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ABSTRACT

The bioinspired nacre or bone structure represents a remarkable example of tough, strong, lightweight, and
multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance
materials. The bioinspired structure consists of hard grains and soft material interfaces. While the material interface
has a very low volume percentage, its property has the ability to determine the bulk material response. Machine
learning technology nowadays is widely used in material science. A machine learning model was utilized to predict
the material response based on the material interface properties in a bioinspired nanocomposite. This model was
trained on a comprehensive dataset of material response and interface properties, allowing it to make accurate
predictions. The results of this study demonstrate the efficiency and high accuracy of the machine learning model.
The successful application of machine learning into the material property prediction process has the potential to
greatly enhance both the efficiency and accuracy of the material design process.
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1 Introduction

Composite materials are comprised of multiple constituent materials with significant differences
in their physical, chemical, and mechanical properties. Composite materials can be designed with
specific geometrical, structural, mechanical, and chemical properties depending on the requirement.
These materials’ applications include manufacturing, construction, and biomedical fields [1–4]. The
attainment of both strength and toughness is a significant challenge for most structural materials.
However, these properties are usually exclusive [5]. Nature is replete with examples of tough, strong,
lightweight, and multifunctional structures that can be an inspiration for better-performing materials,
such as nacre and bone [6]. Nacre, as a biological material, consists of 95 wt% aragonite and
5 wt% organic materials. The hard mineral tablets contribute to its structural rigidity, while the soft
organic interface facilitates damage mitigation and energy dissipation [7–9]. The structure of the nacre
represents a remarkable example of high-performance bioinspired material design.
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To investigate nacre’s toughening mechanisms and to provide design rules, Dastjerdi et al. [10]
conducted interfacial fracture tests on different nacre samples. They observed that surfaces with higher
roughness and a more resilient organic material tend to exhibit greater interfacial toughness. The
outstanding mechanical properties of the nacre are attributed to its hierarchical structure and precisely
designed organic-inorganic interface [11,12]. Liu et al. [13] investigated the fracture mechanism and
interfacial strength of the ‘brick-mortar’ structure in nacre. Through the micro-sized cantilever beam
and bend samples, they confirmed that crack deflection towards the interface between aragonite plays
a significant role in achieving high overall toughness. Dutta et al. [14] established an analytical model
to show that the synthetic staggered architecture materials improved stiffness, load-transfer capability,
and toughness. A study by Abid et al. [15] suggested an important guideline for the design of nacre-
like materials is to minimize microstructural randomness to achieve the optimal combinations of
properties. Ghazlan et al. [16] presented a novel model of a nacre-mimetic composite structure. Their
findings reveal the significance of tablet size and the number of laminates while indicating the minimal
impact of tablet overlapping on the composite’s properties. Barthelat’s model [17] demonstrates that
the staggered microstructure is advantageous only under specific conditions: when the tablets are at
least five times stronger than the interfaces, and when high-volume concentrations of tablets are used.
Carefully designed interfaces in bioinspired staggered composites can counteract the adverse effects
of microstructural randomness inherent in current fabrication methods [18]. Those findings show that
the extensibility or ductility of the interfaces, and the staggered microstructure play an important
role on the toughening mechanism at the macroscale. The study of Greco et al. [19] explored platelet
volume, aspect ratio, and shear modulus effects on the microscopic and the macroscopic instabilities,
and found that critical stretch ratios and mode shapes are influenced by microscopic geometry and
material composition.

There have been many examples of replicating nacre’s structure and properties in synthetic
materials. Compared with standard brittle glass, using a laser engraving technique to implement
the weak interface into glass could significantly enhance its deformability and render it up to 200
times tougher [20]. By controlling the interface bonding, regulating the interface load transfer, and
understanding the failure models of hierarchical structure bulk materials, it is possible to optimize
the combination of strength and energy absorption, thereby meeting diverse application requirements
[21]. Cui et al. [22] found that the elastic modulus of the nacre-like composites increases with the rising
tablet waviness. Moreover, they identified a critical angle for the interlocking structure, at which both
high strength and toughness can be achieved. Jiao et al. [23] employed a bidirectional freeze-casting
method to manufacture multiscale micro/nano-architectures featuring three hierarchy levels in the
composite. Their study confirms the efficacy of nacre-inspired designs in enhancing fracture toughness
in carbon systems. Flores-Johnson et al. [24] studied an aluminum alloy-based composite with layer
waviness and cohesive interface. This lightweight and impact-resistant material exhibited superior
ballistic performance compared to plates made of continuous layers. The improvement was credited
to the increased plastic deformation area resulting from the arrangement of tablets. Begley et al. [25]
described a micromechanical analysis detailing the uniaxial response of composites. These composites
are comprised of elastic platelets joined together by thin elastic-perfectly plastic layers (mortar),
aiming to reconcile conflicting mechanical behaviors and refine material response optimization. de
Maio et al. [26] introduced a nacre-like microstructure to explore the wave propagation properties
of lightweight bioinspired composite materials. Among various toughening mechanisms, it has been
reported that roughly one-third of the overall toughness is based on the crack path’s highly meandering
nature through the composite’s staggered architecture [14].
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Machine Learning (ML) techniques are suitable for addressing research questions in many
domains, such as mathematics [27], chemical [28], and material science [29]. Materials development
has always been driven by human needs and desires. Traditionally, advanced materials are found
by empirical or experimental approaches. With big data generated by modern experimental and
computational techniques, data-driven or machine learning methods have become new paradigms for
the discovery, analysis, and design of materials [30,31]. Machine Learning demonstrates outstanding
efficiency in large-scale explorations in materials science. Flah et al. [32] had put forward an inspection
model using deep learning techniques to identify defects within typically hard-to-reach sections of
concrete structures. Lu et al. [33] built a deep learning model to predict elastoplastic properties of
metals and alloys from instrumented indentation. Xiao et al. used deep learning models to predict
the trabecular bone’s microarchitecture [34] and the mechanical behavior [35] based on Dual-energy
X-ray absorptiometry (DXA) images. Zhu et al. [36] introduced a machine learning approach aimed
at identifying geometric patterns within magnetoelectric multi-phase composites that exhibit optimal
magnetoelectric coupling properties.

The combination of finite element modeling (FEM) and artificial neural networks is a popular
computational framework [37–41]. Finite element models are used in many engineering applications
including the modeling of composites. However, there are inherent limitations associated with these
models including the trade-off between fidelity and cost, difficulties with inverse modeling, and
optimization of multi-dimensional problems. Using machine learning techniques for generating
optimal designs or predicting accurate results with extensive training data can significantly reduce
computational costs compared to exhaustive methods [42]. The latest advancements in machine learn-
ing have, therefore, increased the expectation of the development of composite materials. Discovering
new materials with excellent performance is a hot topic in materials science. In this study, we combine
machine learning with finite element simulation to build the connection between material interface
and bulk material properties. Our machine learning model is focused on using interface properties to
predict the bioinspired nanocomposite’s bulk mechanical behavior. Our study shows the potential to
use machine learning to accelerate material design and analysis. The machine learning model can be
trusted as a surrogate model for the FEM with the computation time being greatly reduced by several
orders of magnitude.

2 Computational Model Development
2.1 Geometry Model

The structure of this bioinspired nanocomposite material usually exhibits a polygonal structure,
such as a bone extrafibrillar matrix or a single layer of nacre structure. To simulate the behavior of
such materials, we use finite element analysis (FEA) to investigate their material behavior. The process
started with the generation of 144 points randomly placed in a square plane and partitioned to the
Voronoi diagram (Fig. 1a). To obtain an optimal partition, we use the Centroidal Voronoi Tessellation
(CVT) which corresponds to the optimal distribution of the Voronoi diagram [43]. To determine the
CVT, we employ the Lloyd algorithm, which is a Voronoi iteration method. The algorithm repeatedly
finds the centroid of each polygon and repartitions the plane until each point coincides with the
centroid of its corresponding polygon. Through this iteration process, the diagram approaches an
optimal solution. After 30 iterations, we obtain the centroidal Voronoi diagram (Fig. 1b).

Next, we use a Python script to implement the iterated Voronoi diagram in the Abaqus simulation
software. The resulting model is visualized in Fig. 2, and its dimensions are specified as Lx ×Ly ×Lz =
8400 nm × 8400 nm × 500 nm.
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Figure 1: Centroidal Voronoi tessellation process: (a) Iteration 1, (b) Iteration 30

Figure 2: A 2D solid model: (a) structure model, (b) meshed model

After meshing the whole model, we insert a 3D cohesive element layer to represent the interface
between grains (Fig. 3). This layer represents the bonding layer between the grains and provides
insight into the strength and behavior of the material when subjected to mechanical loading. In this
simulation, a linear displacement boundary condition is applied. The bottom edge of this model is
fixed. The displacement rate applied on the top edge is 10−6 m/s. This allows us to study the material’s
response to a controlled overall deformation.

2.2 Material Properties
In this finite element model, we specify the density of the hard grain material to be 3000 kg/m3,

and its Young’s modulus as 100 GPa. The Poisson’s ratio is set to 0.28. To describe the interface
deformation behavior between grains, we use a bilinear cohesive zone model to mimic interface
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behaviors. The interface has a very low volume percentage, but its property has the ability to determine
the bulk material response [44]. The interfacial zone model is widely used to study composite material
failure processes [45–48], such as material interface modeling [49,50], nacre-like composites [51–53],
and bone and bone-inspired materials [54–57]. In this study, a bilinear traction-separation law is
applied at the interface surface in normal and tangential directions. We can separately control the
traction-separation relationship at the surface normal and tangential direction. For simplicity, the
same cohesive zone parameters are used for surface normal and tangential direction in this study.
The bilinear cohesive zone model describing the relationship between traction and separation at the
interface is shown in Fig. 4. Where σ is cohesive strength, δc is critical initial separation and δf is final
failure separation, respectively. This model enables us to study the behavior of the material under
mechanical loading conditions, providing a more complete understanding of the material’s properties.

Figure 3: The 3D cohesive element layer

Figure 4: Bilinear cohesive zone model
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2.3 Machine Learning Dataset
To create a large and diverse dataset for training our machine learning model, we first established a

range and step size for each interface property parameter. The ranges of the interface parameters were
obtained from the literature [58–60].To determine the range, we estimate the interface parameters from
previous studies, such as organic matrix in nacre and bone structure. For organic interface in nacre,
the strength is ∼40 MPa [58]. For organic matrix in other model the strength is ∼200 MPa [59]. For
the fracture energy of organic adhesive, it was reported to be in the range of 0.18–0.27 J/m2 [60]. Based
on these reported values, we may expand the range to cover more potential interface properties. The
chosen interface property values were presented in Table 1.

Table 1: Interface property range

Range Step

σ 25∼250 MPa 5
δc 0.5∼5 nm 0.5
δf 5∼35 nm 1

In these ranges, we use a brute force generator to generate all possible interface models. Then
we randomly select 5400 unique interface models and subjected them to finite element analysis to
obtain the strain-stress curves. The stress-strain curve was then used to calculate the material’s stiffness,
strength, and toughness. After conducting the analyses, we performed data cleaning to ensure the
dataset was accurate and reliable. The data-cleaning operation is based on analyzing the stress-strain
curve. Some simulations were terminated due to computer power limitations for multiple tasks or
server restart. We checked each stress-strain curve and removed the abnormal data. The final dataset
was split into three sets: training, validation, and testing, as detailed in Table 2. The training set was
used to train the model, the validation set was used to fine-tune the model’s parameters, and the testing
set was used to evaluate the model’s performance on unseen data.

Table 2: Splitting the dataset

Total 5117

Training 3533
Validation 884
Test 700

2.4 Input and Output Data Generation via FEM in Machine Learning Model
Here we use one example to illustrate how the datasets are generated through finite element

simulation. The stress distribution showed in Fig. 5 and the stress-strain curve showed in Fig. 6b is
based on the interface properties σ = 75 MPa, δc = 2.5 nm, δf = 15 nm as shown in Fig. 6a. The
stress distribution and crack propagation in the nanocomposite was observed in Fig. 5. In Fig. 5a,
stress distribution was largely homogeneous at the initial loading stage. And Fig. 5b shows the crack
propagation path in the specimen. The interface properties and the bulk stress-strain curve of the
nanocomposite are shown in Fig. 6.
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Figure 5: Snapshots of stress distribution (σ22) and crack propagation in bioinspired nanocomposite:
(a) ε = 0.013, (b) ε = 0.043

Figure 6: Interface property and the bulk composite response: (a) interface property, (b) bulk stress-
strain curve

In recent years, machine learning has been very popular and has become an important component
in numerous industries and research fields. The reason for its success relies on its ability to handle
high-dimensional and complex data and make highly accurate predictions. With its remarkable per-
formance, machine learning has opened new possibilities and opportunities for various applications,
such as natural language processing, computer vision, and material science. In this research, we build
a machine learning model to predict composites’ stiffness, strength, and toughness with the input of
interface property. Fig. 7 shows the process of building the machine learning model. Python script files
were generated with varying interface properties.

By running these files through finite element model analysis, we can obtain strain-stress curves,
which can be used to calculate stiffness, strength, and toughness. We have trained a machine learning
model to predict the stiffness, strength, and toughness of the bulk composite based on their interface
properties. After comparing architectures ranging from 1 to 9 layers and neuron counts from 5 to
25, it was determined that the three-layer architecture with 15 neurons in the neural network model
is optimal. The machine learning model we used is a three-layer fully connected neural network,
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with each layer containing 15 neurons (Fig. 8). The model uses the interface properties as inputs and
produces predictions for the material’s bulk mechanical properties as outputs. This structure allows
for effective processing of the interface properties as input and accurate prediction of the composite’s
bulk stiffness, strength, and toughness as output.

Figure 7: Flowchart of machine learning process

Figure 8: Three-layer fully connected neural network model

3 Results

The machine learning model was trained and tested using interface property as the input and
bulk stiffness, strength, and toughness as the output. The performance of the model was evaluated
by comparing the predicted values with the actual values, shown in Figs. 9–11. The results showed
that the machine learning model demonstrated a high level of accuracy in predicting the three bulk
mechanical properties. The coefficient of determination (R-squared) values for stiffness, strength, and
toughness predictions were 0.998, 0.996, and 0.989, respectively.

These results suggest that the machine learning model can be a useful tool for predicting the
bulk mechanical properties of nanocomposite materials with high accuracy. Machine learning models
have the advantage of being faster compared to traditional finite element models. Within the same
computing environment, the finite element model can take around two hundred seconds to generate
the result, whereas the machine learning model can accomplish the task in just two dozen milliseconds.
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We investigated the relationship between the interface property and composite bulk properties
using a fixed geometry. To further understand the impact of different geometry variations on our
results, we generated and analyzed 12 different models with distinct geometry. The results are shown
in Fig. 12, which presents the 12 different geometries we used in our study. This allowed us to examine
the influence of geometry on the mechanical properties of the composite material.

Figure 9: Predicted stiffness from ML model vs. FEM model

Figure 10: Predicted strength from ML model vs. FEM model

The strain-stress curve of 12 different models with geometry variation is presented in Fig. 13.
The strain-stress curves of these models are very similar, the geometry effect is minimized to study
the mechanical behavior of the composite. The composites’ properties, including stiffness, strength,
and toughness of each model, are shown in Fig. 14. The mean, standard deviation, and coefficient of
variation of stiffness, strength, and toughness for all 12 models are presented in Table 3. The coefficient
of variation for stiffness, strength, and toughness are found to be 0%, 1%, and 3%, respectively.
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These results indicate that the interface properties have a dominant effect on the composite material
properties.

Figure 11: Predicted toughness from ML model vs. FEM model

Figure 12: Geometrical model with different polygonal shape
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Figure 13: Stress-strain curves of 12 models

Figure 14: Bulk material properties for 12 models: (a) stiffness, (b) strength, (c) toughness

Table 3: Descriptive statistics for 12 models’ properties

Mean Standard deviation Coefficient of variation

Stiffness 27.9535075 0.136503698 0%
Strength 166.554167 2.367612754 1%
Toughness 1.71982234 0.049081553 3%

4 Conclusion

In this paper, a machine learning model was utilized to predict the material response based on
the interface properties. The results of this study demonstrate the efficiency and high accuracy of the
machine learning model. The machine learning model was trained on a comprehensive dataset of
material response and interface properties, allowing it to make accurate predictions. The performance
of the machine learning model was evaluated by comparing the predicted values with actual values,
and the results showed a high level of accuracy in predicting the material response.
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Machine learning models have the advantage of being faster compared with traditional finite
element models. The successful application of machine learning in the material property prediction
process has the potential to significantly improve the accuracy and efficiency of the material design
process. The current study has certain limitations: (1) the total dataset is limited; (2) a bilinear law
is used with a very limited number of interface parameters; (3) a single-layer model is used which is
not able to simulate interlayer sliding in a multiple-layer 3D nacre model. The current study provides
an efficient approach and simulation tool, which opens a door for more advanced studies of material
property prediction and bioinspired material design. To design material interface with desired bulk
material property is an inverse material design problem and finite element itself cannot achieve this
goal. The application of machine learning to material property prediction holds immense promise for
enhancing the efficiency and precision of material design. By using machine learning, we could delve
deeper into understanding material behaviors and expedite the development of novel materials tailored
to specific applications.
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