PCA improves Computational
Efficiency by reducing the dimensionality of the data, significantly improving computation time for
various tasks.

All the experiments were computed in a distributed environment encompassing N = 10 collabora-
tors. Each collaborator is run in a lab environment. Initially, the data collection is performed. The next
step involves preprocessing operations with PCA to enhance data quality and make it more suitable
for applying operations on datasets. After this, it performs the primary operation of the proposed
work, which includes applying FedAvg and FedProx methods on the flower framework. The results
are aggregated in this global model stage. The final stage involves the evaluation of performance using
precision, recall, and accuracy measures. Fig. 2 represents the proposed framework. The operations
can be done as follows:
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i. Initialization of the global model: Initially, the centralized server RPC (Remote Procedure Call)
activates the learning process by establishing the global model weights required for training, such as
learning rates, momentum, and other values, FedAvg and FedProx. After startup, the server distributes
the obtained model to the users specified in the first round.

ii. Training the models locally: The model is trained using local data on each client device. This
training approach might include several iterations or epochs to improve the modelas performance.
We assume clients that collaborate to train a global model for preserving privacy. The clients are
responsible for preparing data locally using RPC, flower client python (FCP), training pipeline
tensorflow (TPT), local data base (LDB).

iii. Model aggregation: After local training, the updated models from each client are delivered
back to the central server (RPC).

iv. Averaging of model parameters: The server at the center collects the models received from
clients by averaging the model parameters. This approach guarantees that the central global model
gets the benefits of the information gained from multiple clients while maintaining privacy. These are
evaluated based on performance parameters in the next phase.

Figure 2: Proposed framework for preserving privacy in financial sectors

5.1 Performance Evaluation
Dataset Description: The dataset contains banking transaction details made by European card-

holders in September 2013 [41]. This dataset contains 492 fraudulent activities out of 284,807
transactions that happened over the course of two days. It only has numeric input variables, which
are the outcome of a PCA transformation. Another dataset considered is the CICIDS dataset [42],
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which is representative of real-world data and includes the most recent and benign prevalent intrusions,
according to information from the Canadian Institute for Cybersecurity. The dataset has more
intricate characteristics and is accessible as a benchmark. There are a lot of traffic records and data in
the form of values for a wide range of attributes in every record.

The proposed approach implemented with flwr, numpy, and tensorflow libraries was used to
construct federated learning systems; tensorflow and numpy were utilized for ML and numerical com-
puting. FL Client Implementation generates and configures clients for FL in the Flower framework. It
accepts a client ID (CID) as input and returns a NumpyFlowerClient object. The function first creates
a sequential model architecture for each client that includes many tightly linked layers and sigmoid
activation functions. The number of output neurons corresponds to the total number of classes. Then,
the given CID extracts the client’s individual training data partition and labels. Finally, it generates and
returns a NumpyFlowerClient object containing the client ID, trained model, local training data, and
labels, allowing the client to participate in the FL process. By using this feature, the FL framework
quickly establishes and maintains unique clients, each contributing to global model training with
their local data and cooperatively developing common knowledge without compromising sensitive
information. The Flower FL framework was implemented utilizing FedAvg and FedProx methods,
and the same parameter values were considered for both algorithms. The classes flatten, dense, and
activation from tensorflow.keras.layers. Sequential and flatten were used. One can generate a linear
stack of layers by utilizing the Sequential class. The Flatten class is used to flatten the information
that has been supplied. A fully connected layer was built using a dense class. The Activation class
was used to apply an activation function to a layer’s output. After every cycle, the evaluate function
updates the model with the most current parameters. A sequential model with three dense layers, the
server_model was created using the adam optimizer with sparse categorical cross-entropy loss. The
Dense layers form a neural network with 256, 128, and 18 neurons in each layer. These layers used the
sigmoid activation function to control output and decision-making. The results are compared with
work presented in [43]. In this work, Zhang implemented a hybrid FL methodology with an accuracy
of 99.05%. Current work improves the accuracy of the result with 2%.

Table 3 shows keen observation values obtained by using both FedAvg and FedProx. Metrics
considered for performance analysis are precision, recall, and accuracy. Performance values for
FedAvg were obtained as 99.38%, 99.64%, and 99.55%, and for FedProx as 99.58%, 99.73%, and
99.57%, respectively, for the Creditcard dataset. The CICIDS dataset obtained performance values as
94.51%, 83.32%, 83.72% for FedAvg, 94.62%, 84.45%, and 84.63% for Fedprox (all values considered
in percentages). Figs. 3 and 4 give the graph visualization of performance metrics for both datasets, and
the results demonstrate that FedProx is producing better results. Regarding effectiveness, FedAvg and
FedProx successfully train the model in a distributed setting, achieving convergence and reasonable
performance. Additionally, centralized training outperforms FedProx and FedAvg, but the difference
is relatively small. This suggests that both are working effectively, but FedProx performance is a little
higher than FedAvg.
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Table 3: FedAvg and FedProx evaluation using credit card and CICIDS datasets

Metrics Creditcard dataset CICIDS dataset
FedAvg FedProx FedAvg FedProx

Precision 99.38 99.58 94.51 94.62
Recall 99.64 99.73 83.32 84.45
Accuracy 99.55 99.57 83.72 84.63

Figure 3: Performance analysis of creditcard dataset with proposed FL methods

Figure 4: Performance analysis of CICIDS dataset with Proposed FL methods

6 Conclusion

The federated learning system is an efficient way of training a machine learning model that is
more generic and widely applicable than one developed using data points from a single source. The
conventional technique customizes the model to the organization’s needs and provides the data. To
protect sensitive data, current work presents a privacy-preserving FL technique based on FedAvg
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and FedProx methods with the help of FlowerFL. It is effective in various FL scenarios, an effective
breakthrough in bridging the gap between FL real-world systems and research. After empirical
investigation on the FedAvg and FedProx algorithms with FlowerFL, the level of privacy between
communication parties increased. Results show that FedProx and FedAvg both are effectively playing
their roles in providing privacy with an accuracy of 99.55% and 99.57% for the credit card dataset
and 83.72% and 84.63% for the CICIDS dataset, respectively. With the built-in extra functionalities,
FedProx performs better than the FedAvg. Future works include comparing various FedAvg methods
and server-side optimizations to enhance privacy in the financial sectors.
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