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ABSTRACT

This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory
efficacy, specifically tailored for environments characterized by markedly low luminance levels. Conventional
methodologies struggle with the challenges posed by luminosity fluctuations, especially in settings characterized by
diminished radiance, further exacerbated by the utilization of suboptimal imaging instrumentation. The envisioned
approach mandates a departure from the conventional YOLOX model, which exhibits inadequacies in mitigating
these challenges. To enhance the efficacy of this approach in low-light conditions, the dehazing algorithm undergoes
refinement, effecting a discerning regulation of the transmission rate at the pixel level, reducing it to values below
0.5, thereby resulting in an augmentation of image contrast. Subsequently, the coiflet wavelet transform is employed
to discern and isolate high-discriminatory attributes by dismantling low-frequency image attributes and extracting
high-frequency attributes across divergent axes. The utilization of CycleGAN serves to elevate the features of low-
light imagery across an array of stylistic variances. Advanced computational methodologies are then employed to
amalgamate and conflate intricate attributes originating from images characterized by distinct stylistic orientations,
thereby augmenting the model’s erudition potential. Empirical validation conducted on the PASCAL VOC and MS
COCO 2017 datasets substantiates pronounced advancements. The refined low-light enhancement algorithm yields
a discernible 5.9% augmentation in the target detection evaluation index when compared to the original imagery.
Mean Average Precision (mAP) undergoes enhancements of 9.45% and 0.052% in low-light visual renditions
relative to conventional YOLOX outcomes. The envisaged approach presents a myriad of advantages over prevailing
benchmark methodologies in the realm of target detection within environments marked by an acute scarcity of
luminosity.
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Nomenclature

YOLOX An advancement of the YOLO (You Only Look Once) series
CycleGAN Cycle-consistent adversarial networks
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mAP Mean average precision
SVM Support vector machine
CNNs Convolutional neural networks
GIoU Generalized intersection over union
DPLNet Dual-path learning network
MKUO Multiple kinds of underwater organisms
AGCL Attribute-guided curriculum learning
AP Average precision
ASR Attack success rate
BAWE Backdoor attack with wavelet embedding
AIOD-YOLO Aerial image object detection based on YOLO
FHB Fusarium head blight
HSIs High-order spatial interactions
LHAB Hybrid attention block
UAV Unmanned aerial vehicle
STD-Conv Spatial-to-depth convolution
Faster R-CNN Faster region-based convolutional neural network

1 Introduction

Target detection, a pivotal method for identifying and locating multiple distinct targets in images,
finds widespread applications in image retrieval [1], image classification [2,3], semantic segmentation
[4,5], visual tracking [6], superpixels [7], robot navigation [8], and diverse other fields [9]. The challenge
of extracting salient entities from intricate backgrounds is particularly pronounced in natural images,
given their diverse contextual complexities. Traditional approaches to target detection, such as the
integration of Hog features with Support Vector Machine (SVM) [10], Haar features with Adaboost
[11], and the Deformable Parts Model (DPM) algorithm [12,13], predominantly rely on human feature
annotation methods. Despite their effectiveness, these methods necessitate manual feature extraction,
leading to labor-intensive processes and limited portability [14]. Second-order detection models,
exemplified by convolutional neural networks, have emerged as advanced methodologies, surpassing
traditional patterns in efficacy and precision. First-order detection models, exemplified by the YOLO
[15] target detection model from Facebook’s artificial intelligence lab, exhibit noteworthy reductions
in detection time. With the utilization of a single training network, the test speed on a single Titan X
approaches 45 frames per second, a ninefold improvement over Faster R-CNN (Faster Region-based
Convolutional Neural Network).

The aforementioned factors exert a discernible influence on both perceptual subjectivity and the
efficacy of target detection. Consequently, this paper endeavors to refine the image processing method-
ology tailored for environments characterized by an extreme paucity of luminosity, seamlessly integrat-
ing it with the YOLOX model. Moreover, it strategically leverages the robust discriminatory attributes
intrinsic to Coiflet wavelet feature extraction to enhance detection precision. It is noteworthy, however,
that the resultant low-light enhanced image engendered by this algorithm lacks an efficient mechanism
for processing light transmittance. This deficiency results in an uneven luminous distribution across
the visual rendering, precipitating suboptimal image contrast and manifesting conspicuous blurriness
in areas of heightened brightness. These outcomes invariably have repercussions on both the efficacy of
target detection and the subjective perceptual experience. The target detection flow based on YOLO,
and main innovation of this paper are provided in Fig. 1.
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Figure 1: The target detection flow based on YOLO, and main innovation of this paper

The subsequent sections of this paper are delineated as follows: Section 3 expounds upon the
high-discrimination feature extraction methodology predicated on the Coiflet wavelet transform, in
conjunction with the methodological framework for the discernment of high-discrimination targets
within environments characterized by an extreme dearth of luminosity. In Section 4, a comparative
analysis of target identification methodologies benchmark approaches is presented, and Section 5
encapsulates the concluding remarks of this paper.

2 Related Works

Object detection methods can be broadly classified into four types, namely: Target Detection
Optimization, Feature Extraction and Model Modifications, Application-Specific Enhancements, and
Low-Light Image Enhancement Techniques. Each category focuses on distinct aspects of refining and
advancing the capabilities of object detection systems to meet the challenges posed by various scenarios
and application domains. Object Detection Optimization Workflow with Methods is shown in Fig. 2.

2.1 Target Detection Optimization
Target detection optimization prioritizes efficiency in demanding conditions. Investigate develop-

ments in low-light picture-enhancing techniques specifically designed to improve accuracy in detecting
targets. Observe the utilization of specialized convolutional neural networks (CNNs) specifically
designed for detecting encoded targets, revealing a specialized method for improving the accuracy
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of target recognition. Participate in this investigation into the domain of target identification, where
state-of-the-art tactics redefine effectiveness and precision in many situations.

Figure 2: Object detection optimization workflow with methods

The YOLOX [16] target detection network, proposed by Joseph Redmon and Ali Farhadi,
demonstrated remarkable efficiency by completing the detection of 320 ∗ 320 size images in 22
milliseconds. Following the YOLO (You Only Look Once), Zhu et al. [17] enhanced small-size feature
extraction using a deconvolution layer in the residual module. Generalized Intersection over Union
(GIoU) replaced IoU, minimizing positional discrepancies. The improved algorithm achieved 94.86%
average detection accuracy, a 0.07% higher F1 value, and a 1.16% higher AP value compared to
the original. The weeding robot, employing YOLOX, attained a detection rate of 92.45% for maize
seedlings and 88.94% for weed recognition at 0.2 m/s. These findings offered crucial insights for real-
time weed detection and robotic precision weeding. Leng et al. [18] described Deep-Orga, a lightweight
model based on YOLOX that improved organoid detection while requiring some more computing
power. They compared the model with classical models on an intestinal organoids dataset, and ablation
experiments validated performance improvements. Deep-Orga provided an automated method for
organoid morphology evaluation, replacing manual analysis processes. Jing et al. [19] proposed
improving fruit detection in YOLOv7 by using the AlphaIoU loss function and optimizing boundary
box regression. Experimental results showed significant improvements in accuracy, precision, and
recall, enhancing YOLOv7-tiny model performance for fruit detection tasks. Zhan et al. [20] proposed
YOLOPX, an anchor-free multi-task learning network for panoptic driving perception. YOLOPX
simplified training, enhanced adaptability, and achieved optimal performance. It included a new
anchor-free detection head and a lane detection head. On the BDD100K dataset, it showed state-
of-the-art performance: 93.7% recall and 83.3% mAP50 for traffic object detection, 93.2% mIoU for
drivable area segmentation, and 88.6% accuracy and 27.2% IoU for lane detection. YOLOPX also
exhibited faster inference speed than YOLOP, making it a powerful solution for panoptic driving
perception. Liu et al. [21] addressed challenges in remote sensing object detection by proposing
the SDSDet detector. They introduced a non-reorganized patch-embedding layer and a dual-path
learning network (DPLNet) to mitigate spatial artifacts and optimize the learning of intrinsic feature



CMES, 2024, vol.140, no.2 1511

information. Furthermore, an OGF-NEM neighbor-erasing module improved the ability to find small,
dense, and multi-scale objects in remote sensing images. SDSDet achieved excellent results on DOTA
and MS COCO datasets, with a 42.8% AP on DOTA and 33.3% AP on MS COCO, a model size
of 4.87 M, and 95 FPS. Huang et al. [22] filled in gaps in research by creating the Multiple Kinds
of Underwater Organisms (MKUO) dataset, which had accurate bounding box annotations for 84
types of underwater organisms. They evaluated existing object detection algorithms on this dataset,
establishing a baseline for future reference. They also proposed the Sparse Ghost Module, a lightweight
module designed for object detection networks. Substituting the standard convolution with this mod-
ule significantly reduced network complexity and improved inference speed without obvious detection
accuracy loss. Li et al. [23] improved training efficiency for small samples by integrating low-level
and high-level features. They enhanced traffic light image learning and dynamic parameter selection,
achieving higher average precision on three datasets. The approach demonstrates effectiveness and
potential for autonomous driving systems, meeting real-time requirements. He et al. [24] proposed the
modulated intensity decoding (MID) method for car body surface defect detection. The method uses
encoded fringe patterns that are projected onto the body of the car and captured reflection images
to make high-quality surface defective decoded (SDD) images that clearly show defects against the
background. Comparison experiments with four typical object detection networks demonstrate the
superior effectiveness of MID over conventional approaches using a square-wave-like pattern light
source in detecting and classifying car body surface defects.

Ng et al. [25] introduced ICText, the largest dataset for text detection and recognition on integrated
circuits, which included labels for character quality attributes. They proposed the Attribute-Guided
Curriculum Learning (AGCL) method to leverage labeled attributes for improved object detector
performance. AGCL, when applied in a plug-and-play manner to various detectors, achieved higher
average precision (AP) on ICText and proved effective on the Pascal VOC dataset, outperforming
existing methods without additional computational overhead during inference. Yan et al. [26] sug-
gested AIOD-YOLO, an improved aerial image object detection algorithm based on YOLOv8-s,
to address issues associated with high-altitude imaging. They introduced a multibranch contextual
information aggregation module, a multilayer feature cascade efficient aggregation network, and an
adaptive task alignment label assignment strategy. In tests using the VisDrone dataset, AIOD-YOLO
achieved a 7.2% improvement in mAP compared to YOLOv8-s. This demonstrated its proficiency
in detecting small objects, managing changes in scale, and handling dense object distribution in
aerial images. Zhang et al. [27] developed a method for counting whiteflies and fruit flies in split
images, delivering reliable performance. Tailored for mobile devices, this approach showed promise in
monitoring pest populations and had potential applications in various small target detection scenarios.
Cao et al. [28] tackled challenges in spacecraft datasets by introducing a dataset for key spacecraft
component detection and segmentation. The dataset, captured under diverse conditions, facilitated
research in spacecraft-related computer vision tasks, providing valuable insights and opportunities
for evaluation. Shen et al. [29] presented a method for backdoor attacks on object detection models.
They introduced five attack scenarios and assessed their effectiveness using the Attack Success Rate
(ASR). Moreover, they proposed a backdoor attack with wavelet embedding (BAWE) to enhance
trigger stealth, revealing vulnerabilities in object detection models. Zhu et al. [30] proposed LRSNet, a
lightweight remote sensing object detection network for UAVs based on YOLOv5s. It addressed issues
such as complex backgrounds, small targets, and hardware limitations by employing MobileNetV3
as the backbone and CM-FPN with effective channel attention modules. LRSNet provided fast
and accurate results on a variety of datasets. Ullah et al. [31] introduced an automated method for
quantifying crop consistency in the early growth stage, utilizing YOLOv5 for plant counting and
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a lightweight U-Net for row segmentation. This method achieved high precision in canola plant
detection and accurate row segmentation with fewer parameters, offering an efficient alternative
for large-field assessment of plant stand count and spacing. Bao et al. [32] proposed a UAV-based
method for detecting Fusarium head blight (FHB) in wheat fields. They developed a parallel channel
spatial attention module and the PCSA-YOLO detection algorithm to address challenges such as
overexposure, different spike orientations, and small lesions. The method outperformed YOLOv5s in
precision, recall, and mAP@0.5 when preprocessing, rotation, and scaling were conducted effectively,
making it a promising option for identifying FHB in agricultural settings.

Yin et al. [33] introduced HSI-ShipDetectionNet, a lightweight framework designed for accurate
small-ship detection in optical remote sensing images. This model excelled at detecting objects
and was computationally efficient, thanks to the use of high-order spatial interactions (HSIs) and
a hybrid attention block (LHAB). When evaluated on the Kaggle and FAIR1M datasets, HSI-
ShipDetectionNet outperformed existing top models. This made it suitable for deployment on
resource-constrained platforms, such as those used in maritime surveillance systems. Zhao et al. pro-
posed RA-YOLOX [34], an enhanced version of the YOLOX one-stage object detection model.
RA-YOLOX introduced a re-parameterization-aligned decoupled head, which better aligned clas-
sification and regression tasks, thus improving the learning of connection information. The novel
label assignment scheme of RA-YOLOX focused on high-quality positive samples and effectively
filtered out low-quality ones during training. RA-YOLOX offered three lite models that surpassed
similar-sized YOLOX models in performance on the MS COCO-2017 validation set. Wang et al. pro-
posed YOLOX_w [35], an advanced algorithm based on YOLOX-X for unmanned aerial vehicle
(UAV) object detection. With YOLOX-X as the baseline network, the new algorithm addressed
challenges such as complex backgrounds and numerous small objects in UAV images. The algorithm
enhanced small object detection by incorporating preprocessing with the SAHI algorithm and data
augmentation. It also introduced a shallow feature map into the PAN network, an ultra-lightweight
subspace attention module (ULSAM), and optimized the bounding box regression loss function.
The experimental results on the VisDrone dataset showed an 8% improvement in detection accuracy
compared to YOLOX-X, highlighting its effectiveness and robustness. Zhu et al. introduced YOLOX-
ECA [36], a method for detecting damage in conveyor belts. This model was based on YOLOX,
CSPDarknet, and the ECA channel attention mechanism. It achieved an accuracy of 95.65% and
a speed of 30.50 FPS, effectively addressing training cost, real-time performance, and reliability
issues. The inclusion of cross-domain and intra-domain transfer learning techniques further enhanced
training performance and robustness, leading to improved detection accuracy compared to existing
methods.

2.2 Feature Extraction and Model Modifications
Advancements in feature extraction and model modifications offer improved detection accuracy.

Explore the domain of enhancing model size and speed by employing strategic loss functions, revealing
the intricate equilibrium between efficiency and accuracy. Experience the potency of efficient fusion
and segmentation approaches, revolutionizing the field of detection for enhanced accuracy. Embark on
an exploration of feature extraction and model refining, where state-of-the-art breakthroughs redefine
the benchmarks for detecting skills.

Luo et al. [37] presented an occlusion insulator detection system that utilized YOLOX to tackle
the challenges of locating small insulators with extreme aspect ratios. Their method incorporated
an improved SPP (Spatial Pyramid Pooling) module for enhanced semantic information extraction,
an AFF-BiFPN (Asymmetric Feature Fusion Bottleneck with BiFPN) module for multi-feature
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fusion, and an adaptive anchor frame extraction method for improved localization accuracy. The
experimental results of this system demonstrated a 90.71% precision and 88.25% recall in identifying
defective insulators, showcasing its effectiveness in this niche area. Zhou’s model [38] integrated a
dynamic label assignment strategy to enhance precision in object detection. The model featured an
upgraded CSPNet (Cross Stage Partial Network) and PANet (Path Aggregation Network), which
improved multi-scale object detection capabilities. The Rep-CSPNet (Reparameterization CSPNet)
ensured fast inference with reparameterization. YOLO-NL (YOLO with Non-Local) achieved a 52.9%
mAP on the COCO 2017 dataset, outperforming YOLOX by 2.64%. Remarkably, it reached 98.8%
accuracy at 130 FPS for face mask detection in real-life scenarios, using self-built FMD and open-
source datasets. Su et al.’s approach [39] focused on enhancing reference average information by
introducing MODSNet (Multi-Object Detection System Network) with MODSLayer for capturing
rich inter-channel details. By maintaining the original dimensions of the light head, the model ensured
lightweight non-dimensionality reduction, which significantly improved both detection accuracy and
speed. Experimental results indicated a 27.5%–91.1% accuracy improvement on a crack dataset
compared to YOLOX, with a reduction in both parameters and computational complexity. In the
context of automated grape harvesting, detecting clusters amidst background clutter and occlusion
challenges was crucial. Improvements detailed in [40] included enriching the dataset with random
brightness, flip, and mosaic augmentations. The spatial-to-depth convolution (STD-Conv) module
enhanced grape feature information by transforming spatial dimensions into depth. A parameter-
free attention mechanism (SimAM) was applied to improve YOLOv4, YOLOv5, and YOLOX. The
enhanced YOLOX achieved an 88.4% mAP, 87.8% precision, and 79.5% recall, indicating its effec-
tiveness in identifying grape clusters for automated harvesting. In the field of semiconductor defect
detection, the proposed FFDG-Cascade system [41] combined a classifier with an object detector for
high-speed and accurate results. Zhu et al. enhanced the detection of small defects using shallow-to-
deep attentional feature fusion. A comprehensive dataset, which included synthetic samples, helped
mitigate overfitting. The integration of synthetic data boosted detector performance by 7.49 mAP.
With these improvements, FFDG-Cascade achieved a 61.77% increase in speed, and the average
false acceptance and rejection rates decreased by 80.67% and 59.93%, respectively, demonstrating
significant advancements in semiconductor defect detection.

Wang et al. [42] introduced an automatic detection approach that utilized a modified version
of YOLOX and a segmentation model named DSASNet. DSASNet employs Parallel Twins-SVT
self-attention branches to eliminate mode-sensitive features and a mid-fusion module for adaptable
feature integration. The incorporation of pyramid-pooling enhances the segmentation capabilities of
the model. In the test set, DSASNet outperformed baseline methods with a 93.65% F1-score and
0.881 IoU, demonstrating the accuracy and efficiency of the two-step pavement distress segmentation
method. In another study, a one-stage network was proposed to tackle challenges in optical remote
sensing object detection, such as effective localization attention, small object compensation, and
background separation strategies [43]. Through extensive experiments on public datasets, the model
achieved impressive mAPs of 94.2%, 70.7%, and 80.5% on the NWPU VHR-10, DIOR, and DOTA
datasets, respectively, showcasing its robustness and adaptability. Du et al. [44] focused on enhancing
YOLOv4-tiny for target detection in pastoral environments. To tackle the issue of livestock size
variation, they implemented a pyramid network with multiscale feature fusion and introduced a
compound multichannel attention mechanism, which significantly improved accuracy. The algorithm,
tested on the Jetson AGX embedded platform, achieved an 89.77% detection accuracy and a detection
speed of 30 frames per second. In comparison to the standard YOLOv4-tiny, the modified version
increased the average detection accuracy by 11.67% while maintaining a similar detection rate.
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Zou et al. [45] chosed the high-performance YOLOX-S model for detecting external force objects
in transmission line corridors. They enhanced the model to improve multi-object detection and the
extraction of irregular features. The addition of a global context block enhanced perception, while a
convolutional block attention module improved the recognition of objects with random features. The
employment of EIoU facilitated the precise determination of object detection boxes and successful
detection of external force targets. Although the model shows promise, there is a recognized need for
improvements in smoke recognition, particularly in differentiating between smoke and fog targets.

2.3 Application-Specific Enhancements
Customized improvements for a specific application YOLOX plays a prominent role in trans-

forming the process of detecting and removing weeds with high accuracy in real-time using robots.
Examine the utilization of cutting-edge methods to overcome obstacles in occlusion insulator detec-
tion, highlighting the flexibility and effectiveness of YOLOX in meeting the unique requirements
of the application. Participate in the investigation of customized improvements created to enhance
performance in these specific fields.

Ferrante et al. [46] conducted an evaluation of various YOLO-based object detection models,
including YOLOv4, Scaled-YOLOv4, YOLOv5, YOLOR, YOLOX, and YOLOv7, for their perfor-
mance on small datasets related to endangered animals in Brazil. Utilizing the BRA-Dataset and
focusing on data augmentation and transfer learning techniques, they found that Scaled-YOLOv4
was particularly effective at reducing false negatives, while YOLOv5 Nano delivered the highest FPS
(frames per second) for detection. This research underscores the potential of YOLO-based models
in wildlife conservation efforts, where training data may be limited. Jiao et al. [47] introduced a
real-time litchi detection method tailored for portable and low-energy edge devices. By employing
the YOLOX model, they leveraged a CNN-based single-stage detector to accurately pinpoint litchi
fruit locations. Through channel and layer pruning, they compressed the model by 97.1%, yielding a
compact 6.9 MB model that maintained a high average precision of 94.9% and an average recall of
97.2%. With an operational speed of 99 FPS, the method outperformed the unprocessed model by
a factor of 1.8 in speed, making it an ideal solution for real-time litchi detection in orchards using
portable, low-computational harvesting equipment. In the context of industrial production where
hardware resources are constrained, Liu et al. [48] developed YOLO_Bolt, a lightweight adaptation of
the YOLOv5 model. This model incorporates a ghost bottleneck lightweight convolution to reduce the
model’s size and an asymptotic feature pyramid network to enhance feature utilization and detection
accuracy. By focusing on the loss function and modifying the head structure, they further improved
detection precision. The model, which has half the parameters of YOLOv5s, demonstrated an increase
in mAP by 2.4% and a 104 FPS improvement in testing on MS COCO 2017 and a custom bolt
dataset. On the homemade dataset, the mAP 0.5 saw a 4.2% increase, outperforming YOLOv8s
by 1.2%. YOLO_Bolt’s enhanced performance provides robust support for workpiece detection in
industrial settings. Yu et al. [49] introduced SARGap, a novel full-link automatic pruning approach
for SAR (Synthetic Aperture Radar) target detectors, aiming to balance speed and accuracy. SARGap
analyzes the network structure, identifies pair-coupled structures, and prunes channels accordingly.
An Automatic Pruning Rate Search method (APRS) optimizes pruning rates using a Multiobjective
Optimization Loss Function (FPBL). The experiments conducted on large-scale SAR target detection
datasets showcased SARGap’s superiority in terms of parameter and flop compression with minimal
impact on accuracy, making it a versatile tool for deep learning target detectors. Zhang et al. [50]
proposed the Object Knowledge Distilled Joint Detection and Tracking Framework (OKD-JDT),
which amalgamates the strengths of two-stage and one-stage multiple object tracking (MOT) methods.
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Within this framework, the detection network serves as a teacher, guiding feature learning in one-
stage methods through knowledge distillation. For the distillation process, they designed adaptive
attention learning and employed joint center point distance and Intersection over Union (IoU) for
efficient tracklet generation in satellite videos. The experiments conducted using JiLin-1 satellite videos
confirmed the effectiveness and state-of-the-art performance of OKD-JDT in delivering accurate and
efficient MOT. Lastly, Çınar et al. [51] presented a YOLOv5-based urine analysis system for efficient
particle detection in urine sediment examination (USE). The system utilizes artificial intelligence
to identify and count various particles, offering automated reporting of components in centrifuged
urine samples. YOLOv5m emerged as the most accurate architecture among the evaluated YOLOv5x
models, with the highest mAP value of 95.8%. The system, designed to operate on a single-board
computer, aims to streamline the process, standardize microscopy, and serve as educational material
for laboratory personnel engaged in urinary system disease detection.

2.4 Low-Light Image Enhancement Techniques
The focus is on Low-Light Image Enhancement Techniques, which aim to optimize YOLOX for

efficient vehicle detection. Additionally, Crack Detection accuracy is enhanced using MODSNet, and
a Two-Step Approach to Pavement Distress Segmentation is introduced to improve efficiency. The
journey towards achieving enhanced object detection in difficult low-light circumstances is revealed,
providing a glimpse into groundbreaking approaches.

In the Titan X environment, the detection accuracy reaches 57.9%. The challenge of insufficient
illumination in images results in suboptimal contrast and fine-grained details, thereby impacting
target detection precision. A robust low-light image enhancement solution becomes imperative for
restoring informational granularity. For instance, Priyanka et al. [52] employed a principal com-
ponent analysis framework to enhance low-light images by decomposing luminance-chrominance
components. Dong et al. [53] developed a low-light enhancement strategy using a dehazing algorithm,
but it lacks effective light transmittance processing, resulting in uneven luminosity distribution,
diminished contrast, and noticeable blurriness in brighter regions. Tian et al. [54] addresses challenges
in underwater object detection using a lightweight model with image enhancement and multi-attention.
MSRCR enhances image quality, YOLOX serves as the baseline, and GhostNet reduces computation.
The multi-attention module LCR enhances feature learning and detection accuracy. Experimental
results show a mAP of 77.32 with a size of 18.5 MB, 1.25 higher and 46.4 less than the baseline,
demonstrating superior detection precision while keeping the model lightweight. Xi et al. [55] propose
MPS-YOLO, a multi-scale information fusion network for aerial remote sensing. FPN-P reduces
feature loss for similar targets, MRF addresses multi-scale challenges, and ESF enhances detection.
Results show a 4.15% accuracy improvement and robustness to difficult targets. Chen et al. [56]
comprehensively review object detection, exploring traditional algorithm challenges and analyzing
anchor-based, anchor-free, and transformer-based approaches. They detail structures, performance,
advantages, and disadvantages.

In summary, the analyzed literature primarily falls into the category of “Target Detection
Optimization,” with a focus on enhancing the performance of object detection models. Several
studies propose novel approaches and optimizations to address specific challenges in various domains.
For instance, Cao et al. [28] address challenges in spacecraft datasets and introduce a dataset for
key spacecraft component detection and segmentation, contributing valuable insights to spacecraft-
related computer vision tasks. Shen et al. [29] explore backdoor attacks on object detection models,
revealing vulnerabilities and emphasizing the importance of model robustness in the face of adversarial
scenarios. Furthermore, the introduction of lightweight models, such as LRSNet by Zhu et al. [30],
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tailored for UAVs, showcases efforts to handle challenges like complex backgrounds and small targets.
Ullah et al. [31] propose an automated method for quantifying crop consistency in the early growth
stage, combining YOLOv5 for plant counting and a lightweight U-Net for row segmentation. In
the domain of agricultural applications, Bao et al. [32] present a UAV-based method for detecting
Fusarium head blight (FHB) in wheat fields, employing a parallel channel spatial attention module.
Yin et al. [33] introduce HSI-ShipDetectionNet, a lightweight framework for accurate small-ship
detection in optical remote sensing images, emphasizing computational efficiency. Notably, several
studies extend and optimize the YOLO architecture. Zhao et al. [34] propose RA-YOLOX, an
improved version of YOLOX, introducing a re-parameterization-aligned decoupled head for enhanced
learning of connection information. Similarly, Wang et al. [35] propose YOLOX_w, an improved
YOLOX-X algorithm for unmanned aerial vehicle (UAV) object detection, addressing challenges
posed by complex backgrounds and numerous small objects.

Overall, these studies collectively contribute to the advancement of object detection techniques
by addressing specific challenges in diverse applications, showcasing the importance of tailored
optimizations and novel architectures for improved accuracy and efficiency.

3 Design of High-Discrimination Target Detection Method under Extremely Low-Light Conditions

The paramount phase within the dehazing procedure revolves around the computation of
ambient light and transmittance. Fundamentally, transmittance undergoes refinement through the
manipulation of P(x) [53], constraining its range to [0,0.5], thereby attenuating the lesser trans-
mittance to a specific threshold. However, this approach disregards the imperative consideration
that the extent of reduction should diminish commensurately with the decline of t(x) to 2t2(x).
Consequently, the ultimate imaging contrast of the original algorithm experiences degradation, par-
ticularly in scenarios where brightness-induced blurring is prevalent. The augmented low-light image
enhancement algorithm demonstrably enhances image fidelity to a remarkable degree. In comparison
to alternative methodologies, the visual representation derived through the elucidated method in
this paper exhibits a conspicuously heightened performance across various metrics, encompassing
information entropy, peak signal-to-noise ratio, spectral angle, mean square error, and even average
gradient. This augmentation stands as a pivotal assurance for the precision of target detection within
environments characterized by an exceedingly low luminance quotient. Moreover, the algorithm
significantly amplifies the contrast between brighter regions of the image and the surrounding objects,
thereby further accentuating visual perceptibility.

The high-discrimination target identification system tailored for environments characterized by
a dearth of luminosity comprises four constituent elements, as shown in Fig. 3. The first section
develops a low-light enhancement methodology based on the dehazing technique, which iteratively
refines to produce an augmented image with significant contrast differences between bright and
dark areas, ultimately improving target identification accuracy. Noteworthy is the employment of a
more apt and efficacious constraint framework governing light transmittance. In view of this, it is
imperative to recognize that relying solely on the integration of photographs from the dataset into the
deep learning network for training purposes leads to a notable loss of both low-frequency and high-
frequency information. The second section of this framework dedicates itself to formulating a high-
discrimination feature extraction strategy, facilitated by the Coiflet wavelet transform. This technique
enables the retention of finer-grained information accessible in each image along the horizontal,
vertical, and diagonal axes. The third component introduces a deep learning model predicated on the
YOLOX architecture, tailored for training. This model, emphasizing the finer attributes of the image
during the training process, culminates in a more precise target detection outcome.
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Figure 3: Highly differentiated target detection method process under extremely low-light conditions

The fourth section uses both subjective and objective assessments to give a full grade to both the
improved low-light enhancement algorithm and the target identification model described in this paper.
The principal contributions of this paper can be summarized as follows: (i) The low-light enhancement
algorithm, rooted in the dehazing technique, has undergone refinement to exercise finer control over
image transmission, thereby amplifying image quality and augmenting precision in target recognition.
(ii) It is recommended to leverage the Coiflet wavelet for the extraction of highly distinctive features
within the image. This strategic choice enables convolutional neural networks (CNNs) to devote
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greater attention to the image’s horizontal, vertical, and diagonal intricacies, consequently heightening
the accuracy of target detection. (iii) The deep learning model undergoes customization, wherein
the integration of CycleGAN [57] serves to broaden the array of image features. The sophisticated
computational framework advanced in this paper subsequently harmonizes these diverse image feature
types, ultimately utilizing YOLOX for training purposes.

Recognizing the contextual background, it is imperative to note that the input and output images
depicted in Fig. 1 serve as illustrative examples. The textual prompt, “Alice in Wonderland,” is
generated utilizing the Stable Diffusion [58] on Colab. The Text-to-Image latent diffusion model, Stable
Diffusion, is a collaborative development involving researchers and engineers from CompVis, Stability
AI, and LAION. The model is trained using 512 × 512 LAION-5B subset images, employing a frozen
CLIP ViT-L/14 text encoder to condition the model on textual prompts. Noteworthy attributes include
the model’s lightweight nature, enabling its operation on consumer GPUs, and its 860 M U-Net and
123 M text encoder.

3.1 Low-Light Image Enhancement Algorithm Based on Dehazing Model
The generation of the low-light image involves the application of the atmospheric dehazing model

to the inverted representation of the original low-light image, followed by the inversion of the processed
output. This intricate process is undertaken to heighten the visual appeal of the image. Aligned with
this methodology, the current paper advocates for a low-light image enhancement framework rooted
in a dehazing algorithm, resembling the conditions encountered during the capture of photographs
in foggy weather. The algorithm commences by subjecting the low-light image to inversion, followed
by the application of the atmospheric dehazing model, aimed at restoring clarity. Subsequently, the
resulting low-light image is utilized as input before undergoing channel-wise inversion within the 0 to
255 range.

Rc(x) = 255 − Ic(x) (1)

where c in Eq. (1) represents the three channels of the image in RGB, Ic(x) represents the pixel value
of the input image on each channel (I is the set of all pixel values, x is the single-pixel value), Rc(x)

represents the pixel of the output image on each channel value (R is the set of all pixel values, x is
the value of a single-pixel). Subsequently, the dehazing process is executed according to the model for
atmospheric dehazing, as defined by Eq. (2).

R(x) = J(x)t(x) + A(1 − t(x)) (2)

where R(x) is the brightness of the input image, J(x) is the image obtained after dehazing, and A is
the brightness of the original image or scene, that is, the ambient light. t(x) is the transmittance. The
existing condition is only R(x), so the ambient light A and the transmittance t(x) must be calculated.
To estimate the ambient light, the approach involves traversing all pixels in the image and sorting
them in descending order based on the minimum value of each pixel across the three RGB channels.
Subsequently, the first 100 pixels are selected, and the ambient light is determined by identifying the set
with the highest sum of the three channels among these 100 pixels. The estimation of t(x) is articulated
through Eq. (3).

t(x) = 1 − w min
c∈{r,g,b}

(
min

(
Rc(y)

Ac

))
(3)

By transforming the form of Eq. (2), an equivalent expression, denoted as Eq. (4), can be derived.

J(x) = R(x) − A
t(x)

+ A (4)
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However, the enhancing impact for low-light images is relatively poor by employing this approach
directly. It is considered that the region of interest can be enhanced without effecting the region of
non-interest. Therefore, a constraint term P(x) is introduced,

P (x) =
{

2t (x) , 0 < t (x) < 0.5
1, 0.5 < t (x) < 1 (5)

Thus, building upon Eqs. (4)–(5), the derived expression is denoted as Eq. (6).

J(x) = R(x) − A
t(x)P(x)

+ A (6)

Eq. (6) implies that when t(x) is less than 0.5, the corresponding pixel requires enhancement.
Therefore, a small value is assigned to t(x) to decrease t(x)P(x) and increase the RGB intensity of the
pixel. Conversely, when t(x) exceeds 0.5, the original value is retained to prevent an excessive increase
in the corresponding pixel intensity. In the case of 0 < t(x) < 0.5, to make the dark place darker,
although the constraint term P(x), and reduced t(x) to 2t2(x), reducing the transmittance in the range
of 0–0.5 [59], to make the transmittance t(x) in the range of 0–0.5 lower. However, it simply updates
the original data to a square value and uses 2 as the coefficient to make the constrained transmittance
closer to the original transmittance, to make the transmittance t(x) in the range of 0–0.5 lower.

This approach encounters limitations in making a small value converge further, i.e., as t(x)

decreases within the same range, 2t2(x) fails to exhibit increased convergence in each corresponding
range of decreasing t(x). In essence, the objective of making smaller values in the range of 0–0.5 even
smaller is not effectively achieved. Consequently, the convergence method for t(x) is revised from 2t2(x)

to ln(t(x) + 1)/2. The nonlinearity of the derivative of ln(t(x) + 1)/2 means that, within the same
reduction range of t(x), the actual reduction in the value of ln(t(x) + 1)/2 is more pronounced. To
elucidate the impact of this enhancement, Table 1 compares the changes that occur before and after
the enhancement.

Table 1: Fluctuations in value prior to and subsequent enhancements

t(x) 2t2(x) t2 (x) t3 (x) t4 (x)

0.5 0.500 0.203 0.180 0.035
0.4 0.320 0.168 0.140 0.037
0.3 0.180 0.131 0.100 0.040
0.2 0.080 0.091 0.060 0.044
0.1 0.020 0.048 0.020 0.048

In Table 1, t2 (x) = ln(t(x)+1)/2, t3 (x) = 2(t(x)2 −(t(x) − 0.1)2), t4 (x) = (ln(t(x)+1)− ln(t(x)+
0.9))/2. Analyzing Table 1, it becomes evident that as t(x) transitions from 0.5 to 0.1, the disparity in
2t2(x) gradually diminishes in the process of decreasing from 0.500 to 0.020, exhibiting a drop rate
of 0.040. Conversely, the improved ln(t(x) + 1)/2 reveals an incremental difference during the descent
from 0.203 to 0.048 within the same reduction of t(x), with an augmented magnitude for each decrease.
Furthermore, it is noteworthy that when t(x) approximates 0.5, the impact of the coefficient P(x)

constraint becomes less conspicuous. This is particularly prominent in the cases of 0.4 and 0.5. Under
the constraints of 2t2(x), values such as 0.50 and 0.32 exhibit minimal divergence from the original
values. In contrast, the revised constraint not only effectively confines t(x) when it is less than 0.5
but also accentuates the magnitude of restriction as the value diminishes. This results in a final image
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with enhanced depth and increased realism. In fact, the characteristics of 2t2(x) and ln(t(x)+ 1)/2 are
not only reflected in these special values, the five values in Table 1 are just to illustrate the different
constraints of the two strategies. On the image of the function ln(t(x) + 1)/2, the characteristic of
this decline is continuous, so all changes in t(x) within the range of 0-0.5 can be constrained, and the
visualization effect is shown in Fig. 4.

Figure 4: The visualization effect: Original and improved t(x) function with derivatives, pre-improved
and improved low-light image enhancement
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The blue lines in Figs. 4a and 4b depict the functions 2t2(x) and ln(t(x) + 1)/2, respectively, while
the yellow lines represent their corresponding derivatives. The visual representations and monotonic
behavior of these two functions reveal that, despite the contraction of the dependent variable and
the initial diminishment of the independent variable in the case of 2t2(x), the magnitude of reduction
remains constant. This constancy arises from the linear connection in its derivative, implying that
reducing t(x) in a continuous interval does not ensure a more convergent value after applying the 2t2(x)

constraint each time, compared to the preceding value in a similar interval. As t(x) falls, the 2t2(x) also
falls linearly, which does not have a greater restricting effect on lesser t(x) values. Instead, it moves in
the opposite direction. Once more looking at the ln(t(x) + 1)/2 function and its derivative image, it
can be observed that even if t(x) progressively shrinks from 0.5, ln(t(x)+1)/2 still gradually decreases,
with each decline having a higher magnitude. In stark contrast to the original 2t2(x), this constraint
technique ensures that the value after the constraint can indeed decrease in tandem with the decrease
in t(x). Figs. 4c and 4d illustrate the intuitive effects and accompanying histograms of low-light image
processing [53] and the approaches proposed in this paper, respectively. It is evident that the image
constrained by the original method exhibits inferior performance in terms of light contrast. It tends to
blend with the surrounding brightness, resulting in diminished contrast and clarity, especially in well-lit
areas. Conversely, the image processed using the suggested method elicits a more pronounced sensory
effect, accentuating the overall contrast of the image. Furthermore, the histogram reveals a greater
abundance of data. Following this modification, the entire procedure can be summarized as follows:
Step 1) Enter a low-light image. Step 2) Reverse the three channels of the low-light image in the range
of 0–255. Step 3) Use atmospheric dehazing model for dehazing; Step 4) Judge the transmittance t(x)

obtained in Eq. (3), if 0 < t(x) < 0.5, t(x) = ln (t (x) + 1) /2, otherwise t(x) keep the original value;
Step 5) Reverse the processed image to get a low-light enhanced image.

3.2 Design of High-Discrimination Feature Extraction Method
The Coiflet wavelet exhibits superior performance in terms of orthogonality, biorthogonality,

and the maintenance of a good vanishing moment and tight support in both the frequency and
time domains. Employing the two-dimensional wavelet transform enables the further subdivision
of each image’s low-frequency information into high-frequency information at various resolutions.
The Coiflet wavelet, characterized by a wide support range of 6N-1 with proximity to symmetry,
serves as a biorthogonal wavelet. The wavelet function features a 2N vanishing moment, while the
scale function possesses a 2N-1 vanishing moment. This wavelet’s higher compression ratio results in
smaller high-frequency coefficients, a flatter filter, and more concentrated image energy after wavelet
decomposition. Consequently, maximizing the number of zero wavelet coefficients or minimizing non-
zero wavelet coefficients facilitates data compression and noise elimination. This phenomenon is often
referred to as the amplitude of the vanishing moment determining the image’s vibration level after
decomposition. The Coiflet wavelet’s effective balance between support length and calculation time
is crucial. Longer support lengths require more calculation time and generate more high-amplitude
wavelet coefficients, which inversely correlate with the vanishing moment. If the support length is
excessively long, boundary issues may arise, while an overly short support length inhibits signal energy
concentration due to a diminutive vanishing moment. The concepts of vanishing moment and support
length are, therefore, mutually exclusive. The Coiflet wavelet accurately reflects this balance with its
favorable vanishing moment and robust support in both the frequency and temporal domains. In
terms of orthogonality, biorthogonality, and spectrum utilization rate, the Coiflet wavelet surpasses
the standard Gaussian function. The two vector spaces Vj and Wj formed by the scale function of the
Coiflet wavelet and the wavelet function are defined as Eqs. (7) and (8), respectively.
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Vj = si/2φ(six − k)|j, k ∈ Z (7)

Wj = si/2ψ(six − k)|j, k ∈ Z (8)

In 2D space, scale-space Vj(x1, x2) and wavelet space Wj(x1, x2) are defined as Eqs. (9) and (10),
respectively.

Vj−1(x1, x2) = Vj(x1, x2) ⊕ Wj(x1, x2) (9)

Wj(x1, x2) = Vj−1(x1, x2)/Vj(x1, x2) (10)

The scale-space subspaces Vj exhibit a nested relationship, and the wavelet space Wj plays a crucial
role in capturing information between the adjacent scale subspaces Vj−1 and Vj. It functions to capture
the information lost as Vj−1 approaches Vj. In essence, the vector space Vj and the vector space Wj

are orthogonal, signifying that Wj can effectively represent the information that cannot be expressed
within Vj. Therefore, the combined information from both vector spaces, Vj and Wj, enables a complete
representation of the information. For any function f (x1, x2) in the scale-space based on Eqs. (9) and
(10), then

Pj−1f (x1, x2) = Pjf (x1, x2) + Djf (x1, x2) (11)

Since Pj−1f (x1, x2) represents the projection of function f (x1, x2) on space Vj − 1(x1, x2), so
P(j − 1)f (x1, x2) can be represented by the components Vj(x1, x2) and Wj(x1, x2) in Vj − 1(x1, x2).
Since two-dimensional space can be decomposed into one-dimensional space, Vj − 1(x1, x2) can be
decomposed as

Vj−1(x1, x2) = Vj−1(x1) ⊗ Vj−1(x2)

= [Vj(x1) ⊕ Wj(x1)] ⊗ [Vj(x2) ⊕ Wj(x2)]

= [Vj(x1) ⊗ Vj(x2)] ⊕ [Vj(x1) ⊗ Wj(x2)] ⊕ [Wj(x1) ⊗ Vj(x2)] ⊕ [Wj(x1) ⊗ Wj(x2)]
(12)

φik1(x1)φik2(x2) = si/2φ(six1 − k1)si/2φ(six2 − k2) (13)

The orthogonal normalization basis of Eq. (12) is given by Eq. (13). The functions φik1(x1) and
φik2(x2) in the aforementioned formula are low-pass scale functions. Therefore, the space Vj(x1, x2)

expressed by this formula represents the low-frequency characteristics of the original space. Another
component utilized to represent Pj−1f (x1, x2) is Wj(x1, x2). In accordance with the corresponding
relationship between Eqs. (9) and (10), Wj(x1, x2) is expressed as Eq. (14).

Wj(x1, x2) = [Vj(x1) ⊗ Wj(x2)] ⊕ [Wj(x1) ⊗ Vj(x2)] ⊕ [Wj(x1) ⊗ Wj(x2)] (14)

The upper equation can be decomposed into three parts, and each part of the orthogonal basis is
defined by Eq. (15).

φik1(x1)ψik2(x2) = si/2φ(six1 − k1)si/2ψ(six2 − k2)

ψik1(x1)φik2(x2) = si/2ψ(six1 − k1)si/2φ(six2 − k2)

ψik1(x1)ψik2(x2) = si/2ψ(six1 − k1)si/2ψ(six2 − k2) (15)

where φik1(x1)ψik2(x2), ψik1(x1)φik2(x2) and ψik1(x1)ψik2(x2) represent high-frequency characteristics in
horizontal, vertical, and diagonal directions, respectively. Therefore, P(j − 1)f (x1, x2) is represented
by components in Vj(x1, x2) and Wj(x1, x2) as
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Pj−1f (x1, x2) = Pjf (x1, x2) + Djf (x1, x2)

= �
k1k2

x(j)
k1k2

φjk1(x1)φjk2
(x2) + �

k1k2

α
(j)
k1k2

φjk1(x1)ψjk2
(x2)

+ �
k1k2

β
(j)
k1k2

ψjk1(x1)φjk2
(x2) + �

k1k2

γ
(j)

k1k2
ψjk1(x1)ψjk2

(x2) (16)

Consequently, f (x1, x2) is decomposed into three directions utilizing both low-frequency and
high-frequency features. In the two-dimensional context of target identification, a single sample can
be subdivided into four samples, each representing the approximate features of the original image
along with high-frequency characteristics in the horizontal, vertical, and diagonal directions. This
subdivision is depicted in Fig. 5.

Figure 5: The efficacy of our highly differentiated feature extraction method

3.3 Deep Learning Model Analysis and Structure Design
The proposed approach for target identification in extremely low-light conditions, as illustrated in

Fig. 6 is distinguished by the integration of CycleGAN, state-of-the-art computational techniques, and
the YOLOX model architecture. The incorporation of the CycleGAN model aims to produce an origi-
nal image with enhanced generalization capacity for low-light photographs, addressing inherent biases
in image presentations across diverse contexts and devices. The generator and discriminator modules
of the CycleGAN model, equipped with robust generative and discriminative capabilities, establish
a dynamic equilibrium through stochastic image modifications. Following this, high-discrimination
feature extraction, facilitated by the Coiflet wavelet transform, is applied to both the processed image
and the original input. Advanced computing techniques are then strategically employed to amalgamate
nuanced features derived from the two images. As outlined in Eq. (17), the essence of advanced
computing involves duplicating a feature layer into three copies, element-wise multiplication of the
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three feature matrices through subsequent layer multiplication operations, and activation using the
rectified linear unit (ReLU) function.

F (x) = relu
(∑

r=1,2,3
〈wr, ⊗ry〉

)
+ x (17)

where wr represents the rth feature vector, y is the detailed feature of the style-transformed image, and
⊗ry signifies the r-order self-outer product of y, providing insights into specific aspect interactions.
The detailed details of the original image are then combined with the residual unit.

Figure 6: The overall structure of the deep learning model

3.4 Performance Evaluation
The enhanced low-light enhancement algorithm proposed in this paper, along with other low-

light enhancement algorithms, has been objectively evaluated based on five indicators: information
entropy (E), peak signal-to-noise ratio (PSNR), spectral angle (SAM), mean square error (RMSE),
and average gradient (G). The calculation methods for these five evaluation indicators are defined by
Eqs. (18)–(22), respectively.

E = −
∑

i=0,...,255

∑
j=0,...,255

pijlog2pij (18)

where Pij represents the proportion of pixels in the image with grayscale values and neighborhood
grayscale means in the range of 0–255.

PSNR = 10 × log

⎛
⎜⎜⎝ 2552

∑M−1

i=0

∑N−1

j=0

(f (i, j) − g (i, j))2

MN

⎞
⎟⎟⎠ (19)

where M and N represent the rows and columns of the image, respectively, and f (i, j) and g(i, j)
represent the pixel values of the i-th row and j-th column before and after the image enhancement,
respectively.

SAM = cos−1 dTx

(dTd)
1/2

(xTx)
1/2

(20)
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where d is the two-dimensional matrix of the image before enhancement, and x is the two-dimensional
matrix of the image after enhancement.

RMSE =
(

1
MN

∑M×N

i=1

(
yi − ŷi

)2
)1/2

(21)

where M and N represent the rows and columns of the image, respectively, and yi and ŷi represent the
pixel values of the i-th row and j-th column before and after the image enhancement, respectively.

G = 1
MN

∑M

i=1

∑N

j

⎛
⎜⎜⎜⎝

(
∂f
∂x

)2

+
(

∂f
∂y

)2

MN

⎞
⎟⎟⎟⎠

1/2

(22)

where M and N represent the rows and columns of the image,
∂f
∂x

and
∂f
∂y

respectively represent

the gradient of the image in the horizontal and vertical directions. The assessment of the target
detection model mandates a comprehensive evaluation across an extensive array of test datasets.
Standard evaluation metrics for neural network models encompass considerations of speed, accuracy,
and minimal memory utilization. Within the ambit of the target detection model, a primary criterion
for evaluation is the Mean Average Accuracy (mAP), an established metric employed to gauge overall
accuracy. The mAP metric computes the average precision across various classes of detected targets,
entailing the calculation of Recall and Precision values for each specific category of target detection.
The Recall and Precision, instrumental in evaluating the performance of the proposed approach, are
defined as Eqs. (23) and (24), respectively.

Recall = TP/(TP + FP) (23)

Precision = TP/(TP + FN) (24)

where T , F , P and N represent the correct detection, error detection, positive sample and negative
sample, respectively. TP represents positive sample detected correctly, FP represents positive sample
detected incorrectly, and FN represents the detect false negative samples. The Intersection over Union
(IoU) threshold serves as a crucial metric in target detection, quantifying the extent of overlap between
the actual bounding box and the predicted bounding box. This threshold is pivotal in determining
the validity of a given detection by assessing the ratio of intersection to union. Accurate delineation
of a target’s precise location within an image is of paramount importance, involving scrutiny of the
ground truth position specified in the label and discerning the corresponding visual representation.
Subsequently, utilizing the detector, bounding boxes are identified and ranked in descending order
of confidence. The bounding box with the highest confidence score is then compared to the ground
truth position. If the IoU value exceeds the specified threshold, it is marked as a True Positive (TP),
indicating a successful detection. The remaining instances are labeled as False Positives (FP), and the
object has not been accurately detected. Based on the Recall and Precision values, one can construct
a series of Precision-Recall curves. The curve has Recall as its abscissa and Precision as its ordinate,
with the area under the curve reflecting the accuracy Average Precision (AP) of this type. The Mean
Average Precision (mAP) represents the average accuracy rate across 20 item categories in the VOC
dataset.
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mAP =
(

c∑
i=1

AP_i

)
/C (25)

where C represents the object category of the data set, and APi represents the AP of each category.
After calculating the AP for all 20 categories, the mAP is obtained by taking the mean (average) of
all the individual AP values. It provides an overall measure of the model’s performance across all
categories in the dataset. mAP is considered an important metric because it considers the performance
of the model at multiple confidence thresholds, giving a more comprehensive assessment of its accuracy
compared to just a single point on the precision-recall curve.

4 Experiment
4.1 Dataset Used for Experiments

In this experiment, the PASCAL VOC dataset and the MS COCO2017 dataset [60] were employed.
The VOC datasets are categorized into vehicle, household, animal, and person classes. The trainval
datasets of PASCAL VOC 2007 [61] and PASCAL VOC 2012 [62] are utilized for training and
validation, with 90% allocated for training and 10% for validation. The dataset comprises a total of
16,551 photos (5,001 for VOC 2007 and 11,540 for VOC 2012) and 40,058 detection objects (12,608
for VOC 2007 and 27,450 for VOC 2012). The test dataset is the VOC 2007 test collection, containing
4,952 images and 12,032 detection objects, as outlined in Table 2. The MS COCO2017 dataset includes
118,287 training sets, 5,000 validation sets, and 40,670 test sets, covering 80 categories with over
500,000 annotations. With an average of 7.2 targets per image, it stands as the largest and most well-
known object detection challenge dataset.

Table 2: Dataset for experimentation

– Train Validate Test

Data set VOC2007+VOC2012 VOC2007+VOC2012 VOC2007+VOC2012
Images 14896 1655 4952
Objects 36052 4006 12032

4.2 Low-Light Enhancement Algorithm Analysis
This paper subjectively evaluates seven low-light enhancement algorithms based on the Retinex

theory, including SSR, MSR, MSRCR, MSRCP, Gimp, and FM. As illustrated in Fig. 7 the six
specified models exhibit significant overall distortion, weak contrast, and poor sharpness from the
perspective of sensory effects. In contrast, the improved algorithm proposed in this paper offers a
better overall sensory experience and more coordinated light-dark contrast compared to previous
methods. Five metrics are used in Table 3 to measure how well the improved algorithm works:
information entropy (E), peak signal-to-noise ratio (PSNR), spectral angle (SAM), mean square error
(RMSE), and average gradient (G). The results show that the proposed algorithm produces an image
with increased information entropy and peak signal-to-noise ratio, indicating enhanced information
richness and improved image quality with minimized distortion. The spectral angle index is lower for
the proposed algorithm, suggesting that the processed image and the original image share more similar
spectral characteristics when represented as high-dimensional vectors. This enhances the likelihood
that the processed image corresponds to analogous objects in the original image.
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Figure 7: Subjective comparison of several algorithms

Table 3: An objective evaluation of several algorithms

– E PSNR SAM RMSE G

SSR 7.3265 6.4193 0.8799 121.03 4.5637
MSR 6.4932 7.0757 0.9767 112.91 4.2225
MSRCR 7.5419 6.5554 0.8993 119.88 10.4752
MSRCP 7.5950 6.4766 0.8945 120.97 11.3002
Gimp 7.6698 6.1437 0.8985 125.70 11.9929
FM 7.7125 7.7785 0.8715 105.13 9.1544
Dong et al. [53] 7.7069 7.5162 0.8260 108.07 6.9699
This paper 7.7424 7.7816 0.7790 104.72 7.2279

The RMSE is a pixel-based metric that quantifies the deviation between the fused image and
an ideal reference image. The proposed algorithm results in a lower mean square error, indicating
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higher image quality due to reduced disparities between the processed and original images. The
average gradient represents the mean rate of grayscale transition, reflecting variations in contrast
within the microscopic features of the image and serving as an indicator of image sharpness. While
some algorithms (MSRCR, MSRCP, Gimp, and FM) exhibit higher index values, implying sharper
images, these values do not consistently correlate with improved imaging effects or align with other
evaluation criteria. Consequently, these algorithms do not demonstrate superior performance, as they
yield images with diminished information richness, heightened distortion, and larger discrepancies
compared to the original image.

The algorithm proposed in this research demonstrates its overall superiority across the five
indicators in Table 4, resulting in better consistency between the processed and original images,
improved image clarity, and reduced distortion. Specifically, the processed image exhibits higher
information entropy, enhanced image contrast, and an elevated information preset.

Table 4: The precision of many models in identifying the detected object

– This paper YOLOX YOLOv4 RFBnet Mobilenet-SSD Faster R-CNN M2det

Plane 79.62 74.23 58.51 69.53 39.01 62.90 70.18
Bicycle 81.87 75.78 70.85 79.91 41.79 80.88 79.86
Bird 76.09 55.70 42.82 62.46 33.40 52.60 58.63
Boat 72.88 66.87 39.52 49.86 28.40 50.67 53.16
Bottle 54.22 49.54 32.33 32.38 13.50 29.32 27.00
Bus 86.73 78.52 70.00 75.90 42.81 76.51 73.54
Car 89.43 73.54 66.43 76.14 40.71 74.60 76.87
Cat 74.43 67.65 44.44 71.92 46.76 72.61 64.65
Chair 65.87 55.89 27.18 43.91 22.06 41.73 38.50
Cow 78.67 68.65 21.62 66.87 33.35 55.74 61.84
Table 77.98 70.24 48.89 68.20 44.03 71.90 66.00
Dog 76.56 66.52 48.87 67.08 44.20 65.33 61.95
Horse 89.76 80.54 62.59 77.63 46.73 78.88 77.53
Motor 89.34 78.15 55.62 71.91 42.96 74.58 74.44
Person 85.67 78.62 56.32 66.10 35.02 68.23 65.80
Plant 49.31 40.73 25.19 39.32 19.39 37.90 38.43
Sheep 72.57 69.43 37.15 56.43 31.09 56.12 56.80
Sofa 71.87 64.86 33.64 64.42 43.33 70.30 58.75
Train 86.61 74.98 67.05 79.62 47.12 70.88 80.70
TV 77.83 70.76 46.02 62.16 34.77 62.62 59.37

4.3 Analysis of Image High-Discrimination Feature Extraction Method
In the original YOLOX training process, a significant portion of high-frequency information is

susceptible to loss when directly feeding images from the dataset into the deep learning network.
To address this, the training regimen incorporates these data with a focus on discerning specific
information along the horizontal, vertical, and diagonal axes in each image. This augmentation
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enhances the precision of target detection. As a result, we categorize the 16,551 images in the training
dataset based on their directional information. The partitioning of each original image into distinct
components includes smooth approximation segments, horizontal, vertical, and oblique components,
as well as a salient portion with diagonal intricacies. The scale function and wavelet function of
the Coiflet wavelet achieve this segmentation. Following the extraction of low-frequency and high-
frequency features from the training dataset, the amplitude of the resulting feature image undergoes
visual scrutiny.

4.4 Performance Analysis of Target Detection Methods
The experimental environment comprises tensorflow-gpu 1.14 and keras 2.1.5. Training is con-

ducted on an NVIDIA 2080Ti 11 G GPU, with 100 batches of the VOC dataset and 250 batches
of the COCO dataset. The maximum learning rate and batch size are set at 1e-3 and 8, respectively.
Building upon the low illumination enhancement technique, the adverse impact of insufficient light
on the target detection task is alleviated. The detection effectiveness of the YOLOX detection model is
notably enhanced through the approach of extracting image characteristics via wavelet decomposition.

Fig. 8 depicts a comparison of actual detection between the original YOLOX model and the new
target detection model. The detection frame locates the detected object in the image, and the numbers
on the detection frame show the target object’s proper detection scores. Fig. 9 depicts a polar pie
chart illustrating the detection accuracy of each model, employing the enhanced low illumination
enhancement method. The chart reflects the model’s detection precision for the represented object
along the axis. With values ranging from 0 at the center to 100 at the outermost point, the blue coverage
area represents the overall accuracy of the model. It is evident from the chart that the detection
results using this method surpass those of other models. The analysis was conducted on the COCO
dataset, identifying original images, low illumination images, and low illumination enhanced images.
The IoU, CLS, and OBJ loss functions in the COCO and VOC datasets are illustrated in Figs. 10 and
11, respectively.

Figure 8: Comparison of target detection effects before and after low-light image enhancement



1530 CMES, 2024, vol.140, no.2

Figure 9: Polar axis pie chart of accuracy comparison between our model and other models on the
VOC dataset

Figure 10: The IoU, CLS, and OBJ loss functions on the COCO dataset
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Figure 11: The IoU, CLS, and OBJ loss functions on the VOC dataset

Table 4 displays the AP of the proposed technique, YOLOX, YOLOv4 [63], RFBnet [64],
Mobilenet-SSD [65], Faster R-CNN [59], and M2det [66] on the 20 low-light image types in the
VOC test dataset. The proposed method exhibits robust color fidelity and improvements in image
reproduction. Additionally, the mean Average Precision (mAP) of the target detection models is
computed under three scenarios: Low-light environment, low-light image enhancement using the
approach described in [53], and low-light image enhancement using our method. The comparison
results are presented in Table 5.

Table 5: The accuracy of detecting low-light images using several models with different enhancing
approaches

Methods Proposed YOLOX YOLOv4 RFBnet Mobilenet-SSD Faster R-CNN M2det

Dark image 70.96 67.41 54.96 64.06 53.91 65.19 65.09
Dong et al. [53] 72.15 68.47 47.75 64.09 36.52 62.71 62.20
This paper 76.86 73.31 69.83 73.79 63.26 62.75 72.32

The enhancement approach presented in [59] does not guarantee an improvement in target
identification precision. In contrast, the proposed target detection model demonstrates a discernible
improvement in precision. The data in the table illustrates the model’s detection precision for objects,
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with the radial axis indicating the precision values. The blue-shaded region, extending from the
center (minimum value) to the maximum value of 100, represents the model’s overall accuracy. This
representation clearly emphasizes that the detection outcomes achieved through this method surpass
those of alternative models.

Within the COCO dataset, assessments were conducted using the original image, low-illumination
image, and the image post low-illumination enhancement. Tables 6 and 7 display the Average Precision
(AP) and Average Recall (AR), respectively. The low-light image detection approach described in this
paper provides superior detection effects on targets of various sizes.

Table 6: The analysis of the average precision (AP) of YOLOX in various lighting images

Image AP@0.50:0.95 AP@0.50 AP@0.75 AP@S AP@M AP@L

Original image 0.504 0.690 0.547 0.325 0.561 0.669
Dark image 0.404 0.592 0.426 0.196 0.448 0.597
This paper 0.456 0.643 0.489 0.239 0.508 0.650

Table 7: The augmented reality (AR) of YOLOX in various illumination images

Image AR@0.50:0.95 AR@0.50 AR@0.75 AR@S AR@M AR@L

Original image 0.379 0.614 0.653 0.468 0.712 0.825
Dark image 0.327 0.514 0.549 0.334 0.489 0.687
This paper 0.354 0.566 0.603 0.371 0.505 0.669

5 Conclusion

The presented paradigm for high-discrimination target detection addresses the exigency of
localizing targets in conditions of profoundly attenuated luminosity through the strategic integration
of advanced methodologies. Notably, this approach incorporates a feature extraction modality based
on the wavelet transform, renowned for its discriminatory prowess, along with a sophisticated low-
light enhancement protocol utilizing a dehazing algorithm. These modalities are seamlessly engrafted
within the YOLOX model framework, resulting in a significant amplification of target detection
efficacy. To mitigate the deleterious effects of exceedingly scant luminous flux, the refined low-
light enhancement methodology employs an atmospheric dehazing model to ameliorate the inversed
representation. The analogy between inversed low-light renditions and fog-occluded images justifiably
underpins the deployment of the dehazing algorithm, thereby incrementally refining target identi-
fication acuity. Harnessing the adeptness of the Coiflet wavelet in convalescing intricate features
across diverse spatial resolutions and high-frequency content, convolutional neural networks (CNNs)
demonstrate a penchant for discerning details from multifarious azimuths. This proficiency empowers
the model to enhance image fidelity and successfully recover occluded attributes, ultimately refining
target recognition even in instances of indeterminacy. To warrant the availability of diverse input fea-
ture maps and concomitantly amalgamate nuanced features from a heterogeneous spectrum of image
typologies, the proposed approach seamlessly incorporates CycleGAN. This integration augments
the model’s adaptability for discerning low-light image content, enabling it to accommodate various
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environmental conditions adeptly. The YOLOX target detection model is subsequently embedded
within the approach to further hone detection precision. The symbiosis among high-discrimination
feature extraction methodologies, the enhanced low-light enhancement approach, and the YOLOX
model results in a resilient and precise stratagem expressly calibrated for the recognition of high-
discrimination targets within contexts of exceedingly diminished luminance. Empirical assessments
conducted on both the PASCAL VOC dataset and the MS COCO 2017 dataset substantiate the
ascendancy of the proposed methodology over antecedent paradigms. These findings underscore its
adaptability to real-world exigencies, affirming its stature as an efficacious panacea for target detection
within exacting low-light environments.
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