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ABSTRACT

Intelligent penetration testing is of great significance for the improvement of the security of information systems,
and the critical issue is the planning of penetration test paths. In view of the difficulty for attackers to obtain
complete network information in realistic network scenarios, Reinforcement Learning (RL) is a promising solution
to discover the optimal penetration path under incomplete information about the target network. Existing RL-
based methods are challenged by the sizeable discrete action space, which leads to difficulties in the convergence.
Moreover, most methods still rely on experts’ knowledge. To address these issues, this paper proposes a penetration
path planning method based on reinforcement learning with episodic memory. First, the penetration testing
problem is formally described in terms of reinforcement learning. To speed up the training process without specific
prior knowledge, the proposed algorithm introduces episodic memory to store experienced advantageous strategies
for the first time. Furthermore, the method offers an exploration strategy based on episodic memory to guide
the agents in learning. The design makes full use of historical experience to achieve the purpose of reducing
blind exploration and improving planning efficiency. Ultimately, comparison experiments are carried out with the
existing RL-based methods. The results reveal that the proposed method has better convergence performance. The
running time is reduced by more than 20%.
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Nomenclature

S Set of states
A Executable action set
a Action vector
γ Discount factor
R Reward function
π Policy
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ε Exploration factor
HE Episodic memory table
Q Action-value function
θ Neural network weight
Rt Expected discounted reward
r Immediate reward
p (s′|s, a) Transition probability
E [·] Mathematical expectation of the random variable

1 Introduction

Organized hacking attacks have been commonplace in recent years, and the cyber security threat
situation is serious. Traditional defenses, such as firewalls, have limited protective effects from the
point of view of defenders. Active defense technologies, such as data encryption and vulnerability
assessment, have further improved the defense strategy of the system with the development of artificial
intelligence and data analysis technology. Active defense technologies can prevent threats and disrupt
intrusions in advance, which makes up for the shortcomings of traditional defenses.

Intelligent penetration testing (PT) has become an essential tool for network vulnerability
assessment. It simulates the attack patterns and means of hackers and is able to discover the penetration
paths of network systems. In the contrast with traditional manual testing, intelligent penetration
testing can reduce the reliance on experts and improve penetration efficiency.

The key to intelligent penetration testing is automatically discovering penetration paths and
providing testers with an execution plan. It is acknowledged as penetration testing path planning as
well. A penetration path, also known as an attack path, is a sequence of actions taken in the target
network to reach the target host. The study of methods of the improvement of the efficiency and
effectiveness of penetration testing path planning is of great significance to promote the development
of intelligent penetration testing.

Currently, reinforcement learning (RL) has achieved better-than-human performance in game
fields, which inspires research in intelligent penetration testing. Researchers have attempted to apply
RL in penetration testing path planning [1–3]. In these studies, RL-based approaches learn better
planning strategies in less time and with less effort among existing intelligent methods.

Nevertheless, the application of reinforcement learning to intelligent penetration suffers from
convergence difficulties. Unlike the game domain, reinforcement learning has a high-dimensional
discrete action space. And the action space grows exponentially with the host counts [2]. The ability
of reinforcement learning algorithms to handle complex environments is limited by the challenge of
exploring large action spaces. This leads to difficulties in learning stable penetration strategies with
existing solutions.

To address the challenge of exploring large-scale action spaces in PT scenarios, this paper
proposes an episodic memory-guided Deep Q-network method (EMG-DQN) to discover the optimal
penetration path efficiently. Firstly, the PT framework is transformed into an RL task. Subsequently,
the episodic memory reading-writing mechanism is introduced to guide the agent’s exploration based
on the Deep Q-Network (DQN) framework. Finally, extensive experiments are conducted in different
scaled scenarios to verify the performance and scalability of the proposed algorithm.

The main contributions of this paper are as follows:
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(1) This paper constructs a non-parametric episodic memory module for the storage of successful
strategies. By reading the episodic memory, high-return penetration actions can be quickly targeted
during penetration. The use of the episodic memory module resulted in the reduction of the size of
action space exploration.

(2) An episodic memory-based exploration strategy is designed in this paper. The approach com-
bines the episodic memory mechanism with ε-greedy policy to balance exploration and exploitation.
The proposed strategy improves the convergence speed while ensuring the learning effect.

(3) In this paper, experiments are performed in different scaled scenarios to verify the effectiveness
and scalability of the proposed scheme. The results of the comparison experiments show that EMG-
DQN enjoys the state-of-the-art convergence performance and stable penetration performance.

This paper is organized as follows. Section 2 is the introduction to the related work around intel-
ligent penetration testing. Section 3 is the presentation of the preliminary knowledge of reinforcement
learning techniques. Section 4 is a presentation of the proposed method framework and design details.
In Section 5, the effectiveness of the algorithm is verified by comparative and extended experiments.

2 Related Work

Work related to the field of intelligent penetration testing is presented in this section presents.
Intelligent penetration testing, as an important active network defense technique, is widely used to
assess the vulnerability of systems. The existing research is divided into two categories in this section:
classical intelligent planning-based approaches, and reinforcement learning-based approaches.

2.1 Classical Intelligent Planning
The classical intelligent planning approach transforms the Penetration Testing (PT) problem

into a planning domain description. Then, feasible penetration paths are discovered with the help
of intelligent planning models.

Planning diagram techniques are capable to describe the attack process and assess security risks
from the perspective of the attacker. Garrett et al. [4] modeled penetration testing as planning graph
to find all attack paths. The proposed method was highly interpretable and time-consuming.

Sarraute et al. [5] applied a hierarchical task network to address the algorithm’s scalability. They
divided the extensive network into several smaller networks in accordance with the network structure.
Hu et al. [6] used a hierarchical clustering algorithm to decompose the network, on the basis of which
they used an optimized genetic algorithm to discover the penetration paths in large-scale scenarios.
However, experts are required to design the appropriate subtasks by the specific decomposition
scheme. This is unrealistic in the face of dynamic and complex network scenarios.

Combinatorial optimization algorithms have also been widely used in the field of penetration
testing path planning. Hu et al. [7] proposed the APU-D∗ method on the basis of heuristic search,
introducing the action success rate to describe the degree of uncertainty in penetration testing scenarios
to enhance the algorithm’s applicability in penetration testing scenarios. Chen [8] optimized the
situational prediction model by applying simulated annealing (SA) algorithm and hybrid hierarchical
genetic algorithm (HHGA). Gao et al. [9] added a replanning mechanism to the combinatorial
optimization algorithm to quickly adjust the attack path when the host node changes.

The focus of the above research is the complete information condition. In the actual PT, obtaining
the entire network topology, host configuration, and other scenario information in advance is difficult.
Thus, the classic planning model is disabled to meet the demand [10].



2616 CMES, 2024, vol.140, no.3

2.2 Penetration Testing Path Planning Based on Reinforcement Learning
Reinforcement learning is the accumulation of experience by exploring the environment to learn

optimal action strategies. The penetration testing process requires constant state observation of the
environment to make dynamic decisions, which is similar to the learning mechanism of real-time
strategy games. Recently, reinforcement learning (RL) has been applied to the modeling of the PT
process and the learning of the optimal penetration paths.

Solutions based on traditional reinforcement learning have been applied to small-scale scenarios.
Zhao et al. [1] proposed a RL-based penetration path recommendation model. To address the current
lack of simulation environments for training PT agents, Schwartz et al. [2] modeled penetration testing
as a Markov Decision Process (MDP) and designed a Network Attack Simulator (NAS) for the
establishment of simulation scenarios. Ghanem et al. [3] designed an expert verification session to
monitor the output penetration path of the planning system, which improves the success rate of
planning.

To extend reinforcement learning algorithms in more complex scenarios, quite a few studies
have used model-based optimization methods. Bland et al. [11] used formalism to model specific
cyberattack patterns (cross-site scripting and spear-phishing). Erdodi et al. [12] modeled several
specific penetration scenario structures to reduce the space of exploration and sampling, simplifying
the learning problem. Pozdniakov et al. [13] pre-collected experts’ behavior samples. The agent
imitates the trajectory of the expert through pre-training, which improves the training efficiency.
Ghanem et al. [14] decomposed the target network previously based on expert experience. It reduces
the difficulty of planning. The model-based approach can reduce the training difficulty by pre-training
and modeling the agent with partial scene knowledge in advance. However, there is a risk in this
optimization approach: the learning effect is very unstable when the agent is encountered with a
previous scenario that has not been experienced before. Moreover, it is a challenge to ensure that the
modeling is reliable.

In order to improve the adaptability of algorithms applied to the field of intelligent penetration,
many studies have improved reinforcement learning. Nguyen et al. [15] proposed an algorithm with
double agent architecture, where two agents are responsible for network topology discovery and
vulnerability exploitation, but the learning is unstable. Zhou et al. [16] pruned the action space by
decoupling the attack vectors and accelerated the convergence by combining mechanisms such as
competing networks and noisy networks. In addition, Tran et al. [17] presented a deep hierarchical
reinforcement learning architecture, which uses an algebraic approach to decompose the discrete
action space of the penetration test simulator. These studies improved the agents’ planning efficiency
to some extent.

In spite of this, the PT problem has a high-dimensional discrete action space. The action space
grows exponentially with the scale of the scenario. It results in high convergence difficulty and long
planning time for the RL algorithm, which has been a long-term challenge.

3 Preliminaries

Reinforcement learning (RL) learns the best strategy through the interaction between the agent
and the environment. It discovers the action sequences that lead to the greatest cumulative reward.

RL is usually modeled as a Markov decision process (MDP), it is inscribed by the tuple <S, A, R,
T , γ >. S denotes the finite set of states. A denotes the set of executable actions. The reward function
R is used to evaluate the quality of the actions and is defined as: S × A → R. The state transition
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function T is unknown to the agent and represents the probability of transferring to the next state
after executing action a in state s. γ ∈ [0, 1] is the discount factor used to determine the long-term
reward. It is not necessary for RL to follow the dataset. The agent finds a mapping from states to
actions by trying actions and observing their effects on the environment. The mapping relationship is
called a policy π .

a = π (s) (1)

The agent interacts with the environment in the period of RL training process. The agent selects
an action from action set A according to the learned policy at each step. As feedback, the environment
returns a reward r (s, a) to the agent and transfers to the next state in accordance with transition
probability p (s′|s, a). The goal of RL is the finding of the optimal strategy π ∗ for the maximization of
long-term cumulative rewards.

The long-term cumulative reward Rt at time step t and the optimal policy π ∗ are shown in Eqs. (2)
and (3).

Rt =
K∑

k=0

γ krk+1 (2)

π ∗ = argmax
π

E [Rt|π ] (3)

where Rt is also known as the expected discounted reward. K is the number of steps taken to reach the
target state from the current state. The policy π ∗ gives the maximum expected reward for all states.

The action-value function Qπ (s, a) is used to denote the expected reward that is obtained by taking
an action a from state s under policy π . Subsequently, the optimal action value function Q∗ (s, a) is the
maximum of all action values.

Q∗ (s, a) = max
π

Qπ (s, a) = max
π

E [Rt|st = s, at = a, π ] (4)

For the next state s′, when the corresponding optimal action-value function Q∗ (s′, a′) is known,
the current optimal policy is to choose an action a′ to maximize the objective function r + γ Q∗ (s′, a′).

Q∗ (s, a) = Es′∼ε

[
r + γ max

a′ Q∗ (s′, a′) |s, a
]

(5)

The RL algorithm can solve the optimal action-value function by the iterative update of the
Bellman equation. However, it is not easy to implement it in practical applications.

The Deep Q-Network (DQN) method is based on value functions. It combines the advantages of
neural networks and Q-learning, which has made good progress in previous studies. The action-value
function is estimated by using a neural network with weight θ as a function approximator, which is
called a Q network. DQN employs two neural networks. The online network continuously updates
parameters calculating the estimated Q, while the target network updates with a particular frequency
to calculate target Q. As a result, DQN reduces the correlation between the two Q values and improves
the stability of learning.

4 Method
4.1 Overall Framework

To construct an episodic memory mechanism for directional exploration in the early stage of
training, the EMG-DQN method proposed in this paper is designed. The overall framework of the



2618 CMES, 2024, vol.140, no.3

algorithm is shown in Fig. 1. The critical components of EMG-DQN include the episodic memory
module and the exploring strategy.

The episodic memory module stores and plays back advantageous action sequences. It allows
the agent to make efficient use of the experience gained during penetration. The exploration strategy
uses the exploration factor to dynamically adjust the proportion of episodic memory playback in
accordance with the training stage. It preserves the agent’s independent exploration ability while
rapidly accumulating high-quality action sequences in the early stage.

Interaction

Observation reward

Action

RL agent

...

Step 1

Step 2

Step 3

Step 4

Step 5

Step n

Step n+1

s,a,r,done

Experience
Deep neural network

Network enviorment

Exploration strategy

Episodic memory

Random
projection

Update

Action

store

Sampling...

Figure 1: Overall framework of EMG-DQN

Before starting a new penetration path planning task, the agent initializes the configuration and
formalizes the penetration task as an action selection process of RL. At each penetration action
decision cycle, the agent receives the current observations of the target network and stores them in
the experience pool. The neural network takes samples from the experience pool and updates the
parameters at regular intervals. When the target host is reached, the scenario memory module reads
the action trajectory from the experience pool for updating. The agent outputs the choice of action on
the basis of the exploration strategy. After multiple rounds of training, the EMG-DQN converges. At
this point, the agent is able to choose the optimal penetration strategy in the face of any state inputs.

4.2 PT Execution Module
PT execution module comprises of a RL agent and a scenario. RL agent is the individual who

performs the attack action. The role of PT execution module is the formalization of the input
information of the PT task into MDP tuples. After formalization, RL agent can continuously acquire
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information about the environment by interacting with the scenario, which is the basis of policy
learning.

4.2.1 State Space

The state space helps the agent to express the available scenario information. A state is defined as
the set of information that is currently being observed by the intrusion agent about the network. The
finite state set S contains all information of compromised hosts of the target network.

The state vector is created by One-Hot encoding. As shown in Fig. 2, for a state s, it
consists of host identification, service information and control information, denoted as s =
{Host ID, Service, Control}.

Service1 Service2 Service3

Subnet1 Subnet... Host Host...

Compromised Reachable Discovered Access

Host ID Service Control

Value

Figure 2: State vector

The Host ID is the host identification. It is uniquely determined by the subnet and host
location {subnet, host}. Service is the running service information, for each available Service ∈
{absent, exist, uncertain}. Control reflects the damage to each host after the attack, expressed as
Control = {Compromised, Reachable, Discovered, Value, Access, OS}, provide feedback to the agent
on the action effect. Where Value and Access are represented by numeric parameters reflecting the
asset value and access of the host (1 for user and 2 for root access). The rest of the Control field
is represented by the Boolean parameter {True, False}. Compromised indicates whether the host is
successfully exploited. Reachable demonstrates whether a connection exists to the compromised host.
Discovered indicates whether the host is probed, and OS indicates the operating system of the host’s
running. Therefore, the state space is a possible combination of service and control information for
each host in the network. It grows exponentially with the number of hosts and services found.

4.2.2 Action Set

The action space stores the actions that an attacker may take. It is beneficial for the agent to
exploit the vulnerability present in the scenario. Executable action set A = {a1, a2, a3, . . . , an} indicates
the action space that the agent can select to control hosts on the target network. Each action vector
a =< m, o > represents the execution of action of host m, including scan action, exploit action, and
privilege action.

The action vector is also formalized with the help of One-Hot encoding. At each time step t, the
agent in state st can select action at ∈ {Scan, Exploit, Privilege}. Scan defines the scanning actions
that can be performed, including subnet scan, service scan, system scan and process scan, which are
denoted as Scan = {ServiceScan, OSScan, SubnetScan, ProcessScan}. Exploit defines the vulnerability
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exploitation actions. This paper assumes that there is a corresponding vulnerability exploitation action
for each service running on the host. Privilege defines executable actions that can be used to elevate
the user privilege to root privilege using processes that exist on the host.

An example composition of Exploit action vector, Exploit: {target, os, service, cost, prob, access},
the target host, the execution conditions, and the permissions upon successful execution were defined,
as illustrated in Fig. 3. Here, based on the vulnerability rank in Metasploit and core impact, the attack
success rate prob is quantified. The cost of the Exploit action is set based on Common Vulnerability
Scoring System (CVSS), which is calculated as cost = sigmoid (STreat · SYear). Where STreat is the
vulnerability threat level, this paper used the CVSS base score as the value of STreat. SYear took 20,
40 or 60 depending on the disclosure year of the vulnerability, with the earlier the year the lower the
score.

RL Agent

...

Action List:

action 1

action 2

action 3

action 4

action 5

action n

action n+1

Action Selection

Action

Reward

State

Enviorment

Exploit action vector
Action Performed :{
type: Exploit
target: (3,1) target host ID
os:Linux Action system requirements
service: SSH Action service requirements
cost:0.9 The cost of action execution
prob:0.8 The probability of success of the attack
access: 1 Permissions are obtained after the action is executed

1:user;2:root

Figure 3: Action vector

4.2.3 Reward Function

The reward function R defines the penetration agent optimization goal. r (s, a) defines the
immediate reward obtained by performing the action a in state s.

The design of reward function refers to the work done by Chen et al. [18]. When the agent takes
action at in state s and moves to the next state s′, the reward is determined by the Value of the state
vector and the cost of the action vector, as shown in Eq. (6).

r (s, at) = value (s′, m) − cost (at) (6)

where value (s′, m) denotes the Value of the updated compromised host m in state s′. r (s, at) denotes
the immediate reward.

In this paper, we first set a larger Value for the target sensitive host and 0 for the remaining non-
target hosts. If state s′ does not produce a new compromised host compared to the previous state, then
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the immediate reward of the transition process is negative. Thus, the value of reward is the cost of
performing action at. The reward for the transition process is the value of the new compromised host
minus the cost of performing the action at if new compromised hosts appear in state s′ after the action
is performed.

4.3 Episodic Memory Module
EMG-DQN leverages the successful strategies accumulated during penetration to enhance the

exploration efficiency through episodic memory reading and writing. The episodic memory mecha-
nism follows the idea of instance-based learning by creating a non-parametric dictionary structure
to store the experienced good experiences. This allows a quick selection of successful policies when
encountering experienced states [19]. In this paper, we set the target state at the end of the training
episode: to obtain the root privileges of all sensitive hosts. Therefore, the penetration agent’s episodic
memory refers to the agent’s observation received and the action taken in a specific state of an episode.

In particular, the EMG-DQN stores the state observations, actions, and corresponding rewards
for each step of a given episode in the episodic memory table HE. Each key-value pair in the HE

represents the maximum cumulative reward obtained after the action a is performed in state s. Thus,
key records the experienced state-action pairs (s, a). The episodic memory writing process is formalized
as follows:

HE (st, at) =
{

max (HE (st, at) , R (st, at)) if (st, at) ∈ HE

R (st, at) otherwise (7)

where HE (st, at) is the maximum cumulative reward corresponding to (st, at) of the records in the table,
and R (st, at) indicates the cumulative reward corresponding to the current episode.

After the algorithm starts training, the episodic memory table is updated via a backward replay
process at the end of each episode. New state-action pairs, which have not been recorded, are written
directly into the table. For state-action couples that have already been registered in the table, it is written
to the episodic memory table if the cumulative reward value for the current episode is more excellent.
Otherwise, it remains the same. The forgetting strategy mimics human experts’ characteristics. It
replaces the least recently retrieved key-value pair to keep the table fixed in size.

In the decision-making process of the penetration agent, the episodic memory needs to be read
to evaluate the value of performing each attack action in the current state st. When the agent receives
state observations from the environment, the storage cost is reduced by projecting observations onto
a low-dimensional vector by means of function ϕ. Function ϕ selects the random projection method.
According to Johnson–Lindenstrauss Lemma, the random projection matrix maintains the original
state distance proximity relationship and does not put affect the state similarity judgment. The reading
process of episodic memory is formalized as follows:

ae (st, HE) = arg max
a

HE (st, a) (8)

where ae represents the action selected by reading the episodic memory. According to the records of
the episodic memory, the agent selects the action with the largest key value HE (st, at) to execute in the
current state.
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4.4 Exploration Strategy Based on Episodic Memory
The majority of the existing algorithms use the ε-greedy policy to balance exploration and

exploitation, which is shown in Eq. (9).

πε (s) =
{

random (A) , ς ≤ ε

arg max
a

Q (s, a) , ς > ε (9)

where ε is the exploration factor. Based on the ε-greedy policy, the agent selects random action with
probability of ε and selects action with maximum Q values with probability of 1 − ε.

In the absence of episodic memory guidance, the agent treats all attack actions equally in exploring
the penetration path and repeatedly tries the entire action space to find an advantageous attack
sequence, which has the problem of over-exploration. There are many low-quality penetration paths
by observing the action execution traces of each episode reveals, where low-reward attack actions with
similar effects are attempted multiple times on the same host or subnet.

The episodic memory table stores the historical optimal policy for a particular state experienced
and contains the best penetration path learned so far. It is similar to the local knowledge of the
network scenario developed by human experts during penetration testing. Therefore, the exploration
strategy based on episodic memory is designed to improve the relevance of exploration. The utilization
of episodic memory can rapidly accumulate high-quality penetration paths and accelerate algorithm
convergence.

In the early stage of training, more use of episodic memory to guide exploration can improve
the efficiency of the training when the neural network is still unstable. However, the generalization
performance using neural network decisions is better in the late training period. Therefore, the strategy
allocates a certain probability based on the ε-greedy policy to explore with episodic memory. It can
effectively use the successful experience to accelerate learning and ensure the agent’s exploration ability
to avoid one-sided exploitation. Specifically, the exploration strategy divides the training process into
an exploration phase and an exploitation phase. In the exploration phase, the exploration factor ε is
calculated as follows:

ε = 1 − steps_done
Exploration_Steps

∗ (1 − FINAL_epsilon) (10)

where the length of exploration stage is noted as Exploration_Steps. As the number of training steps
increases, the ε value gradually decay from the initial value to FINAL_epsilon.

Based on the ε-greedy policy, the agent divides ε

3
of the probability of the neural network

decision to select the action using episodic memory. When the number of training steps exceeds
Exploration_Steps, the exploration phase ends, and ε takes the value of FINAL_epsilon. Afterwards
the agent mainly relies on the neural network decision. It retains a very small probability of randomly
selecting an action or reading the episodic memory to select an action. The strategy is formalized as
follows:

π (s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πR → a ∼ random (A) , ς ≤ ε

πE → ae (s, HE) , ε < ς ≤ ε (4 − ε)

3

πQ → arg maxa Q (s, a) , ς >
ε (4 − ε)

3

(11)
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where the selection of the action by reading the episodic memory module is denoted as πE, the policy
for selecting the random action is denoted as πR, and selecting the action generated by the neural
network is denoted as πQ. When selecting an attack action under state s, the corresponding strategy is
selected accordance with the generated random number ς ∈ (0, 1).

As shown in Fig. 4, the agent selects the action for execution under policy πR with the probability

of ε, selects the action under policy πE with the probability of
ε(1 − ε)

3
, and selects the action under

policy πQ with the remaining probability. Following such a design, the agent first constructs the
episodic memory table by exploring in the early training. Then the agent mainly uses the episodic
memory module to guide the exploration, while exploring the action space with the probability of ε.
As the number of training steps grows, the probability of using the episodic memory module decay
linearly with ε. By the late stage of training, the neural network is stabilized, and the agent basically
relies on the neural network for decision making.

Figure 4: Schematic diagram of exploration strategy

4.5 Training Process
Before training, the agent creates state and executable action sets for the target network scenario

in accordance with the configuration. The EMG-DQN algorithm starts training:

(1) Initialize the neural network parameters, the replay experience M, and the episodic memory
table HE.

(2) The training episode starts; the agent receives the initial state observation of the target network.

(3) The agent selects action at according to Eq. (11) at each time step t.

(4) Execute action at in the target network. The corresponding reward rt and the new state st+1 are
gained.

(5) Store the tuple (st, at, rt, st+1, done) in the replay experience M.

(6) Training Q network with randomly selected batch size samples from the replay experience M
and updating the target network parameters θ ′ with a certain frequency.
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(7) Loop steps (3), (4), (5), and (6) until the root access to all sensitive hosts is obtained.

(8) Calculate the discount reward corresponding to each state-action pair (st, at) and update
HE (st, at) according to Eq. (7).

(9) Reset the scenario. Go back to step (2) to start a new episode.

After the algorithm converges, the trained neural network policy can output the action sequence
with the maximum reward for the input states.

5 Experiment

The experiments are divided into two parts: the comparative experiment is designed to compare
the training performance of the EMG-DQN with other methods in benchmark scenarios, and the
second part is to test the scalability of EMG-DQN in large-scale penetration testing scenarios.

5.1 Experiment Scenarios and Setup
The experimental network scenarios are constructed with the help of the Network Attack

Simulator (NASim) [2]. NASim is an open-source research platform that provides a variety of abstract
network scenarios for the testing of penetration agents using RL algorithms. It gives a scenario
generator. This allows agents to be quickly tested on network scenarios of different sizes.

The structure of the benchmark scenario used for the experiments is shown in Fig. 5. The target
intranet contains four subnets: DMZ (Demilitarized Zone), Office Zone, Core Management Zone, and
Core Subnet. The DMZ is connected to the Office Zone and the Core Management Zone, respectively,
and the Core Subnet is merely accessible through the Core Management Zone. Initially, only the
DMZ can be accessed by an external network attacker whose goal is to compromise two sensitive
hosts located in the Core Management Zone and the Core Subnet. To gain access, the attacker would
need to compromise a host in the DMZ as a springboard to attack a sensitive host in the Core
Management Zone.

Figure 5: Benchmark scenario topology

Various scale scenarios were designed based on the structure of the benchmark scenario in
the comparison experiments. There are two sensitive hosts, and the value is 40. To match real-life
applications more closely, scenario 2 adds a honeypot host with the value set to a negative value [20].
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The agent must learn to bypass the honeypot host to find the optimal penetration path. The number
of hosts, vulnerability, and complexity of the network structure gradually increase from scenario 1 to
3. Larger-scale and more complex scenarios were designed in the second part of the experiment in this
paper. Specific scenario information is shown in Table 1.

Table 1: Scenarios list

Scenario Subnets Hosts Vulnerabilities Operations

Scenario 1 4 8 4 10
Scenario 2 4 10 5 11
Scenario 3 5 16 8 14
Scenario 4 6 25 10 17
Scenario5 8 40 10 18
Scenario 6 10 80 10 18

The hardware configuration for the experiment includes an Intel i7-6700 CPU, 3.40 GHz Intel
core, 64 G of RAM, and the operating system Windows 10. All algorithm programs in the experiments
were written in python and executed in a single thread. Adam was chosen as the neural network
optimizer with a learning rate of 0.0001. The meanings of the crucial hyperparameters are given
in Table 2. The values of the hyperparameters are mainly referred to the domain literature and
experimental validation.

Table 2: Meaning of hyperparameters

Hyperparameter Value Implication

Training steps 100,000 Maximum running steps
γ 0.9 Discount factor
Hidden sizes [256, 256] Number of hidden layer neurons
Step limit 1000 Max steps per episode
Batch size 64 Sample Size
Replay size 10,000 Experience replay size
C 1000 Target network update frequency

The hyperparameter settings are kept consistent for the same scenario. They were adjusted
appropriately according to the problem size of different scenarios. The hyperparameter settings for
different scenarios are shown in Table 3.

5.2 Evaluation Metrics
In this paper, the proposed method is compared with three solutions: DQN, Double_DQN

(DDQN) [21], and Hierarchy DQN (HA-DQN) [17].
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Table 3: Settings of some hyperparameters in different scenarios

Scenario Training steps Exploration steps Step limit Replay size

Scenario 1 100,000 50,000 1000 10,000
Scenario 2 150,000 60,000 1000 10,000
Scenario 3 150,000 80,000 2000 20,000
Scenario 4 150,000 80,000 2500 20,000
Scenario 5 200,000 100,000 3000 50,000
Scenario 6 800,000 400,000 6000 100,000

DQN and DDQN are selected as the baseline algorithm to experiment with. Because DQN, as a
mature deep reinforcement learning technique, has been widely applied in previous work [22]. DDQN
algorithm improves the DQN parameter updating part to effectively solve the value overestimation
problem. HA-DQN is a recently proposed solution on the basis of DQN. HA-DQN decomposes
action space by hierarchical reinforcement learning to reduce the difficulty of exploration. According
to the experiments done by Yang et al. [23], HA-DQN showed faster convergence with more stable
performance among several advanced solutions.

The experiments analyze the methods’ performance by the results of the following three metrics:

• Reward: The total rewards earned in the round were calculated as an evaluation metric at the
end of each training episode. In the field of reinforcement learning, each episode’s reward could
reflect the learning effect and convergence speed visually. Thus, reward can be used to evaluate
the overall penetration performance.

• Step: Step indicates the number of lengths of training track in each episode. It reflects the
number of required actions to generate the penetration path to the target host. Likewise, it
demonstrates the quality of the penetration path.

• Runtime: Runtime represents the time cost required to train the same number of episodes, which
visually reflects the training efficiency of the algorithm.

5.3 Results and Discussion
The first part of the experiments are to compare the algorithm of this paper with DQN, DDQN,

and HA-DQN. The experimental procedure keeps the scenario and hyperparameter settings the same.
The effectiveness of EMG-DQN is verified by the comparison of the experimental results of each
algorithm and metric of the three scenarios.

As shown in Figs. 6a–6c, all four solutions are able to learn the best attack policy in the small-scale
scenario. However, the EMG-DQN requires the fewest episodes for converge. It has less fluctuation
than other methods as well. In Fig. 6d, the runtime of EMG-DQN is significantly less than that of
DQN and DDQN algorithms. It indicates that the proposed algorithm improves the learning efficiency
of the agent. Although EMG-DQN takes more time than HA-DQN when the episodic memory table
is not well constructed, HA-DQN grows significantly faster than this algorithm in terms of runtime
as the number of episodes increases. According to Fig. 7, EMG-DQN learns the optimal penetration
path within 100 episodes, and the learned strategies are more stable with less fluctuation of steps.
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(a)

(c) (d)

(b)

Figure 6: Comparison of reward and runtime in scenario 1

(a) (b)

Figure 7: Comparison of step in scenario 1
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In scenario 2, a honeypot was added, and results were shown in Figs. 8 and 9. According
to Figs. 8a–8c, compared to DQN and DDQN, EMG-DQN can converge in fewer episodes and
exhibits better penetration performance. Although HA-DQN used fewer episodes for approximate
convergence in the honeypot scenario, the fluctuation of reward before convergence was much greater.
The running time of EMG-DQN was much lower as shown in Fig. 8d. In comparison with DQN and
DDQN, EMG-DQN reduces the running time by 57.9% when training 800 episodes. Compared to
the HA-DQN algorithm, the EMG-DQN also has an advantage in running time with a reduction
of 29.2%. According to Fig. 9, EMG-DQN showed more stable penetration performance. Because
training steps per episode quickly dropped to less than 50 in the early exploration phase. Moreover,
the policy after the convergence of EMG-DQN showed better stability.

(a) (b)

(c) (d)

Figure 8: Comparison of rewards and runtime in scenario 2
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(a) (b)

Figure 9: Comparison of step in scenario 2

Fig. 10 demonstrates the results of Scenario 3. The inability of DQN and DDQN to converge
on the current problem size can be seen intuitively from Fig. 10a. According to Figs. 10b and 10d,
EMG-DQN and HA-DQN can find the optimal penetration path within a finite number of episodes.
Although HA-DQN converges faster, EMG-DQN performs better stability after convergence. The
reason is that HA-DQN uses an algebraic approach to reduce the action space before training.
Therefore, the convergence performance is more prominent at the beginning. However, as the expe-
rience is accumulated, EMG-DQN uses episodic memory to guide exploration, making the learning
performance more stable and efficient. As shown in Fig. 10c, as the number of episodes accumulates,
the advantages of stability and efficiency of EMG-DQN emerge frequently with the accumulation of
the number of episodes.

Figure 10: (Continued)
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Figure 10: Results in scenario 3

The second part is the extended experiments under large-scale scenarios 4, 5, and 6. Results are
shown in Fig. 11. The EMG-DQN algorithm still has stable performance in large-scale scenarios with
25, 40 and 80 hosts. It is capable to converge within limited episodes. As the network size increases,
the algorithm also requires more training episodes for convergence, with scenario 4 approximately
converging at 630 episodes, scenario 5 at 860 episodes and scenario 6 at 1210 episodes. As shown
in Table 4, the EMG-DQN can still learn the best penetration path in a limited time in large-scale
scenarios.

Figure 11: (Continued)
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Figure 11: Results for scenario 4, scenario 5 and scenario 6

Table 4: Episodes and runtime required for convergence

Scenario Episodes Runtime (s)

Scenario 4 630 50,362
Scenario 5 860 79,828
Scenario 6 1210 529,325

From the above experimental results, the EMG-DQN proposed in this paper shows superior
penetration performance among the four solutions.

(1) EMG-DQN has faster and more stable convergence performance.

EMG-DQN is more efficient in learning infiltration strategies. The main reason is that the
approach uses external memory to empower the agent to employ experience effectively. Once the
agent has mastered some of the network information through trial and error, it can produce better
choices on the basis of previous action sequences. While other schemes focus more on modeling the
penetration testing process, exploring the high-dimensional discrete action space of the scenario relies
mainly on trial and error. This makes it difficult to ensure the exploration efficiency in the face of
complex scenarios.

According to the experimental results, DQN and DDQN methods are prone to convergence failure
in the face of large complex scenarios. HA-DQN, as one of the most advanced schemes, reduces the
difficulty of exploring the network by decomposing the action space. Such an approach achieves good
convergence performance in the early stage of training. However, with the accumulation of experience,
the memory-based exploration in this paper is more stable. The training efficiency is higher, and the
learned penetration strategies are more stable. According to the experimental results, the time overhead
of EMG-DQN is reduced by more than 20% in contrast with HA-DQN.

(2) EMG-DQN can be extended to larger penetration testing scenarios.

The scalability of EMG-DQN is verified by experimental results. In large-scale scenarios, EMG-
DQN is able to learn the best planning strategy in a limited time. Although the action space size
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increases with the number of hosts, the optimal attack sequence is determined and occupies merely
a small fraction of the action space. EMG-DQN with episodic memory module can quickly target
critical attack actions during the exploration phase to overcome the challenges of large action spaces.

6 Conclusion and Future Work

From the attacker’s perspective of the analysis of the network vulnerability, penetration test path
planning enjoys important research value in the field of network security. Since only some information
is acknowledged in the real test and will be affected by the scenario events, the whole process has
great uncertainty. The EMG-DQN method on episodic memory reinforcement learning was put
forward for penetration path planning under uncertain scenarios in this paper based on the objective
characteristics of penetration testing and the efficiency requirements.

The majority of the existing research improves the adaptability and feasibility of planning by
continuously improving the fit of the model to the realistic penetration rules. Nevertheless, this also
makes the model complexity greatly increased and the computational efficiency difficult to meet the
demands. Unlike the previous research directions, EMG-DQN uses episodic memory to guide the
exploration of penetration test paths and improve training efficiency. In the comparison with existing
methods, EMG-DQN shows faster and more stable convergence performance and shorter running
time under different scale scenarios.

The improved method in this paper features concise and practical. EMG-DQN incorporates the
successful strategy of episodic memory module to guide exploration based on the deep Q-network
framework. In accordance with the new exploration strategy, the constructed episodic memory module
can effectively improve the quality and efficiency of exploration paths in the early stage of training.
After training, the neural network can be applied for attack planning by an attacker in either state.

The introduction to situational memory also enables more possibilities for future work. First,
the episodic memory module is an external memory component that can be combined with any
reinforcement learning paradigm without adding additional parameters. In addition, it is the first
time that historical successful strategies have been preserved through the use of external memory.
The episodic memory module provides for the preservation of cross-task strategies. The focus of
future work could be the transformation of cross-task strategies in conjunction with transfer learning
methods, which is beneficial to shorten the cycle of penetration test path planning.
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