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ABSTRACT

Sleep posture surveillance is crucial for patient comfort, yet current systems face difficulties in providing compre-
hensive studies due to the obstruction caused by blankets. Precise posture assessment remains challenging because
of the complex nature of the human body and variations in sleep patterns. Consequently, this study introduces an
innovative method utilizing RGB and thermal cameras for comprehensive posture classification, thereby enhancing
the analysis of body position and comfort. This method begins by capturing a dataset of sleep postures in the form
of videos using RGB and thermal cameras, which depict six commonly adopted postures: supine, left log, right log,
prone head, prone left, and prone right. The study involves 10 participants under two conditions: with and without
blankets. Initially, the database is normalized into a video frame. The subsequent step entails training a fine-tuned,
pretrained Visual Geometry Group (VGG16) and ResNet50 model. In the third phase, the extracted features are
utilized for classification. The fourth step of the proposed approach employs a serial fusion technique based on the
normal distribution to merge the vectors derived from both the RGB and thermal datasets. Finally, the fused vectors
are passed to machine learning classifiers for final classification. The dataset, which includes human sleep postures
used in this study’s experiments, achieved a 96.7% accuracy rate using the Quadratic Support Vector Machine
(QSVM) without the blanket. Moreover, the Linear SVM, when utilized with a blanket, attained an accuracy of
96%. When normal distribution serial fusion was applied to the blanket features, it resulted in a remarkable average
accuracy of 99%.
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1 Introduction

Optimal sleep is essential for maintaining both physical health and overall well-being [1]. Extensive
research has established significant correlations between sleep disorders and chronic conditions, such
as diabetes, obesity, and hypertension [2–4]. Poor sleep quality or disruptions can exacerbate mental
health concerns, such as depression and anxiety [5]. Prevalence studies indicate that approximately 47
individuals per 1000 in the population are affected by sleep disorders, with some estimates suggesting
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an even higher prevalence [6]. In China, over 25% of adolescents are reported to experience sleep
disturbances [7]. The American Academy of Sleep Medicine (AASM) and Rechtschaffen and Kales
Standards are used for sleep staging in this field throughout the world [8]. Insomnia, the most
widespread sleep disorder, has been investigated through various methods, including photoplethys-
mography, ballistocardiography, polysomnography (PSG), and actigraphy [9,10]. PSG is expensive and
inconvenient, requiring multiple sensors to be attached to participants, potentially impacting their
sleep quality [11]. While diverse methods are available for sleep research, they can be categorized
into two areas. One involves monitoring physiological variables, such as electrocardiogram and
electroencephalogram (EEG) during sleep, employed to classify sleep stages and evaluate the quality
of sleep [12–15]. The other observes external body behavior during sleep, including posture and
movement detection [16,17]. Monitoring sleep position and movement can determine the quantity
and quality of a sleep pattern. Research indicates that the amount of sleep and body movements are
directly related [18]. Major movements, where the entire body changes position, suggest lighter sleep
and that the body may be preparing to wake up. Sleep apnea, snoring, restless leg syndrome, rapid
eye movement, and periodic limb movement sleep behavior disorder are disorders connected to body
movement and position changes. PSG, which measures EEG, electromyography, electrooculography,
breathing-related variables, and movement signals, is the gold standard for evaluating sleep. Despite
PSG’s usefulness, it is difficult, time-consuming, and expensive. Furthermore, patients must sleep in a
laboratory setting, which may compromise sleep quality. The requirements and characteristics of PSG
make it unsuitable for long-term monitoring. Actigraphy, an alternative diagnosis method, requires
wearing a device. However, some actigraphy users, especially children, may experience anxiety or panic
[19]. In addition, this approach necessitates attaching multiple sensors to participants, potentially
influencing the sleep quality being studied.

In more recent times, nonintrusive technologies have gained prominence in the realm of sleeping
posture recognition. Video-based techniques, sensor fusion, and instrumented mattresses are three
groups of non-contact techniques for posture recognition. These technologies encompass a range
of modalities, including depth, infrared, and visible light cameras [20,21], radar, and radio sensors
[1,22,23]. Lee et al. [24] identified different sleep postures using Kinect v2 skeleton tracking, which
measures the x, y, and z coordinates of 25 joints. However, some non-contact sleep monitoring
approaches require patients to avoid any bed coverings (blankets or sheets), which may be inconvenient
[25,26]. Instrumented pillows and mattresses [27,28], as well as pressure sensors [29–31], are utilized
individually to study sleep positions [27,28]. Other approaches use fusion sensors, combining a
depth camera and an instrumented pressure mattress, to evaluate data and detect sleeping positions
automatically. Despite these advancements, there remains a paucity of efforts aimed at accurately
recognizing and categorizing sleeping postures [32], as these methods can be both time-consuming to
analyze the massive data produced by sensors and prone to inaccuracies [33,34]. To analyze this gap,
several machine-learning (ML) based strategies have been developed, including approaches involving
learning, k-nearest neighbors (KNN), support vector machines (SVM), and convolutional neural
networks (CNN). These techniques strive to enhance posture classification accuracy across both
optical and pressure-sensing modalities [21].

Problems of conventional approaches may be overcome by quantitative non-contact sleep mon-
itoring techniques, which may also be used to identify sleep disorders, improve sleep, and enhance
the quality of life. Traditionally, sleep posture assessment relies on methods such as videotaping with
manual labeling, which has demonstrated limitations in accuracy [1,35]. Recent strides have been made
through the application of deep learning, machine learning, SVM, KNN, and CNN techniques to
elevate the accuracy of sleep posture classification across both optical and pressure sensing paradigms
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[36–40]. Despite advancements, a significant challenge hinders widespread implementation due to a
lack of robustness [39].

1.1 Major Challenges
The key challenge in accurate noncontact monitoring, which has yet to be overcome, involves

tracking movements and postures through blankets, according to a state-of-the-art assessment of sleep
surveillance technology. In order to address this issue, this study aims to develop a sleep position
classifier utilizing deep learning models and serial-based feature fusion, employing both RGB and
thermal cameras and testing with and without blankets.

1.2 Major Contributions
The objective of this study is to overcome the limitations of current methods by introducing a

novel deep learning approach and a serially normal distribution-based fusion framework for precise
human sleep posture image classification. In this research, both RGB and thermal cameras are used
to classify human sleep postures, with a particular focus on scenarios involving the use of a blanket.
The rationale behind this dual-camera approach is the recognized limitations of using RGB cameras
where blankets are present, which result in lower classification accuracy. To address this issue, thermal
cameras, which operate based on heat map information, have been introduced to enable more precise
and accurate posture classification than traditional RGB camera methods. The proposed framework
includes the following steps:

• Converting the video dataset into individual frames.

• Modifying two pre-trained deep learning models, Visual Geometry Group (VGG16) and
ResNet50, by introducing an additional layer. This new layer establishes connections among
the previous layers using fully connected (FC) layers.

• Employing the features extracted from the modified models for classification.

• Proposing a sequential normal distribution-based fusion approach to combine the feature
vectors obtained from the VGG16 and ResNet50 models, aiming to achieve improved accuracy.

The rest of this article is structured as follows: Section 2 describes the significant work related to
the study. Section 3 outlines the methodology utilized in the research, including the tools, methods, and
resources employed. Section 4, comprises of the finding acquired from the study. Section 5 comprises
of detailed discussion. Section 5 provides the conclusion of the research.

2 Related Work

Sleep is a necessary activity for maintaining life’s physiological processes and activities. Sleep
disorders, such as Rapid Eye Movement (REM), restless leg syndrome, sleep apnea, and sleep behavior
disorder, impact many. Clinical diagnosis, the gold standard, involves polysomnography in a sleep unit
with electrodes attached to the head and body. Sara et al. [19] proposed a non-contact method for
assessing sleep disorders related to body posture and movements, using an Infrared (IR) camera to
monitor body position without additional sensors. Twelve participants with various body shapes and
Body Mass Indexes (BMIs) ranging from 27.8 to 21.3 kg/m2 used 10368 frames for training, comprising
10% of the initial dataset, which was used to evaluate the model’s performance. Meanwhile, IR data
was processed using CNNs for classification. Results demonstrated an accuracy of 0.76 to 0.91 for
participants across twelve sleep poses, with and without blankets. This method holds promise for
detecting sleep postures and potentially characterizing sleep disorder behaviors.
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Andy et al. [41] introduced a novel deep-learning model method to enhance accuracy in under-
blanket sleep posture classification by using an attention strategy and anatomical landmark features to
overcome the challenges caused by blankets. Integrated visible light and depth cameras were employed,
and three deep learning models, Efficient Channel Attention (ECA) (ECA-Net50, EfficientNet B4,
ResNet34), were trained using the depth camera images. A comparison was made between models
without and with anatomical landmark inputs generated from pose estimation using visible images. In
this regard, 120 participants performed seven sleep postures under various blanket conditions (thick,
thin, medium, and no blanket). The data was partitioned for training and testing in an 8:2 ratio,
and data augmentation was specifically applied to the blankets. ECA-Net50 demonstrated the best
classification results, with anatomical landmarks boosting its F1 score from 87.4% to 92.2%.

Andy et al. [9] proposed an unobtrusive sleep posture classification system adaptable to blanket
use to address the challenge posed by blankets. The dataset was collected through an infrared depth
camera, and the CNN method was applied for the classification. Participants (66 in total, 26 women
and 40 men) performed seven postures, including supine, prone with head left/right, log left/right,
and fetal left/right, under four blanket conditions: thick, medium, thin, and none. Data augmentation
involved affine transformation and data fusion, expanding the dataset. Two fully connected network
layers trained coarse (four-posture) and fine (seven-posture) classifiers. The coarse classification
combined log and fetal postures into side-lying and prone (head left/right) into one class. Results
showed an 8.2% F1 score drop when shifting to fine classification. A thick blanket lowered the overall
F1 scores by 3.5% and 8.9% for coarse and fine classifiers, respectively. The lowest performance was
in classifying log (right) posture under a thick blanket (F1 score: 72.0%). In conclusion, the study
established a system for categorizing prevalent sleeping postures under blankets, achieving an 88.9%
F1 score.

Sara et al. [11] presented a non-contact sleep monitoring system using machine learning to analyze
body posture and movement. Through infrared camera data and transfer learning, it accurately
quantified sleep poses, including under blankets, during realistic overnight sleep. The authors proposed
different performance variations of CNN architectures (VGG16, VGG19, AlexNet, ResNet101,
GoogLeNet, ResNet50, & ResNet152) in the transfer learning task of sleep pose estimation. The
ResNet152 pre-trained network outperformed the other models, surpassing both standard de novo
CNN and clinical methods. This non-contact approach offers superior sleep pose estimation compared
to traditional clinical techniques.

Yan et al. [42] proposed an image-based, noninvasive technique to accurately identify ten distinct
sleep postures. Furthermore, various studies indicate that an incorrect sleep position can lead to
physical discomfort. The methodology encompassed the analysis of leg and arm positions, enabling the
classification of ten intricate sleep postures, including fetal left yearner, left log left, fetal right yearner,
right log right, soldier down, faller down, soldier up, and faller up. Depth images served as input data,
which underwent preprocessing, followed by classification using a deep multistream convolutional
neural network. The approach was tailored to natural sleeping scenarios, accounting for situations
where individuals are covered by blankets or quilts. A cohort of 22 participants engaged in recording
depth images depicting the ten sleep postures, facilitating an evaluation of the network’s efficacy in
classifying these postures.

Depth-camera-based systems have garnered preference in sleep monitoring due to their noncon-
tact nature, low maintenance requirements, privacy considerations, and effective operation in low-
light conditions [40]. A study conducted by Grimm et al. [43] achieved notable success in classifying
the three most common sleeping postures (left-sided lying, supine, and right-sided lying) through the
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application of a CNN, yielding an impressive overall accuracy of 97.5%. Identifying patient posture in
medical applications, like post-surgery monitoring or sleep supervision, is crucial. Claudia et al. [44]
proposed a method using simple conditioning techniques and optimal texture descriptors for the SVM
to classify patient postures from pressure sensor images, enhancing accuracy from 86.9% to 92.9%.

However, it is worth noting that these systems often neglect to address the practical challenge
posed by blanket interference, which serves as a significant difficulty for noncontact sleep observation
[45]. This study aims to develop a sleep posture classifier using deep learning models and an RGB and
thermal camera in both blanketed and non-blanketed scenarios. Within this context, it implements
fine-grained classification of six postures for enhanced robustness, along with coarse classification
of the standard postures (supine, left log, right log, prone head, prone left, and prone right) for
comparative analysis with existing studies.

3 Material and Method
3.1 Dataset Description

A group of ten healthy adult males was recruited from Soonchunhyang University in Asan,
South Korea, with an average age of 24 years, an average height of 177 cm, and an average weight
of 60.6 kg. These participants did not have a reported history of severe sleep deprivation, sleep
disorders, musculoskeletal pain, or deformities. The data on sleeping postures were gathered while
the participants lay on a standard bed measuring 196 cm in length, 90 cm in width, and 55 cm in
height. For data collection, both a thermal camera and an RGB camera were utilized. The thermal
camera had a resolution of 624 × 832 pixels and operated at a frame rate of 6 frames per second (fps),
while the RGB camera had a resolution of 464 × 848 pixels and operated at a frame rate of 30 fps. The
acquisition duration for each video session with every participant was approximately one hour, and
the dataset was systematically collected under controlled sleep conditions. The dataset was initially
collected in the form of videos and subsequently transformed into individual frames based on the
cameras’ frame rates. The data collection was performed under two conditions: one without a blanket
and the other with a blanket.

Throughout the experiment, participants were instructed to assume six distinct sleep (recumbent)
postures in the following order: (1) supine, (2) prone left, (3) prone right, (4) prone head, (5) left log,
and (6) right log. Adequate time was allotted for participants to comfortably settle into their chosen
posture before data collection commenced. During data collection for each posture, participants were
required to maintain their designated position. Subsequently, participants were covered with both
thick blankets and no blanket, except for their heads. Data collection was continuous throughout
the experiment, and postures were labeled using color-coded paper positioned adjacent to the bed. A
sample of the dataset is shown in Fig. 1.

3.2 Proposed Methodology
In this section, a new deep-learning method for human sleep posture image classification is

proposed, as illustrated in Fig. 2. The methodology includes several distinct stages: initial prepro-
cessing of the data, extraction of features utilizing pre-trained models, feature fusion (serially normal
distribution-based fusion), and, finally, classification. This approach employs advanced techniques in
deep transfer learning to enhance the performance of two existing pre-trained models, namely VGG16
and ResNet50 [46]. The choice of using VGG16 and ResNet50 in this research is based on their well-
established effectiveness and suitability for the research goals. VGG16 serves as a strong baseline with
a simple yet effective architecture, while ResNet50’s residual learning addresses challenges in training
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deep networks. Both models have been extensively validated on large-scale datasets, ensuring robust
performance and comparability with existing literature. Following the extraction of features from these
modified models, utilizing both RGB and thermal data, the feature vectors derived from the RGB data
via both modified models are subjected to a sequential fusion process based on the normal distribution.
This fusion process involves the sequential amalgamation of the resultant feature vector from the RGB
data with the feature vector derived from the thermal dataset using both models. The resultant fused
feature vectors are classified using the Cubic SVM.

Figure 1: Sample frames of the proposed dataset

3.3 Convolutional Neural Network
An effective form of artificial neural network (ANN) is the convolutional neural network (CNN),

which performs better when handling large datasets [47]. Therefore, CNNs encode image features
much more effectively than ANNs do for accurate pattern recognition tasks. The architecture of a
CNN comprises multiple layers, including the input layer, convolutional layer, pooling layer, batch
normalization layer, fully connected layer, and a culminating softmax classification layer [48,49].

The main function of the convolutional layer is to learn how to represent the input based on
its features [50]. By utilizing various convolution kernels, different feature maps can be generated in
the convolutional layer. Each relevant neuron in the current feature layer is perfectly coupled to each
neuron in the previous layer. This is referred to as a neuron’s receptive field, according to the preceding
neuron. It is important to note that each feature map is produced by sharing the kernel with all specific
regions of the input data. The value of the feature at the (q, p) location within the (nth) feature map of
the (mth) layer can be computed.

bm
q,p,n = xmT

n ym
q,p + am

n (1)
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where xm
n and bn

m denote the weight vector and bias term of the nth feature map within the mth layer,
respectively. The input area ym

q,p corresponds to the central region at the (q, p) location of the nth layer.
It’s important to emphasize that the shared kernel xm

n generates the feature map bm
: , : ,n. The utilization of

this weight-sharing technique carries numerous advantages; notably, it simplifies model training and
reduces complexity. The incorporation of nonlinearities into CNNs is achieved through the activation
function, which identifies nonlinear features within multilayer networks. In this context, j (.) represents
the nonlinear activation function, thereby leading to the calculation of the activation value jm

q,p,n of the
convolutional feature bm

q,p,m.

jm
q,p,n = j(bm

q,p,m) (2)

Figure 2: Proposed diagram for human sleep posture classification. ResNet50 inherent Dimension
Reduction Factor (DRF) contributes to managing feature vector dimensions during extraction.
Feature Vector (FV) 1 and FV 2, which were extracted from VGG16 and ResNet50 using RGB data,
and FV 3 and FV 4 obtained from VGG16 and ResNet50 using thermal data, were passed to the ML
classifier for classification. FV 5, FV 6, and FV 7, FV 8 were extracted from VGG16 and ResNet50
using thermal and RGB data of the blanket and were fused together to obtain FV 9 and FV 10. These
features were used as an input for the final classification
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Generally, the sigmoid activation functions include tanh and the rectified linear unit (ReLU). To
attain shift invariance, the resolution of the feature maps can be downscaled using pooling layers.
These layers are positioned between consecutive convolutional layers. Each pooling layer is directly
connected to the corresponding feature map of the preceding convolutional layer. The pool (.) ,
notation denotes the pool function, while jm

q,p,n represents the individual feature map within this context.

Lm
q,p,n = pool

(
jm
q,p,m

)
, ∀(q.p) ε Kqp (3)

where Kqp denotes the local neighborhood surrounding the (q, p) location. Typically, pooling oper-
ations involve the use of either max pooling or average pooling, as referenced in [51]. The first
convolutional layer illustrates the detection of edges and curves, which are regarded as low-level
features and are identified through the kernels. As the network progresses, convolutional and pooling
layers are increasingly employed to extract higher-level features.

After pooling and convolutional layers, one or more fully connected (FC) layers can be introduced
to facilitate high-level reasoning. These layers establish connections between all neurons in the current
layer and their corresponding counterparts in the previous layer, a technique utilized for generating
global semantic information [52]. The final layer, known as the softmax layer, serves as the output layer
and is employed for classification purposes. In some cases, the Support Vector Machine (SVM) is also
utilized for classification, often in conjunction with CNN features [53]. In this regard, μ represents the
CNN parameters. To obtain the optimal parameters, the loss function can be minimized [29,30]. Let
us consider the existence of Q preferred input-output relationships.

This study possesses M-preferred input-output relationships, denoted as
{(

j(n), i(n)
)

; m ε [1, ..., Q]
}

,
where j(n) represents the nth input data and i(n) corresponds to its target data. Let L(n) represents the
output generated by the CNN. The CNN’s loss can then be computed as follows:

O = 1
Q

∑Q

n=1
i(μ; i(n), L(n)) (4)

Global optimization is achievable through CNN training, where the most suitable set of param-
eters can be determined by minimizing the loss function. A commonly employed technique for
optimizing CNN networks is Stochastic Gradient Descent (SGD). To sum up, CNNs rely on key
elements like convolutional layers, sigmoid activation, and pooling for effective image analysis. These
components help the network learn features like edges and shapes. The shared kernel simplifies
learning, activation functions add complexity, and pooling reduces data size. Fully connected layers
enable high-level reasoning, and training using methods like SGD minimizes errors. The loss function
measures the gap between predicted and actual outcomes, guiding the network’s improvement. In
essence, these components and techniques make CNNs powerful tools for accurate pattern recognition
in large datasets.

3.4 Feature Extraction Fine-Tuned VGG16 Model
The notable feature of the VGG16 model is its focus on simplicity [54], characterized by the use of

uniform 2×2 max-pooling layers (PL) and 2×2 max-pooling layers (MPL) with a stride of 2, along with
3×3 filter convolutional layers at stride 1. The model employs a sequence of convolutional and pooling
layers, followed by fully connected layers. With a total of 16 layers, comprising 13 convolutional and
three fully connected layers, the architecture is illustrated in Fig. 3. Originally trained on the ImageNet
dataset with 224×224×3 input dimensions, the model was adapted by omitting the last fully connected
layer and adding a new one with six classes: supine, left log, right log, prone head, prone left, and prone
right. This modified model is fine-tuned using transfer learning on the specified human sleep poster
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image data. Feature extraction is performed from the last fully connected layer, yielding a vector of
dimension N × 4096, where the last layer’s output is N × 6.

Figure 3: Fined tuned architecture of VGG16 model

3.5 Feature Extraction Fine-Tuned ResNet50 Model
The ResNet architecture has gathered appreciation for its exceptional performance in facilitating a

more direct information flow within the network, effectively addressing the issue of disappearing gra-
dients during backpropagation. By combining shortcut connections, which define residual networks,
the architecture offers the advantage of bypassing layers that might not significantly contribute to
the training process. The ResNet50 architecture is comprised of a 7 × 7 convolutional layer housing
64 kernels, featuring a stride of 2, followed by 3 × 3 max-pooling layers, a 7 × 7 average-pooling
layer with a stride of 7, 16 residual building blocks, and culminates in a final FC layer [55]. The
comprehensive architecture integrates a total of 23 million trainable parameters. Within the scope
of this study, modifications were introduced to the pre-trained ResNet50 model by eliminating the
final FC layer, which originally facilitated classification across 1000 object classes [56]. Specifically
addressing the requirements of a human sleep posture (HSP) image dataset encompassing six distinct
classes, a novel FC layer was introduced, designed to appropriately cater to the classification objectives
of this study. Subsequently, through the application of advanced deep transfer learning (TL) techniques
[57], the model underwent modifications. This strategic implementation of transfer learning facilitated
the development of an adapted model adept at feature extraction tasks. The modified model was then
suitable for the extraction of features from the global average pooling layer, yielding feature vectors
characterized by dimensions of N × 2048. A visual representation of this adapted model’s architecture
is provided in Fig. 4.
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Figure 4: Fined tuned architecture of VGG16 model

3.6 Novelty: Proposed Feature Fusion
Feature fusion is a critical process aimed at enhancing object accuracy by amalgamating distinct

characteristics of the same entity. This article introduces a novel approach for feature fusion based on
a precision-focused serial method with a normal distribution. The proposed method comprises three
key steps: (i) fusion of extracted features from the RGB and thermal datasets using the VGG16 model,
(ii) fusion of features obtained from both datasets using the ResNet50 model, and (iii) utilization of
the resulting vectors from both the VGG16 and ResNet50 models as inputs for machine learning
classifiers.

f1 (x) =
(

V1

V2

)
(N×x1,N×x2)

(5)

where V1 and V2 are the previously extracted feature vectors of dimensions N × 2048 for ResNet50
and N × 4096 for VGG16. Thereafter, a single point based on a normal distribution formulation is
chosen and applied to a threshold function.

G (f1 (x)) = ρ

2π
e−ρ

(f1(x)−μ)2

2 (6)

where ρ represents the precision, and its calculation is as follows:

ρ = 1
α2

(7)

α2 = F (f1 (x) − μ)
2 (8)

The final fused vector is defined based on the value of G, which determines the threshold.

I (f1) =
{

FV for G ≥ f1 (x)

Ignore, Else where

}
(9)

where FV represent the resultant feature vector, which is also used for the classification, with the
dimensions of N × 4096 and N × 2048.

4 Results

This section provides a detailed experimental process for the proposed framework. The results
are presented using visual graphs and well-defined performance measures to provide a comprehensive
and clear evaluation of the methodology herein. In this study, the HSP image dataset was divided
into training and testing sets with an 80:20 ratio. The training process was configured with specific
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parameters, including 100 iterations, 100 epochs, a minibatch size of 34, and a learning rate set at
0.0001. SGD served as the optimization algorithm. A 5-fold cross-validation was executed, assessing
multiple classifiers across a range of performance metrics, including precision, rate, recall, and
accuracy. All simulations were conducted using MATLAB 2022a. The study was carried out on a
Core i7 processor and 8 GB of RAM.

4.1 Numerical Results without Blanket Using Thermal and RGB Data
In this subsection, the classification results of HSP have been discussed, employing two distinct

deep-learning models: ResNet50 and VGG16. Two diverse datasets were employed in the experiments,
one consisting of thermal images and the other of RGB (HSP) images, both without any blankets.
Various ML classifiers were applied, including Linear SVM (LSVM), Quadratic SVM (QSVM), Cubic
SVM (CSVM), Fine Gaussian SVM (FGSVM), Fine KNN (FKNN), Medium KNN (MKNN),
Coarse KNN (CKNN), Cosine KNN, Medium Gaussian SVM (MGSVM), and Cubic KNN. The
results for the ResNet50 model with RGB data are presented in Table 1. The highest accuracy of
96.7% was achieved by the QSVM classifier when using the ResNet50 model. This model yielded
computational time, recall rate, precision rate, and AUC values of 31.7 s, 96.7%, 96.8%, and 0.99,
respectively. The second-highest accuracy of 96.5% was obtained with the MGSVM classifier, resulting
in computational time, recall rate, precision rate, and AUC values of 35.4 s, 96.4%, 96.6%, and 0.99. The
difference in accuracy between the top two models was only 0.2%. The third-best accuracy, standing
at 96.3%, was achieved by the QSVM classifier, along with computational time, recall rate, precision
rate, and AUC values of 25.13 s, 96.3%, 96.31%, and 0.98, respectively. Based on the confusion matrix
for ResNet50 and QSVM, Table 2 shows that the developed model performs better in the supine class
than in the other classes, like the prone_head class.

Table 1: Classification results of HSP Thermal image without blanket using ResNet50 model with
5-fold cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Cubic SVM 25.13 96.3 96.3 96.31 0.98
Linear SVM 30 95.6 96.4 96.8 0.98
Quadratic SVM 31.7 96.7 96.7 96.8 0.99
Fine Gaussian
SVM

111.9 84.3 84.3 89.2 0.97

Fine KNN 46.6 96.2 96.2 96.1 0.97
Medium KNN 53.2 95.8 95.7 95.8 0.99
Coarse KNN 54.6 90.4 90.4 91.1 0.99
Cosine KNN 51.5 95.7 95.7 95.7 0.99
Medium
Gaussian SVM

35.4 96.5 96.4 96.6 0.98

Cubic KNN 365.2 95.7 95.6 95.7 0.99
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Table 2: Confusion matrix for ResNet50 and QSVM using thermal data without a blanket

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 536 5 1 12
Prone_Right 3 504 1 8

True class Prone_Head 15 475 2 7
Prone_Left 9 1 563 12
Right_Log 8 2 522 5
Supine 8 2 3 487

The classification results of the VGG16 model for the HSP dataset using thermal images and
without blankets are shown in Table 3. The tested features from VGG16 were passed to ten ML
classifiers. The highest accuracy of 96.7% was achieved by the CSVM classifier when using the VGG16
model. This model yielded computational time, recall rate, precision rate, and AUC values of 54.3 s,
96.7%, 96.8%, and 0.98, respectively. The second-highest accuracy of 96.5% was obtained with the
FKNN classifier, resulting in computational time, recall rate, precision rate, and AUC values of 79 s,
96.5%, 96.5%, and 0.97. The difference in accuracy between the top two models was 0.2%. The third-
best accuracy, standing at 96.1%, was achieved by the CKNN classifier, along with computational
time, recall rate, precision rate, and AUC values of 659 s, 96%, 96.1%, and 0.99, respectively. Based on
the confusion matrix for VGG16 and CSVM, Table 4 shows that the developed model performs better
in the supine class than in the other classes.

Table 3: Classification results of HSP thermal image without blanket using VGG16 model with 5-fold
cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Cubic SVM 54.3 96.7 96.7 96.8 0.98
Linear SVM 54.2 96.7 96.7 96.8 0.98
Quadratic SVM 54.5 96.7 96.7 96.7 0.98
Fine Gaussian
SVM

119.4 95.3 95.3 95.6 0.98

Fine KNN 58.7 96.7 96.7 96.8 0.98
Medium KNN 79 96.5 96.5 96.5 0.97
Coarse KNN 77.2 96.1 96.1 96.15 0.99
Cosine KNN 75.7 86.2 86.2 86.3 0.98
Medium
Gaussian SVM

75 95.9 96 95.9 0.99

Cubic KNN 659.1 96.1 96 96.1 0.99
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Table 4: Confusion matrix for thermal image classification without blanket using VGG16 model with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 535 3 2 14
Prone_Right 503 3 10

True class Prone_Head 477 1 21
Prone_Left 2 4 561 18
Right_Log 4 1 518 14
Supine 8 492

The classification results of the VGG16 model for the HSP dataset using RGB images and
without blankets are shown in Table 5. The extracted test features from VGG16 were passed to ten
ML classifiers. The highest accuracy of 96.5% was achieved by the CSVM classifier when using the
VGG16 model. This model yielded computational time, recall rate, precision rate, and AUC values
of 88.2 s, 96.3%, 96.4%, and 0.99, respectively. The second-highest accuracy of 94.6% was obtained
from the Cosine KNN classifier, resulting in computational time, recall rate, precision rate, and AUC
values of 74.2 s, 94.6%, 94.4%, and 0.98. The difference in accuracy between the top two models
was 1.9%. The third-best accuracy, standing at 94.3%, was achieved by the MGSVM classifier, along
with computational time, recall rate, precision rate, and AUC values of 92 s, 94.3%, 94.4%, and 0.99,
respectively. Based on the confusion matrix for VGG16 and QSVM, Table 6 shows that the developed
model performs better in the left_log and prone_left classes than in the other classes.

Table 5: Classification results of HSP RGB image without blanket using VGG16 model with 5-fold
cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Linear SVM 85 94.2 94.2 94.3 0.99
Quadratic SVM 88.2 96.5 96.3 96.4 0.99
Cubic SVM 88.6 94.4 94.45 94.5 0.99
Fine Gaussian
SVM

167 93.9 93.9 94 0.99

Fine KNN 92 94.3 94.3 94.4 0.99
Medium KNN 104.5 94 94.06 94 0.98
Coarse KNN 70.1 94.6 94.6 94.8 0.99
Cosine KNN 72.5 78.6 78.8 78.8 0.96
Medium
Gaussian SVM

74.2 94.6 94.6 94.4 0.99

Cubic KNN 310.2 94.2 94 94.3 0.99



1742 CMES, 2024, vol.140, no.2

Table 6: Confusion matrix for RGB image classification without blanket using VGG16 model with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 510 1 2 2
Prone_Right 1 500 4 11 7 20

True class Prone_Head 3 510 5 21 7
Prone_Left 2 8 4 569 4
Right_Log 15 3 513 18
Supine 2 4 2 23 515

Table 7 presents the classification results of the ResNet50 model for the HSP dataset using RGB
images without blankets. The extracted test features from ResNet50 were passed to ten different ML
classifiers. The highest accuracy, 96.2%, was achieved by the QSVM classifier when employing the
ResNet50 model. This model yielded computational time, recall rate, precision rate, and AUC values
of 29.1 s, 96.2%, 96.6%, and 0.99, respectively. The second-highest accuracy, 94.6%, was obtained from
the Cosine KNN classifier, resulting in computational time, recall rate, precision rate, and AUC values
of 27.3 s, 94.6%, 94.7%, and 0.99. The accuracy difference between the top two models was 1.6%. The
third-highest accuracy, 94.1%, was achieved by the Cosine KNN classifier, along with computational
time, recall rate, precision rate, and AUC values of 32.3 s, 94.1%, 94.3%, and 0.99, respectively. Based
on the confusion matrix for ResNet50 and QSVM, Table 8 shows that the model performs better in
the left_log class and worse in the prone_right class.

Table 7: Classification results of HSP RGB image without blanket using ResNet50 model with 5-fold
cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Linear SVM 22.3 94.4 94.4 94.6 0.99
Quadratic SVM 29.1 96.2 96.2 96.4 0.99
Cubic SVM 27.3 94.6 94.6 94.7 0.99
Fine Gaussian
SVM

47.2 92.6 92.6 92.9 0.99

Fine KNN 25.1 94.6 94.6 94.7 0.99
Medium KNN 32.1 94 94.1 94.3 0.98
Coarse KNN 31.6 94 94 94.2 0.98
Cosine KNN 31.8 80.1 80.2 80.6 0.96
Medium
Gaussian SVM

32.3 94.1 94.1 94.3 0.99

Cubic KNN 289.7 93.8 93.9 93.9 0.98
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Table 8: Confusion matrix for RGB image classification without blanket using ResNet50 model with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 510 1 1 1
Prone_Right 500 1 12 2 30

True class Prone_Head 510 1 31 5
Prone_Left 2 13 2 569 1
Right_Log 29 513 7
Supine 1 1 1 29 515

4.2 Numerical Results with Blanket Using Thermal and RGB Data
This section presents the results of analyzing HSP images using both thermal and RGB data with

blankets included in the dataset. The results were computed from two modified deep-learning models,
ResNet50 and VGG16. The results for the proposed ResNet50 model, utilizing thermal data from
blankets, are presented in Table 9. The highest accuracy, 94.8%, was achieved by the Cubic KNN
classifier when the ResNet50 model was used. This model shows performance metrics, including
computational time, recall rate, precision rate, and AUC values of 413.8 s, 94.8%, 94.8%, and 0.99.
The results of the Cubic KNN are superior to those of the other classifiers, but the computational
time is significantly higher compared to the others. The Cosine KNN classifier achieved the second-
highest accuracy, 94.7%, with corresponding performance values of 59.4 s, 94.6%, 94.6%, and 0.99.
Notably, the accuracy gap between these two top-performing models was only 0.1%. Furthermore, the
LSVM classifier achieved the third-highest accuracy, 94.5%, with corresponding performance values
of 28 s, 94.5%, 94.7%, and 0.98. Based on the confusion matrix for ResNet50 and CKNN, Table 10
shows that the developed model herein performs better in the prone_right and prone_head classes than
in the other classes.

Table 9: Proposed results of the HSP thermal image classification with blanket using ResNet50 model
with fold cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Cubic SVM 29.4 94.4 94.3 94.3 0.99
Linear SVM 28 94.5 94.5 94.7 0.98
Quadratic SVM 29.4 94.4 94.4 94.4 0.98
Fine Gaussian
SVM

257.2 84.2 84.3 84.3 0.96

Fine KNN 61.3 94.3 94.2 94.2 0.97
Medium KNN 60 94.7 94.6 94.6 0.99
Coarse KNN 61.1 88.5 88.7 88.7 0.98
Cosine KNN 59.4 94.7 94.6 94.6 0.99

(Continued)
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Table 9 (continued)

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Medium
Gaussian SVM

47.4 94.5 94.5 94.8 0.99

Cubic KNN 413.8 94.8 94.8 94.8 0.99

Table 10: Confusion matrix for thermal image classification with blanket using ResNet50 model with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 545 3 3 4 1 10
Prone_Right 5 566 4 2

True class Prone_Head 9 5 550 2 2 2
Prone_Left 3 8 9 592 7 2
Right_Log 5 5 14 1 548 4
Supine 13 11 5 2 5 530

The classification results of the VGG16 model for the HSP dataset using thermal images with
blankets are shown in Table 11. The extracted test features from VGG16 were passed to ten ML
classifiers. The highest accuracy, 96%, was achieved by the LSVM classifier when using the VGG16
model. This model shows performance metrics, including computational time, recall rate, precision
rate, and AUC values of 91.3 s, 95.01%, 95.2%, and 0.98, respectively. The second-highest accuracy,
95.8%, was obtained by the MGSVM classifier, resulting in computational time, recall rate, precision
rate, and AUC values of 99.3 s, 95%, 95.3%, and 0.98. The accuracy and computational time difference
between the top two models was 0.2% and 8 s, respectively. The third-best accuracy, 95.1%, was
achieved by the QSVM classifier, along with computational time, recall rate, precision rates, and AUC
values of 98 s, 94.9%, 95.1%, and 0.98, respectively. Based on the confusion matrix for VGG16 and
LSVM, Table 12 shows that the developed model herein performs better in the prone_right class than
in the other classes.

Table 11: Proposed results of the HSP thermal image classification with blanket using VGG16 model
with 5-fold cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Cubic SVM 85.3 94.9 95 95.4 0.98
Linear SVM 91.3 96 95.01 95.2 0.98
Quadratic SVM 98 95.1 94.9 95.1 0.98

(Continued)
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Table 11 (continued)

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Fine Gaussian
SVM

415 88.8 88.8 91.6 0.97

Medium
Gaussian SVM

99.3 95.8 95 95.3 0.98

Fine KNN 138.1 94.2 94.2 94.6 0.98
Medium KNN 128.3 94.5 94.5 94.4 0.99
Coarse KNN 136.9 86.6 86.8 87 0.97
Cosine KNN 136.4 95.1 95.01 95 0.98
Cubic KNN 895.6 94 94.01 94 0.98

Table 12: Confusion matrix for thermal image classification with blanket using VGG16 model with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 540 14 12
Prone_Right 577

True class Prone_Head 17 547 6
Prone_Left 24 586 11
Right_Log 23 554
Supine 22 10 534

The classification results of the ResNet50 model for the HSP dataset, using RGB images and
blankets, are shown in Table 13. The extracted test features from ResNet50 were passed to ten ML
classifiers. The highest accuracy, 95.2%, was achieved by the Coarse KNN classifier while using
the ResNet50 model. This model demonstrates performance metrics, including computational time,
recall rate, precision rate, and AUC value, of 37 s, 95.1, 95.2, and 0.99, respectively. The second
highest accuracy, 95.1%, was obtained by the LSVM classifier, resulting in computational time, recall
rate, precision rate, and AUC values of 25.7 s, 95, 95.3, and 0.98. The difference in accuracy and
computational time between the top two models was 0.1% and 11.3 s. The third-best accuracy, noted
as 94.9%, was achieved by the CSVM classifier, along with computational time, recall rate, precision
rate, and AUC values of 27 s, 94.9, 94.9, and 0.99, respectively. Based on the confusion matrix for
ResNet50 and Coarse KNN, Table 14 shows that the developed model herein performs better in the
prone_right and supine classes than in the other classes.
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Table 13: Proposed results of the HSP RGB image classification with blanket using ResNet50 model
with 5-fold cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Cubic SVM 27 94.9 94.9 94.9 0.99
Linear SVM 25.7 95.1 95 95.3 0.99
Quadratic SVM 27.1 94.8 94.85 94.86 0.99
Fine Gaussian
SVM

41.3 93.9 94 93.9 0.99

Medium
Gaussian SVM

27.7 95 95 95.2 0.99

Fine KNN 39.1 94.8 94.7 94.7 0.98
Medium KNN 38.9 84.7 84.4 84.7 0.98
Coarse KNN 37 95.2 95.1 95.2 0.99
Cosine KNN 39.2 84.7 84.6 84.8 0.98
Cubic KNN 37.9 95 95 95.2 0.99

Table 14: Confusion matrix for RGB image classification with blanket using ResNet50 model with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 523 7 4 5 6 1
Prone_Right 3 540 8 2

True class Prone_Head 7 530 4 25
Prone_Left 6 5 6 531 6 7
Right_Log 5 2 16 3 525 3
Supine 5 2 1 6 540

The classification results of the VGG16 model for the HSP dataset, using RGB images and
blankets, are shown in Table 15. The extracted test features from VGG16 were passed to ten ML
classifiers. The highest accuracy, 95.8%, was achieved by the LSVM classifier when using the VGG16
model. This model demonstrates performance metrics, including computational time, recall rate,
precision rate, and AUC value, of 76 s, 95.5, 95.6, and 0.99, respectively. The second highest accuracy,
95.5%, was obtained by the QSVM classifier, resulting in computational time, recall rate, precision
rate, and AUC values of 76.4 s, 95.4, 95.4, and 0.99. The difference in accuracy and computational
time between the top two models was 0.3% and 0.4 s. The third-best accuracy, noted as 95.2%, was
achieved by the FKNN classifier, along with computational time, recall rate, precision rate, and AUC
values of 114.6 s, 95.2, 95.2, and 0.99, respectively. Based on the confusion matrix for VGG16 and
LSVM, Table 16 shows that the developed model herein performs better in the supine class than in the
other classes.
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Table 15: Proposed results of the HSP RGB image classification with blanket using VGG16 model
with 5-fold cross-validation

ML Classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Cubic SVM 76.2 95.4 95.8 96 0.99
Linear SVM 76 95.8 95.5 95.6 0.99
Quadratic SVM 76.4 95.5 95.4 95.4 0.99
Fine Gaussian
SVM

108.6 95.1 95.1 95.18 0.99

Medium
Gaussian SVM

78.1 95.8 95.7 95.9 0.99

Fine KNN 114.6 95.2 95.2 95.2 0.99
Medium KNN 110.4 95.8 95.7 95.8 0.99
Coarse KNN 133.4 78.8 78.7 79.7 0.96
Cosine KNN 129.3 95.8 95.7 95.6 0.98
Cubic KNN 137.8 94 95 95.1 0.99

Table 16: Confusion matrix for RGB image classification with blanket using VGG16 model with 5-fold
cross validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 520 5 16 2 3
Prone_Right 3 538 10 3

True class Prone_Head 543 13 9 2
Prone_Left 4 5 537 10 4
Right_Log 11 20 522 1
Supine 19 543

4.3 Fusion Numerical Results on Blanket Using Thermal and RGB Data
This section presents the results of analyzing HSP images using both thermal data and blankets.

The features were extracted from two modified deep learning models, ResNet50 and VGG16, using
thermal data with a blanket fused together. The fused features were passed to the proposed ML
classifiers. The results for the proposed fused model, utilizing thermal data and blankets, are presented
in Table 17. The highest accuracy, 98.5%, was achieved by the Cubic SVM classifier. This model
demonstrates performance metrics, including computational time, recall rate, precision rate, and AUC
values, of 177.9 s, 98.5, 98.7, and 1. The QSVM classifier achieved the second-highest accuracy of
98.4%, with corresponding performance values of 159.2 s, 98.4, 98.4, and 1. Remarkably, the gap in
accuracy between these two top-performing models was only 0.1%. Furthermore, the Medium KNN
classifier achieved the third-best accuracy of 98.3%, with corresponding performance values of 125.5 s,
98.3, 98.35, and 0.99. The confusion matrix for fused ResNet50 and VGG16, along with the Cubic
SVM model, is shown in Table 18.
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Table 17: Proposed fusion-based results of the HSP Thermal images using ResNet50 and VGG16
along with Cubic SVM model with 5-fold cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Linear SVM 169.8 98.2 98.2 98.2 0.99
Quadratic SVM 159.2 98.4 98.4 98.4 1
Cubic SVM 177.9 98.5 98.5 98.7 1
Fine Gaussian
SVM

928.3 81.6 81.6 90.7 0.98

Medium
Gaussian SVM

188.5 98.2 98.1 98.2 0.99

Fine KNN 153.8 98.3 98.3 98.3 0.99
Medium KNN 125.5 98.3 98.3 98.35 0.99
Coarse KNN 127.4 88.5 88.4 89 0.98
Cosine KNN 174.7 98.1 98 98.2 0.99
Cubic KNN 640 88.6 88.5 89.1 0.983

Table 18: Confusion matrix for fused features from VGG16 and ResNet50 using a thermal image with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 517 2 1
Prone_Right 3 516 1
Prone_Head 515 3 2

True class Prone_Left 3 2 514 1
Right_Log 1 515 1
Supine 4 516

The results for the proposed fused model, utilizing RGB data and blankets, are presented in
Table 19. The highest accuracy, 99%, was achieved by the QSVM classifier. This model demonstrates
performance metrics, including computational time, recall rate, precision rate, and AUC value, of
201.5 s, 99, 99.1, and 1. The Cubic SVM classifier achieved the second highest accuracy of 98.9%,
with corresponding performance values of 206.9 s, 99, 99.1, and 1. Remarkably, the gap in accuracy
between these two top-performing models was only 0.1%. Furthermore, the Medium GSVM classifier
achieved the third-best accuracy of 98.7%, with corresponding performance values of 135.2 s, 98.6,
97.3, and 0.99. The confusion matrix for fused ResNet50 and VGG16, along with the Cubic SVM
model, is shown in Table 20.
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Table 19: Proposed fusion-based results of the HSP RGB images using ResNet50 and VGG16 along
with QSVM model with 5-fold cross-validation

ML classifiers Computational time
(sec)

Accuracy (%) Recall rate (%) Precision rate (%) AUC

Linear SVM 203 98.8 98.9 98.8 1
Quadratic SVM 201.5 99 99 99.1 1
Cubic SVM 206.9 98.9 99.1 99.1 1
Fine Gaussian
SVM

572.9 96.8 96.8 97.3 0.99

Medium
Gaussian SVM

135.2 98.7 98.6 98.9 1

Fine KNN 166.6 98.6 98.6 98.8 0.99
Medium KNN 271.4 98.2 98.1 98.2 0.99
Coarse KNN 265.5 86.4 86.3 87.4 0.98
Cosine KNN 131.6 98.3 98.2 98.3 0.99
Cubic KNN 730.5 98 98.1 98 0.99

Table 20: Confusion matrix for fused features from VGG16 and ResNet50 using RGB image with
5-fold cross-validation

Predicted class

Left_Log Prone_ Right Prone_ Head Prone_Left Right_Log Supine

Left_Log 517 2 1
Prone_Right 3 516 1

True class Prone_Head 515 3 2
Prone_Left 3 2 514 1
Right_Log 2 515 1
Supine 5 516

5 Discussion

This study introduces several innovative elements that significantly enhance the practicality and
releuvance of sleep posture classification. The primary innovation lies in the incorporation of blankets
as a pivotal factor in sleep posture determination. This novel inclusion recognizes the real-world
scenario in which individuals often use blankets during sleep, which can have a substantial impact on
their posture and overall comfort. Furthermore, the study advanced the granularity of posture classifi-
cation by expanding beyond the standard four postures to a more detailed categorization involving six
postures, including head and leg positions. This refinement provides a more comprehensive insight into
sleep postures, which can have implications for understanding sleep patterns and comfort optimization
[45]. To improve the model’s generalizability, data fusion techniques were employed to simulate diverse
blanket conditions using the original dataset. This approach acknowledges the practical constraint
of investigating all available blankets and extends the applicability of this research. Additionally, it
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prioritizes privacy and confidentiality by limiting feature fusion to RGB and thermal images involving
blankets, ensuring the secure and ethical application of this study’s findings in real-world scenarios.

Various posture classification systems have utilized depth cameras, each with its unique approach.
Ren et al. [58] achieved 92.5% accuracy in classifying six postures (excluding prone) using SVM
with Scale-Invariant Feature Transform (SIFT) features. The developed deep learning model for six
postures in this study performed better, achieving a higher accuracy rate of 97.7% and 95% while using
thermal and RGB data without blankets. Mohammad et al. [19] also considered different blanket
conditions in sleep posture classification using a non-contact method. They utilized a Microsoft
Kinect infrared depth camera to classify 12 different sleeping postures, both with and without a soft
blanket. Their system achieved accuracies of 76% and 91% for scenarios with and without blankets,
respectively. In contrast, the six-posture coarse classification system in this study outperformed the
approach with an overall accuracy of 99%, even when considering potential interference from blankets.
The comparison with existing methodologies is shown in Table 21. Grimm et al. [43] introduced an
alleviation map technique for depth camera images and employed a CNN to classify three postures:
supine, left side-lying, and right side-lying. Their system achieved an impressive accuracy of 94%.
However, it is important to note that the developed classifier, while achieving higher overall accuracy,
is considered without and with blanket conditions, with a particular focus on addressing the challenges
posed by blankets. Additionally, this study revealed a remarkable finding: classification accuracy was
higher when a blanket was present as compared to previous studies.

Apart from the use of depth cameras, the effectiveness of pressure mats and wearables, including
embedded accelerometers, has been assessed for sleep posture classification. Ostadabbas et al. [59]
employed a Gaussian mixture model to analyze data from a pressure mat and classify three sleep
postures (supine, left, and right side-lying), achieving slightly better performance at 98.4% accuracy
despite having a less detailed classification. Furthermore, Fallmann et al. [60] utilized generalized
matrix learning vector quantization to classify six sleeping postures based on accelerometry data from
the chest and both legs, achieving an accuracy of 98.3%. It appears that contact-based sleep posture
classification systems may outperform non-contact systems. While this research introduced a non-
contact system that incorporates both RGB and thermal cameras, offering ease of operation and
enabling long-term monitoring, it is worth noting that these systems can be intrusive. Additionally,
wearables may not be ideal for long-term monitoring of the elderly, as they may forget to wear or use
the device consistently.

Furthermore, it is important to recognize that sleep-related musculoskeletal disorders and asso-
ciated pain can emerge as substantial consequences of sleep complaints and deprivation. Simply
identifying sleep posture alone may not inherently indicate whether the posture is problematic or
conducive to these issues. However, it is crucial to understand that this risk factor is modifiable and
can be addressed through the use of appropriate mattresses and pillows or engagement in targeted
physical exercise [33,61,62]. Future directions involve the development of a machine learning-based
approach for assessing spinal alignment and limb placement alongside the classification of sleeping
postures. This approach holds significant promise in identifying and addressing related problems, such
as neck and back pain, which can have a profound impact on overall sleep quality and health [45].
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Table 21: Compression with previous methods

References Year No. of classes Method Accuracy (%)

Chen et al. [63] 2021 9 (Histogram of Oriented
Gradients (HOG) +
Principal Component
Analysis (PCA))
Linear Regression,
Decision Tree, Gradient
Boost, Random Forest,
Multilayer Perceptron
and SVM

MLP: 86.2%
HOG-PCA:
99.8%
Hand-crafted
feature: 96.3%

Mohammadi
et al. [11]

2021 5 Ne novo CNN, Transfer
Learning, ResNet-152

95.1%

Tam et al. [9] 2021 4 and 7 CNN and Data
augmentation

4-classes: 97.1%
7-classes: 88.9%

Tam et al. [41] 2022 6 EfficientNet-B4,
ResNet-50 and
ECANet-50

92.3%

Proposed 2024 6 Transfer Learning and
Feature Fusion

99%

6 Conclusion

This study underscores the effectiveness of a developed fine-grained six-posture system, even when
considering the potential impact of blankets, achieving a satisfactory overall classification accuracy of
99%. These findings lay a solid foundation for the practical implementation of sleep surveillance sys-
tems in care homes and hospitals. However, the study acknowledges certain limitations. For instance,
the dataset did not encompass age groups older than 30 or younger than 18, potentially limiting
the model’s generalizability. Additionally, the gender ratio among participants was unbalanced. In
order to address these limitations, future research should focus on gathering a larger and more diverse
dataset to enhance the model’s ability to generalize, especially for positions with finer granularity.
Moreover, future efforts can include conducting field tests to validate the system’s performance in real-
world settings and diversifying the dataset by including participants with various health conditions
and different blanket conditions. Furthermore, researchers can work toward enhancing the system’s
capabilities to not only classify postures but also identify body morphotypes, body segment positions,
and joint angles, further advancing its utility in sleep monitoring and healthcare applications.
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