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ABSTRACT

Cancer-related to the nervous system and brain tumors is a leading cause ofmortality in various countries.Magnetic

resonance imaging (MRI) and computed tomography (CT) are utilized to capture brain images.MRI plays a crucial

role in the diagnosis of brain tumors and the examination of other brain disorders. Typically, manual assessment of

MRI images by radiologists or experts is performed to identify brain tumors and abnormalities in the early stages

for timely intervention. However, early diagnosis of brain tumors is intricate, necessitating the use of computerized

methods. This research introduces an innovative approach for the automated segmentation of brain tumors and

a framework for classifying different regions of brain tumors. The proposed methods consist of a pipeline with

several stages: preprocessing of brain images with noise removal based on Wiener Filtering, enhancing the brain

using Principal Component Analysis (PCA) to obtain well-enhanced images, and then segmenting the region of

interest using the Fuzzy C-Means (FCM) clustering technique in the third step. The final step involves classification

using the Support Vector Machine (SVM) classifier. The classifier is applied to various types of brain tumors, such

as meningioma and pituitary tumors, utilizing the Contrast-Enhanced Magnetic Resonance Imaging (CE-MRI)

database. The proposed method demonstrates significantly improved contrast and validates the effectiveness of

the classification framework, achieving an average sensitivity of 0.974, specificity of 0.976, accuracy of 0.979, and

a Dice Score (DSC) of 0.957. Additionally, this method exhibits a shorter processing time of 0.44 s compared to

existing approaches. The performance of this method emphasizes its significance when compared to state-of-the-

art methods in terms of sensitivity, specificity, accuracy, and DSC. To enhance the method further in the future, it

is feasible to standardize the approach by incorporating a set of classifiers to increase the robustness of the brain

classification method.
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1 Introduction

In the realm of e-health, professionals strive to improve healthcare efficiency through the inte-

gration of digital medical technology. Magnetic Resonance Imaging (MRI) poses complex challenges

in this context, particularly when examining the brain [1], it is highly intricate organ that governs the

functions of billions of cells [2]. The development of brain tumors, characterized by the uncontrolled

growth of abnormal cells within the brain, can severely disrupt normal brain functions [3], causing

a significant impact on the patient’s well-being [4]. Computerized techniques offer a promising

early brain tumor detection solution to address this issue. These techniques excel in identifying

abnormal regions in brain MRI scans, relying on image segmentation and classification methods

[5]. The extraction of components such as gray matter, white matter, and cerebrospinal fluid plays

a crucial role, and image segmentation techniques, as highlighted by studies [6,7], prove invaluable in

achieving precise extraction. Researchers commonly utilize brainMRI images to identify and facilitate

the treatment of abnormalities, emphasizing the importance of acquiring high-quality images for a

comprehensive understanding of brain structure and associated cell anomalies [2,8].

While various techniques are employed for imaging the brain, magnetic resonance imaging (MRI)

is a more robust and effective option than computed tomography (CT). Although brain CT scans

may offer superior contrast, they often suffer from noise, limiting the radiologist’s ability to assess

medical images thoroughly [9]. Fig. 1 visually compares CT and MRI brain images [10,11]. Notably,

CT images of the brain reveal hypodensity in the right frontal lobe. In contrast, T1 and T2 weighted

MRI scans also show lesion hypointensity but with reduced noise, providing a superior representation.

Brain tumors present diverse classifications based on behavior and therapeutic considerations, and

effective management helps minimize the need for biopsies by accurately categorizing them as benign

or malignant [12,13].

Figure 1: Comparing the CT and MRI images of the brain, (a) displays hypodensity in the right

frontal lobe on the brain CT images. Additionally, (b) and (c), representing T1 and T2 weighted MRI

images, respectively, reveal hypointensity in the lesion with reduced noise, providing a clearer andmore

accurate image representation

Various techniques are utilized in the identification of brain tumors within MRI images. Clus-

tering methods, including color-based and histogram techniques, play a pivotal role in refining the

precision of tumor detection. Following this, classifiers are deployed to differentiate between normal

and abnormal tumor regions, with neural network-based classifiers prominently fulfilling this role

[14,15]. Deep learning is pivotal in medical imaging for its capacity to efficiently and accurately

analyze complex data. Specifically, in the realm of brain tumor detection, deep learning algorithms

are instrumental in automatically identifying and categorizing abnormalities in medical images like
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MRI scans. By leveraging vast datasets, these algorithms can discern subtle patterns indicative of

brain tumors, enabling earlier and more precise diagnoses. Techniques such as convolutional neural

networks (CNNs) allow deep learning models to extract relevant features from images, assisting

clinicians in making timely treatment decisions and improving patient outcomes. However, challenges

persist, including the need for extensively annotated datasets, susceptibility to overfitting, and issues

regarding the interpretability of deep learning algorithms. Despite these limitations, ongoing research

endeavors are dedicated to overcoming these challenges and further refining the efficacy of deep

learning in medical imaging [16]. However, these segmentation and classification approaches possess

inherent limitations, encompassing reduced accuracy, noise, contrast variations, intensity irregularities,

computational complexity, intricacies in feature selection, and time-consuming processes [17,18]. In

response to these challenges, we propose a novel approach that focuses on image denoising and aims

to enhance overall detection performance, thereby addressing the aforementioned limitations and

advancing the accuracy of tumor detection.

The article’s uniqueness lies in its introduction of a groundbreaking framework designed for

the automated segmentation and classification of brain tumors within MRI images. This framework

stands out by incorporating specialized algorithms and techniques, subjecting itself to a rigorous

evaluation using pertinent datasets, and ultimately showcasing superior performance compared to

established approaches. The key contributions of this research are multifaceted. First, it introduces

an automated segmentation pipeline with multiple sequential stages, commencing with preprocessing

steps that utilize techniques like Principal Component Analysis (PCA) to enhance and consolidate

MRI brain images for subsequent segmentation and classification. The Fuzzy C-Mean (FCM)

algorithm takes a prominent role within this pipeline, effectively segmenting abnormal regions in brain

images and is recognized for its proficiency in delineating structures in medical images.

Additionally, the framework leverages a Support VectorMachine (SVM) classifier for categorizing

brain tumor regions, benefiting from SVMs’ acclaimed capacity to handle intricate classification

tasks. The evaluation of this framework is comprehensive, utilizing a Contrast-Enhanced Magnetic

Resonance Imaging (CE-MRI) database that includes a diverse array of brain tumors, such as

meningioma and pituitary tumors. This thorough assessment substantiates its efficacy across various

tumor types and facilitates comparisons with alternative classifiers andmethods. The results generated

by the proposed pipeline exhibit superior contrast and efficiency compared to existing methodologies,

achieving remarkable average sensitivity, specificity, accuracy, and Dice Score (DSC), affirming its

proficiency in precisely identifying and classifying brain tumor regions. Notably, the proposed method

demonstrates a significantly shorter processing time of merely 0.45 s, a crucial consideration for

practical implementation in clinical settings where prompt diagnosis is essential.

This research focuses on brain tumor segmentation and subsequent classification based on MRI

images. Analyzing these images is challenging due to the inherent processing issues in computerized

brain MRI images. The proposed methodology addresses this challenge through four distinct stages.

The initial stage involves preprocessing brain MRI images, including noise elimination using Wiener

filtering. The second stage focuses on harmonizing the images to ensure consistency in contrast

between foreground and background elements, achieved through Principal Component Analysis

(PCA) to address non-coherent regions. The third stage is segmenting abnormal or tumor regions,

employing the Fuzzy C-Means (FCM) segmentation process. The final stage involves the classification

of identified brain tumors, employing the Support Vector Machine (SVM) with all stages utilizing

innovative image-processing techniques.
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2 Related Work

The segmentation and accurate classification of brain tumor regions present a significant chal-

lenge, given the myriad methodologies proposed for brain tumor detection within brain MRI

images [2]. In recent literature, various methods have been introduced to address this challenge.

Ratna et al. presented a computerized approach relying on the Harmony Search Algorithm (HCS)

optimization technique to train a multi-class Support Vector Neural Network (SVNN) [19]. This

method incorporated the Bayesian fuzzy clustering technique for automatic tumor identification in

MRI images. Despite its success on the Brain Tumor Segmentation (BRATS) dataset, the exclusive

focus on this dataset limits its generalizability to other datasets [19].

Similarly, Logeswari et al. andLather et al. proposed techniques utilizing Bayesian fuzzy clustering

in conjunction with the HCS optimization algorithm for brain tumor detection inMRI images [20,21].

These HCS optimization algorithms demonstrated superiority in certain contexts [22]. However, their

applicability is constrained to a specific set of images from the Brain Tumor Segmentation (BraTS)

database, limiting direct transferability to other databases [2].

Yin et al. structured their method around background correction, abnormal region segmentation,

and brain tumor classification, incorporating a multilayered perception neural system and whale

optimization algorithms rooted in disarray hypothesis and procedural base mapping [23]. While this

approach did not significantly enhance accuracy, it added diversity to the existing methodologies.

Alagarsamy et al. introduced Brain Image Segmentation Technique-Interval Type-2 Fuzzy C-

Means (BAT-IT2FCM), an enhanced brain image segmentation technique utilizing Bat Algorithm

and Interval Type-2 Fuzzy C-Means clustering [24]. Although it improved accuracy, its reliance on

threshold factors and extended processing time are noteworthy limitations.

Kumar et al. proposed the Weighted Correlation Feature Selection Based Iterative Bayesian

Multivariate Deep Neural Learning (WCFS-IBMDNL) method, employing Weighted Correlation

Feature Selection-Based Iterative Bayesian Multivariate Deep Neural Learning for early-stage brain

tumor analysis [25]. Despite its potential, using the Iterative Bayesian Multivariate Deep Neural

Network (IBMDNN) classifier led to false pixel detection, diminishing overall accuracy.

Ozyurt et al. implemented the Neutrosophy and Convolutional Neural Network (NS-CNN)

hybrid approach, combining Neutrosophy with Convolutional Neural Network for tumor region

characterization in brain images [26]. While demonstrating enhanced accuracy, the inconsistency in

the CNN structure affected overall performance. Selvapandian et al. utilized the non-subsampled con-

tourlet transform (NSCT) for brain image enhancement and tumor extraction, employing Adaptive

Neuro-Fuzzy Inference System (ANFIS) for classification [27]. However, its satisfactory results were

limited to the BRATS dataset.

Sharma et al. introduced a hybrid approach combining the k-means algorithm with Artificial

Neural Networks (ANN) for brain tumor detection, utilizing the Gray-Level Co-Occurrence Matrix

(GLCM) for feature extraction [28]. Despite improved performance, occasional false pixel detection

poses a challenge, especially in smaller tumors.

Varuna Shree et al. based their brain tumor detection on Discrete Wavelet Transformation

(DWT) and Probabilistic Neural Networks (PNN), improving performance and simplifying tumor

segmentation complexity [29]. A two-phase multidimensional approach achieved 99.55% accuracy,

utilizing Convolutional Neural Networks (CNNs) for preprocessing and feature selection and Error-

Correcting Output Codes Support Vector Machines (ECOCSVM) for classification [30]. Another

study employed SVM and Otsu thresholding for brain tumor classification, with identified accuracy



CMES, 2024, vol.140, no.2 1543

improvement opportunities [31]. Molina-Torres addressed this by employing a kernel SVM approach

with the Gaussian Radial Basis (GRB) kernel, focusing on specificity, precision, and accuracy [32].

Despite substantial efforts in brain tumor detection research, limitations persist, highlighting the

need for a novel algorithm leveraging MR images to enhance accuracy and reliability. Particularly,

improvements in preprocessing are warranted for enhanced performance. The following section delves

into the proposed methodology.

3 Proposed Method

Medical imaging leans towards utilizing brain MRI scans owing to their non-invasive quality,

devoid of radiation hazards, ensuring safety. MRI scans excel in providing multi-dimensional analysis,

surpassing alternatives like CT scans and X-rays. Although manual segmentation for brain tumor

delineation in MRI images is laborious and prone to inaccuracies, this research introduces a unique

five-step computerized method for precise classification and segmentation in brain tumor detection

using MRI images.

This technique mainly aims to identify tumor regions in brain MRI scans. As depicted in Fig. 2,

this proposed computer-based approach is devised to identify abnormal findings in brainMRI images.

It relies on consistent contrast and involves classification and segmentation tasks for brain tumor

detection. The method unfolds in four steps, with the first two being part of the preprocessing stage.

The initial step focuses on processing brain MRI images, and the second step aims to enhance and

eliminate noise from the MRI data. The subsequent two steps constitute the post-processing stage.

In the third step, brain tumors are binary segmented using the FCM method, while the fourth step

employs a support vector machine classifier for brain tumor classification. This integrated algorithm

is acknowledged as an automated solution for detecting brain tumors in MRI images.

Figure 2: The proposed approach outlines procedures for segmenting and classifying images of brain

MRI

3.1 Pre-Processing Step: Noise Removal and Enhancement

The processing of brain MRI images is a pivotal component of the pre-processing phase in our

proposed method. In this phase, the emphasis is on enhancing the quality of brain MRI data and

reducing noise levels through image processing. The study involved processing MRI scans from three

different planes: axial, sagittal, and coronal, these are obtained from theCE-MRI database, as depicted

in the accompanying Fig. 3.

Medical imaging, particularly Magnetic Resonance Imaging (MRI), has transformed the land-

scape of diagnosing and treating neurological disorders. While MRI is extensively employed, the

diagnostic accuracy of brain MRI images can be compromised by the presence of noise and artifacts.
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This study delves into utilizing Principal Component Analysis (PCA) as a powerful enhancement

technique to effectively tackle the issues arising from noise and artifacts in brain MRI images. The

subsequent sections provide a detailed mathematical exposition of the application of PCA to enhance

brain MRI images.

Figure 3:BrainMRI scans from various perspectives: (a) Axial View, (b) Sagittal View, and (c) Coronal

Views

In a database denoted as X , comprising N observations and D features, PCA is employed to

identify the principal components by decomposing the covariance matrix:

∑

=
1

N
XTX . (1)

The principal components contains the eigenvectors v1, v2, . . . , vD corresponding to the most

significant eigenvalues. Our database shows brainMRI images in various planes, such as axial, sagittal,

and coronary, each represented in RGB format. The primary objective is to obtain well-contrasted

images for each plane. To achieve this, PCA is applied individually to each plane, resulting in images

with enhanced contrast and reduced noise. A color-to-gray conversion process is then implemented to

amalgamate the three color images of each brainMRI plane. The color-to-gray conversion begins with

the creation of vector color images (IrgbεR
3) by arranging the three color channels (Red, Green, and

Blue) side by side. Subsequently, a YCbCr image (IYCbCr ∈ R3) is generated from its RGB counterpart,

separating the luminance and chrominance channels using a conventional transfer function f () [33].

The eigenvalues λ1 ≥ λ2 ≥ λ3 ∈ R1 and their corresponding eigenvectors v1 ≥ v2 ≥ v3 ∈ R2 are then

determined through Principal Component Analysis (PCA).

The final well-contrasted gray image Igray is computed through a weighted linear combination

of three projections, with weights determined by the percentage of their eigenvalues. The resulting

output is scaled to the range [0, 1]. The dominance of the first subspace projection in the color-to-

gray mapping is evident due to its significantly larger eigenvalue. While the second and third subspace

projections contribute minimally, they enhance details in the resulting well-contrasted images of each

brain MRI plane, as illustrated in Fig. 4.

Enhanced images through PCA contribute to enhanced diagnostic accuracy by mitigating noise

and highlighting pertinent features. Additionally, the expedited processing of brain MRI images is

facilitated by dimensionality reduction, where computations are executed on a condensed set of

principal components. The application of PCA not only accelerates segmentation and classification
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processes but also aids in reducing storage needs through data compression, resulting in faster image

transmission. This capability proves essential for optimizing the efficiency of healthcare workflows.

Figure 4: Illustration of PCA process to enhance details in the resulting well-contrasted images of brain

MRI planes

3.2 Post-Processing: Segmentation of Brain Tumor Region Based on FCM

The utilization of Fuzzy C-means (FCM) segmentation plays a crucial role in extracting brain

tumor regions fromMRI images. This method is pivotal in generating an initial binary representation

of the brain MRI images, laying the groundwork for subsequent analysis and classification. FCM

assigns pixels to multiple classes, each associated with a membership function level ranging from 0 to



1546 CMES, 2024, vol.140, no.2

1. The objective of FCM is to identify cluster centers that optimally represent the pixel distribution

within the image. In mathematical terms, the FCM model can be formulated as follows.

In a collection of brain MRI images, denote the image domain as X . Each pixel xi in this domain

is assigned a membership function uij, with j indicating the class index. The FCM algorithm aims to

identify cj cluster centers that effectively capture the pixel distribution across the given image set. The

optimization objective is to minimize the following function:

J(U ,C) =

N
∑

i=1

M
∑

j=1

um
ij
‖xi − cj‖

2. (2)

In Eq. (2), the objective function J(U ,C) is the quantity to be minimized. Here, N represents the

image’s total pixel count, whileM represents the number of classes (clusters). The membership value

for pixel xi in class j is denoted as uij. The parameterm signifies the fuzziness exponent, typically set to

2 in the context of FCM. The pixel in the image is represented by xi, and cj denotes the cluster center

for class j. The FCM algorithm uses iterative steps to optimize cluster centers cj and the membership

values uij. The outlined steps in FCM are as follows:

1. Initialization: Commence with an initial estimation of cluster centers cj.

2. Membership Calculation: Compute the membership values uij for each pixel xi indicating the

likelihood of its affiliation with each class.

3. Update Cluster Centers: Recalculate the cluster centers cj using the newly computed member-

ship values.

4. Convergence Check: Assess whether the algorithm has reached convergence. If not, iterate

through steps 2 and 3.

5. Upon achieving convergence, conclude the algorithm, providing the cluster centers cj and the

membership values uij.

6. The algorithm iteratively updates the cluster centers (as shown in Eq. (3)) and membership

degrees (as shown in Eq. (4)) until convergence. The update equations are as follows:

cj =

∑N

i=1
um
ij
xi

∑N

i=1
um
ij

. (3)

uij =
1

∑M

j=1

(

‖xi−cj‖
‖xi−ck‖

)

2
m−1

. (4)

In the context of brainMRI images, FCM is employed to identify the actual pixels belonging to the

tumor region. This pre-processing step is pivotal in improving the accuracy of subsequent classification

methods, such as Support VectorMachine (SVM). By accurately delineating the tumor region through

FCM, SVM can then effectively classify it. The FCM model essentially seeks to find the best cluster

centers that represent the pixel distribution within the brain MRI images, with the goal of accurately

segmenting the tumor regions. Specifically, the SVM classifier operates on features extracted from the

segmented regions (FCMOutput), particularly from the cluster 2 output image. Both the FCM cluster

1 output and cluster 2 output are depicted in the Fig. 5 as segmented images. The segmented images

serve as the SVM classifier’s input, contributing to the accurate detection of the brain tumor region.
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Figure 5: Segmentation results from the Fuzzy C-Means (FCM) algorithm are depicted, with Row 01

contains (a–c) illustrating the cluster 1 output and Row 02 contains (d–f) representing the cluster 2

output. The segmented 2 image, serving as the input to the Support Vector Machine (SVM) classifier,

plays a pivotal role in achieving the accurate detection of the brain tumor region

3.3 Brain Tumor Classification

The final stage in our proposed approach involves the application of the Support Vector Machine

(SVM) to classify brain tumors. SVM, a supervised learning method rooted in statistical learning

theory, is employed for data classification [34]. Initially, data labeling is imperative for constructing the

training dataset, denoted as D = {|x, y| |x → datasample, y → classlabel|}. The primary objective of

SVM is to compute functions denoted by f such as f (x) = y, across all image data or pixels, facilitating

the brain tumor classification. The hinge loss function, a mathematical construct frequently utilized

in SVM for binary classification tasks, particularly in the context of brain MRI images, is pivotal.

This function measures the “loss” or “cost” associated with misclassification, compelling the SVM to

identify a decision boundary (hyperplane) that effectively separates the two classes with a specified

margin. Mathematically, the hinge loss L(y, f (x)) for a singular data point (x, y) is formally defined

as:

L (y, f (x)) = max (0, 1 − y ∗ f (x)) . (5)

where:

• y signifies the actual class label of the data point (−1 or 1, in binary classification).

• f (x) denotes the SVM’s decision function output for the given data point, reflecting the signed

distance from the data point to the decision hyperplane.
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The hinge loss exhibits the following traits:

1. If the data point is correctly classified (y ∗ f (x) > 1), the loss is 0, signifying no penalty for

accurate classifications.

2. In cases of misclassification where the data point falls on the correct side of the decision

margin (0 < y ∗ f (x) < 1), the loss increases proportionally as the distance from the margin

diminishes.

3. For misclassification where the data point lies on the incorrect side of the decision margin

(y ∗ f (x) < 0), the loss rises linearly with the negative value of y ∗ f (x), prompting the SVM

to rectify the misclassification.

In brain MRI images, the hinge loss plays a crucial role in determining an optimal hyperplane

for distinguishing between various classes of brain images, such as normal vs. abnormal or tumor

regions. Its minimization guides the Support Vector Machine (SVM) in adjusting its hyperplane to

balance maximizing the margin between classes and minimizing misclassifications. The hinge loss

is a guiding principle during SVM training, imposing penalties for misclassifications and playing a

key role in learning an effective decision boundary for binary classification tasks, including brain

MRI images. The overall SVM process, depicted in Fig. 6, aims to establish a functional relationship

between sample labels and data classification, facilitating precise brain tumor detection. The decision

function, a fundamental component of the SVM classification’s feed-forward process, is expressed

mathematically as follows:

D (m) =

(

∑N

i=1
αiyiK (d imi) + t

)

. (6)

In Eq. (6), αi signifies the alpha coefficient corresponding to support vector class labels or feature

vectors. The variables yi represent the SVM vector, and di represents the input vector. Additionally,

K (dimi) denotes the kernel function, incorporating a bias term denoted as ‘t.’ The brain tumor image

classification process using SVM unfolds in three steps. Initially, feature vectors are selected through

extraction. The second step involves training the data, and in the third step, the classification process

is executed to identify and delineate the tumor region.

The feature vector is constructed by consolidating data into an array preparing it for database

processing to facilitate object classification. In brain tumor images, the process initiates with the

conversion of the image into a binary representation, as illustrated in Fig. 6a. Subsequently, the binary

image undergoes skeletonization, as demonstrated in Fig. 6b. This processed image is segmented into

zones and areas, ultimately amalgamating to form the image matrix. The resulting feature vector

depends on various parameters, including Euler numbers and pixel distributions across the x and

y planes, culminating in a feature vector with approximately 100 distinct features crucial for precise

brain tumor region classification. Our study involved processing over 500 brain images for tumor

classification. SVM training utilizes the feature vectors organized in a matrix format to classify tumor

regions effectively. Support vectors in the SVMmethod represent the nearest data points to the decision

surface, a pivotal aspect of brain tumor classification involving an optimization process to determine

their precise location on the surface corresponding to the region. SVM aims to maximize the margin

around the hyperplane separating classes, and the decision function relies on a subset of the training

samples to identify the tumor region. The results of the SVM classification process are visualized in

Fig. 6.
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Figure 6: Workflow of the SVM-based classifier for brain tumor detection. (a) Binary representation

of a brain image. (b) Skeletonized image. (c) Application of the SVM classifier to the brain image. (d)

Identification of brain tumor regions

3.4 Composed Algorithm

The proposed algorithm excels in precisely identifying brain tumors while effectively addressing

inherent challenges within brain MRI images. The sequential steps of the algorithm.

3.4.1 Preprocessing Stage

• Preprocessing with Wiener Filtering: Wiener filtering is a technique used to reduce noise in

images by estimating the original image from its noisy version. In this step, brain images are

preprocessed to remove noise using Wiener filtering. This process helps to improve the quality

of the images and ensures that subsequent analysis steps are not adversely affected by noise

artifacts.

3.4.2 Enhancement Stage

• Brain Enhancement with Principal Component Analysis (PCA): In this step, PCA is applied to

enhance the brain images obtained after noise removal. By identifying and emphasizing the

principal components of variation in the images, PCA helps to highlight relevant features and

improve the overall contrast and clarity of the brain structures, and give thewell enhanced image

by converting the RGB images of brain MRI into single well contrasted image.
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3.4.3 Segmentation Stage

• Region Segmentation with Fuzzy C-Means (FCM)Clustering:FuzzyC-Means (FCM) clustering

is a method used for image segmentation, where pixels in the image are grouped into clusters

based on similarity in intensity values. Unlike traditional clustering methods, FCM allows

pixels to belong to multiple clusters with varying degrees of membership. In this step, FCM

is employed to segment the region of interest in the brain images, specifically targeting the areas

corresponding to brain tumors. This segmentation process helps to delineate the boundaries of

the tumors for further analysis.

3.4.4 Classification Stage

• Region ClassificationUsing Support VectorMachine (SVM)Classifier: Support VectorMachine

(SVM) is a supervised learning algorithm used for classification tasks. In this final step, the

segmented regions obtained from the previous step are classified into different categories using

an SVM classifier. The classifier is trained on a dataset containing labeled examples of different

regions of brain tumors, allowing it to learn patterns and relationships between features that

distinguish between these regions. Once trained, the SVM classifier can accurately classify new

regions of brain tumors based on their features, providing valuable information for diagnosis

and treatment planning.

This pipeline presents an innovative approach for automated brain tumor segmentation and

classification, incorporating techniques such as Wiener filtering for noise removal, PCA for image

enhancement, FCM clustering for segmentation, and SVM classification for region classification. By

combining these methods into a cohesive framework, the algorithm aims to accurately identify and

classify different regions of brain tumors inMRI images, facilitating improved diagnosis and treatment

decision-making.

4 Database and Parameters Measurement

The suggested methodology undergoes a thorough assessment, addressing the segmentation and

classification of brain tumor regions. The evaluation of segmentation performance involves scruti-

nizing six crucial parameters: mean, standard deviation, contrast, entropy, kurtosis, and skewness.

Simultaneously, the classification of brain tumors is appraised with a focus on sensitivity, specificity,

and accuracy.

4.1 Parameter Evaluation: Brain Tumor Segmentation

The segmentation outcomes are evaluated based on six specific parameters: mean, standard

deviation, contrast, entropy, kurtosis, and skewness. Further details on the definitions and significance

of these parameters can be referenced in [35].

4.2 Parameter Assessment: Brain Tumor Classification

For the classification parameters, evaluations were conducted on training and testing datasets

using cross-validation, a widely adopted technique for validating classification model performance.

The assessment of the classification model involved the calculation of the following parameters.
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4.2.1 Sensitivity

Sensitivity (SN), also known as True Positive Rate (TPR) or Recall, is a crucial metric assessing

the model’s accuracy in correctly identifying positive instances. In the context of brain MRI images,

it evaluates the model’s capability to accurately detect genuine brain MRI pixels. Mathematically,

sensitivity is calculated as follows:

Sensitivity (Se) =
TP

(TP+ FN)
. (7)

Sensitivity plays a vital role in evaluating the performance of a classification model, particularly

in medical imaging tasks like brain MRI analysis. It is based on the confusion matrix’s True Positives

(TP) and False Negatives (FN) components. TP represents correctly identified actual positive cases,

such as diseased brain MRI images, while FN represents instances where the model misses actual

positive cases. Higher sensitivity indicates themodel’s proficiency in accurately detecting the condition,

identifying a larger proportion of true positive cases. In medical imaging applications, such as

identifying brain tumors inMRI images, elevated sensitivity enhances diagnostic accuracy and patient

care by minimizing the chances of missing potential cases.

4.2.2 Specificity

Specificity (SP), also known as True Negative Rate (TNR), is a vital metric in assessing classifica-

tion model performance. In the context of brain MRI image analysis, specificity measures the model’s

ability to identify negative instances, including false pixels accurately. The specificity calculation is

expressed as:

Specificity =
TN

(TN + FP)
. (8)

Inmedical diagnosis, especially within brainMRI analysis, model performance is centered around

True Negatives (TN), where the model accurately identifies non-cases, and False Positives (FP),

where the model incorrectly categorizes non-cases as cases. Specificity is crucial in medical imaging,

emphasizing the model’s effectiveness in accurately identifying negative instances andminimizing false

positives.Higher specificity underscores themodel’s proficiency in distinguishing instances without the

condition, reducing false alarms, and maintaining diagnostic precision.

4.2.3 Accuracy

Accuracy (AC) is a fundamental metric for comprehensive classification model assessment,

extending to applications involving brain MRI images. This metric quantifies the proportion of

correctly predicted instances or pixels in the entire dataset. The accuracy formula is succinctly

expressed as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
. (9)

In brainMRI andmedical diagnosis, TP represents correctly identified positive cases, TN denotes

correctly identified negative cases, FP signifies negative cases incorrectly identified as positive, and

FN represents positive cases incorrectly identified as negative. Elevated accuracy indicates the model’s

adept and correct classification of a larger proportion of positive and negative pixels.
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4.2.4 Dice Score

The Dice Score (DSC) is a metric illustrating the overlap between predicted output and true

ground truth values. It normalizes true positive values against the mean of predicted and ground truth

values with the mathematical representation:

DSC =
2 × TP

(2 × TN + FN + FP)
. (10)

4.3 Databases

A biological CE-MRI brain dataset is a compilation of images generated through contrast-

enhanced magnetic resonance imaging (CE-MRI) techniques. These techniques enhance the visibility

of biological structures by administering contrast agents during diagnostic procedures. Key points

about CE-MRI datasets include:

1. CE-MRI datasets include various imaging protocols focusing on contrast-enhanced T1-

weighted sequences. These sequences visualize and quantify the contrast agent distribution

in tissues over time.

2. Clinical trials and research often utilize CE-MRI datasets stored in public repositories like

The Cancer Imaging Archive (TCIA) and the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), alongside other imaging modalities.

3. These datasets typically feature 3D volumetric image sequences acquired at different time

points, including pre-contrast images, dynamic post-contrast series, and additional sequences

for anatomical reference.

4. In brain tumor imaging, CE-MRI is instrumental in evaluating tumors and delineating their

boundaries, aiding in diagnosis, treatment planning, and response monitoring.

5. The dataset in question contains 3064 contrast-enhanced T1-weighted images obtained from

233 patients diagnosed with three different types of brain tumors: meningioma (708 slices),

glioma (1426 slices), and pituitary tumors (930 slices) [36].

6. This dataset, called the CE-MRI Image Database [36], was compiled from Nanfang Hospital,

Guangzhou, China, and General Hospital, Tianjin Medical University, China, from 2005

to 2010. It encompasses 3064 images from 233 patients, comprising 708 meningiomas, 1426

gliomas, and 930 pituitary tumors. These images have a resolution of 512 × 512 pixels with a

pixel size of 0.49×0.49 mm2 and a slice gap of 1 mm. Data was split into 70% for training and

30% for testing. Three highly experienced radiologists manually identified the tumors in these

images.

A biological CE-MRI brain dataset is characterized by images obtained through contrast-

enhanced MRI techniques, providing valuable insights for research and development in brain tumor

detection and analysis.

5 Results Analysis and Discussion

5.1 Analysis of Segmentation Module Performance

The brain tumor segmentation module’s performance is evaluated using the CE-MRI database,

focusing on various parameters detailed in Table 1. These parameters indicate optimal regional con-

trast and contribute to accurate brain tumor segmentation. The comparative analysis of performance

metrics in Table 1 across meningiomas, gliomas, and pituitary tumor images indicates consistent
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contrast enhancement, with mean image contrast (IC) values ranging from 0.28 to 0.29. Standard

deviation (STD) values show minimal variation, reflecting consistent pixel intensity levels within

each image type. Entropy values around 3.00 to 3.17 suggest comparable information content and

randomness across tumor types. Higher kurtosis values for meningiomas indicate a more peaked

pixel intensity distribution than gliomas and pituitary tumors. Skewness values follow a similar trend,

with meningiomas exhibiting the highest skewness, suggesting a more pronounced tail on one side of

the intensity distribution. Statistical analysis reveals minimal pixel misclassifications, ensuring precise

tumor region segmentation.

Table 1: Performance analysis of segmentation model of brain tumor

Image types Mean STD IC Entropy Kurtosis Skewness

Meningiomas tumor images 0.0045 0.091 0.29 3.17 35.17 5.78

Gliomas tumor images 0.0043 0.087 0.28 3.01 33.09 5.29

Pituitary tumor image 0.0041 0.083 0.28 3.00 32.98 5.27

In Fig. 7, the clear visualization of tumor detection underscores the effectiveness of the brain

tumor detection process.

Figure 7: Results of brain tumor segmentation using the proposed method. The initial row displays

images from the database, the second row shows the ground truth, and the third row illustrates the

algorithm-generated output

5.2 Comparison of Segmentation Module Performance Based on Different Classifier

Table 2 presents a comparative analysis of diverse brain tumor segmentation models, each

employing different classifiers and evaluated based on key performance metrics. The considered

methods encompass K-Nearest Neighbor (K-NN), Self-Organizing Map (SOM), Genetic Algorithm
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(GA), Graph Convolutional Neural Network (GCNN), Kernel-Based SVM, and our proposed PCA-

FCM-SVM approach.

Table 2: Comparsion of performance segmentation model of brain tumor detection

Method Classifier Mean STD IC PSNR(dB)

Vrooman et al. [37] K-NN 0.0032 0.071 0.19 0.75

Logeswari et al. [20] SOM 0.0028 0.067 0.18 0.76

Kharrat et al. [38] GA 0.0033 0.074 0.21 0.78

Mamta et al. [39] GCNN 0.0034 0.077 0.23 0.79

Mandle et al. [40] Kernel-Based SVM 0.0031 0.072 0.22 0.98

Proposed method PCA-FCM-SVM 0.0043 0.083 0.28 1.2

In terms of the mean metric, our proposed PCA-FCM-SVMmethod (0.0043) exhibits a compet-

itive performance compared to existing models such as KNN (0.0032), SOM (0.0028), GA (0.0033),

GCNN (0.0034), and Kernel-Based SVM (0.0031). Regarding standard deviation (STD), our method

(0.083) demonstrates a slightly higher value than the comparisonmodels (ranging from 0.067 to 0.077),

indicating a slightly wider distribution of pixel values.

In the assessment of image contrast (IC), our proposed method (0.28) outperforms other models,

surpassing the contrast levels achieved by KNN (0.19), SOM (0.18), GA (0.21), GCNN (0.23), and

Kernel-Based SVM (0.22). Furthermore, in terms of peak signal-to-noise ratio (PSNR) measured

in dB, our PCA-FCM-SVM approach (1.2) excels, demonstrating higher values compared to the

comparison models, including KNN (0.75), SOM (0.76), GA (0.78), GCNN (0.79), and Kernel-Based

SVM (0.98).

This comprehensive comparison highlights the competitive performance of our proposed PCA-

FCM-SVM method, particularly in aspects of image contrast and peak signal-to-noise ratio. These

results suggest the efficacy of our approach in the segmentation of brain tumors, showcasing its

potential utility in this critical medical imaging domain.

5.3 Analysis of Classification Module Performance

The performance analysis in Table 3 offers a detailed examination of the brain tumor classification

model’s effectiveness, specifically across different image types such as Meningiomas, Gliomas, and

Pituitary tumors. Each image type is assessed based on key metrics, including Sensitivity (Se),

Specificity (Sp), Accuracy (Ac), and Dice Score Coefficient (DSC).

Table 3: Performance analysis of classification model of brain tumor. Note: Se represent sensitivity,

Sp represent specificity, AC represent accuracy

Image types Se Sp Ac DSC

Meningiomas tumor images 0.971 0.979 0.983 0.959

Gliomas tumor images 0.972 0.971 0.979 0.958

Pituitary tumor image 0.981 0.979 0.977 0.955

Overall performance 0.974 0.976 0.979 0.957
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ForMeningiomas Tumor Images, the model demonstrates high performance with a Sensitivity of

0.971, Specificity of 0.979,Accuracy of 0.983, and aDice ScoreCoefficient of 0.959. Similarly,Gliomas

Tumor Images exhibit strong metrics, including a Sensitivity of 0.972, Specificity of 0.971, Accuracy

of 0.979, and a Dice Score Coefficient of 0.958. Pituitary Tumor Images also showcase notable results,

with a Sensitivity of 0.981, Specificity of 0.979, Accuracy of 0.977, and a Dice Score Coefficient of

0.955.

The overall performance metrics, summarizing the model’s effectiveness across all tumor types,

include a Sensitivity of 0.974, Specificity of 0.976, Accuracy of 0.979, and a Dice Score Coefficient

of 0.957. These results collectively underscore the robustness of the brain tumor classification model,

demonstrating consistently high performance in accurately identifying and classifying various tumor

types. The noteworthy Dice Score Coefficient further indicates precise segmentation, highlighting the

model’s reliability in medical image analysis. The statistical parameter analysis confirms the model’s

capability to classify abnormal tumor regions using the PCA-FCM-SVM classifier accurately.

5.4 Comparison of Classification Module Performance of Different Classifier

The presented Table 4 provides a comprehensive comparative analysis of various brain tumor

detection methods, including the proposed method, based on performance metrics such as sensitivity,

specificity, accuracy, Dice Score (DSC), and processing time. Notably, the proposed method exhibits

outstanding performance, achieving a sensitivity of 0.974, specificity of 0.976, accuracy of 0.979, and

a DSC of 0.957. These metrics indicate a commendable balance between correctly identifying true

positive and true negative cases, which is essential for accurate tumor detection and segmentation.

Furthermore, the proposed method distinguishes itself with an efficient processing time of 0.44 s,

underscoring its suitability for real-time or near-real-time applications. The proposed method con-

sistently outperforms sensitivity and specificity compared to other methods, including traditional

techniques like K-NN and more advanced approaches such as SVM, Back Propagation Neural

Network (BP-NN),Deep Long Short-Term Memory (LSTM), CNNs, and GANs. This suggests its

efficacy in automating brain tumor detection throughMRI analysis, offering a promising contribution

to the field. However, it is essential to note that the absence of time information for some methods

and the lack of performance metrics for others limit a comprehensive evaluation. Nonetheless, the

proposed method emerges as a robust and efficient solution, showcasing its potential significance in

advancing automated brain tumor diagnosis.

Table 4: Comparsion of performance classification model of brain tumor detection with different

classifier

Method Sensitivity Specificity Accuracy DSC Time

K-NN [37] 0.39 0.42 0.85 0.81 3.7 s

SOM [20] 0.43 0.52 0.92 0.83 4.8 s

GA [38] 0.51 0.54 0.98 0.85 2.8 s

GCNN [39] 0.85 0.89 0.96 0.89 0.92 s

Kernel-Based SVM [40] 0.98 0.98 0.98 0.94 0.83 s

SVM [41] – – 0.96 – –

BP-NN [42] – – 0.93 – –

DWA-DNN [43] – – 0.96 – –

(Continued)
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Table 4 (continued)

Method Sensitivity Specificity Accuracy DSC Time

GANs [44] – – 0.91 – –

CNN [45] – – 0.91 – –

CNN [46] – – 0.96 – –

K-NN [47] – – 0.86 – –

Deep LSTM [48] – – 0.97 – –

FCM [49] – – 0.97 – –

SVM [50] – – 0.99 – –

CNN [51] – – 0.97 – –

CNN [52] – – 0.92 – –

FCM [53] – – 0.99 – –

CNN [54] – – 0.95 – –

SVM [55] – – 0.95 – –

SVM [56] – – 0.95 – –

DenseNet [57] 0.95 0.94 0.94 – –

CNN [58] 0.95 0.95 0.94 – –

SVM [59] 0.96 0.96 0.97 – –

Proposed method 0.974 0.976 0.979 0.957 0.44s

Our findings indicate that the proposed approach outperforms a majority of existing methods,

demonstrating superior levels of sensitivity, specificity, accuracy, and Dice Score. Furthermore, it

highlights an expedited processing time when compared to certain models, emphasizing its capability

for precise classification of tumor regions in brain imaging.

5.5 Comparative Analysis with Existing Work

To evaluate the efficacy of our proposed approach, we conducted a performance assessment by

comparing it with recent techniques developed from 2019 onwards, as outlined in Table 5.

Table 5: Performance of exiting MR imaging segmentation methods

Method Year Technique Ac (%)

[41] 2017 SVM 96.51

[42] 2019 Back propagation neural networks. 93.33

[43] 2019 Deep wavelet autoencoder (DWA) and 96

Deep neural network (DNN).

[44] 2019 Generative adversarial networks (GANs) 91

[45] 2019 Convolutional neural network 91.2

[46] 2019 Convolutional neural network 97.87

[47] 2019 K-NN 86

[48] 2019 Deep LSTM 97.87

(Continued)
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Table 5 (continued)

Method Year Technique Ac (%)

[49] 2019 FCM clustering algorithm 97.5

[50] 2019 SVM 99.8

[51] 2019 K-Means-FCM 97

[52] 2019 Convolutional neural network 92

[53] 2019 Convolutional neural network 99.34

[54] 2020 Extreme learning based on FCM 95

[55] 2020 Convolutional neural network 95

[56] 2022 SVM 95.1

Proposed method 2024 Contrast normalization techniques and SVM 97.9

The provided Table 5 offers a comprehensive overview of various methodologies employed

in the segmentation of MR imaging data, highlighting their respective years of publication and

corresponding accuracies. Among the techniques showcased, classical machine learning algorithms

like Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN) stand alongside cutting-

edge deep learning architectures such as Convolutional Neural Networks (CNNs) and Generative

Adversarial Networks (GANs).

Beginning with earlier works, Bahadur et al. [41] achieved an impressive 96.51% accuracy

using SVM, showcasing the efficacy of traditional approaches. Subsequent advancements led to the

exploration of neural network-based methods, with Shakeel et al. [42] utilizing Backpropagation

Neural Networks and achieving an accuracy of 93.33%. This trend continued with Mallick et al. [43],

who combined Deep Wavelet Autoencoder (DWA) and Deep Neural Network (DNN) techniques to

achieve an accuracy of 96%.

The advent of deep learning witnessed a surge in accuracy, as evidenced by Han et al. [44] utilizing

GANs and achieving 91% accuracy, and Li et al. [45] employing CNNs with an accuracy of 91.2%.

Notably, Hossain et al. [46] attained a significant accuracy boost of 97.87% using CNNs, highlighting

the superiority of deep learning in handling complex imaging data.

Additionally, the exploration of clustering algorithms, such as Fuzzy C-Means (FCM) by

Alam et al. [49], showcased competitive accuracies, reaching 97.5%. The utilization of recurrent

neural networks (RNNs), exemplified by Amin et al. [48] employing Deep Long Short-TermMemory

(LSTM) networks, further expanded the methodological landscape, achieving an accuracy of 97.87%.

Ranjbarzadeh et al. [60] proposed CNN based method but it gave sensitivity around 98% that shows

good accurate detection of brain tumor.

Moreover, the table reflects the continual refinement of existing techniques, such as Janard-

hanaprabhu et al. [50] achieving the highest accuracy of 99.8% using SVM, underscoring the robust-

ness of classical machine learning methods when appropriately applied. Furthermore, the integration

of novel methodologies, as given by the proposed method in 2024 incorporating Contrast Normaliza-

tion Techniques with SVM, yielded competitive accuracies of 97.9%, indicating promising avenues

for future research. The techniques used range from traditional machine learning algorithms like

SVM and k-NN to deep learning approaches such as CNNs and GANs. The comparison reveals

the evolution of segmentation techniques, with diverse approaches such as neural networks, clustering
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algorithms, and SVM showing varying degrees of success. Notably, the proposedmethod demonstrates

a promising advancement in MR imaging segmentation, surpassing many existing methods in terms

of accuracy and showcasing the potential of Contrast Normalization Techniques coupled with SVM

for enhanced performance.

5.6 Discussion on Performance of Proposed Method

The proposed pipeline exhibits noteworthy advancements in the classification of meningioma vs.

pituitary tumors when compared to existing methods. The achieved performance breakdown across

various parameters provides a detailed insight into the method’s efficacy:

• The average sensitivity of 0.981 signifies a remarkable success rate in accurately identifying

pituitary tumors, showcasing the method’s proficiency in sensitivity-driven tasks.

• With an accuracy value of 0.997, the method demonstrates high precision in correctly identi-

fying meningioma tumors without misclassifying pituitary tumors, emphasizing its accuracy in

overall classification.

• The DSC of 0.957 reveals substantial agreement between the proposed method’s classifications

and the actual tumor locations, underscoring its accuracy in delineating tumor boundaries.

• Noteworthy is the proposed method’s shorter execution time of 0.44 s compared to existing

works, indicating enhanced efficiency and computational speed.

Moreover, the proposed method’s outperformance in sensitivity, specificity, accuracy, and DSC

positions it as a promising innovation in medical imaging. These improvements hold significant

potential for more precise and efficient diagnoses, with the prospect of expediting treatment decisions

for patients with meningioma and pituitary tumors. The shorter execution time also contributes to

the practical applicability of the proposed method, making it a valuable addition to the landscape of

medical image classification.

6 Conclusion and Future Directions

This study introduces a comprehensive pipeline for the automated segmentation and classification

of brain tumors, covering pre-processing, enhancement, segmentation, and classification stages.

The proposed methodology demonstrates a significant improvement in performance across various

metrics, including average sensitivity, specificity, accuracy, and Dice Similarity Coefficient (DSC),

indicating robust capabilities in accurately identifying and distinguishing different tumor types.

Particularly noteworthy is the method’s achievement of high accuracy while concurrently reducing

execution time, a substantial contribution to the field of medical image analysis.

Future work offers numerous opportunities for further enhancement and expansion. The stan-

dardization of the pipeline through ensemble techniques and innovations in machine learning can

bolster its robustness. The incorporation of deep learning methods, such as convolutional neural

networks (CNNs), holds potential for achieving increased accuracy. To enhance generalizability, the

inclusion of a larger and more diverse dataset, along with multimodal image analysis, is essential.

Exploring validation studies, real-time applications, and integration with clinical decision support

systems represents promising avenues for ongoing research, fostering advancements in automated

brain tumor analysis.

These refinements in the proposed methodology contribute to an improved diagnostic process,

facilitating more accurate and efficient brain tumor diagnosis. The potential impact on patients is

substantial, enabling timely and well-informed treatment decisions. The significance of this research
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lies in its capacity to contribute to the development of state-of-the-art medical imaging tools, with

tangible implications for patient care and outcomes.
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