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ABSTRACT

Federated learning is an innovative machine learning technique that deals with centralized data storage issues
while maintaining privacy and security. It involves constructing machine learning models using datasets spread
across several data centers, including medical facilities, clinical research facilities, Internet of Things devices, and
even mobile devices. The main goal of federated learning is to improve robust models that benefit from the
collective knowledge of these disparate datasets without centralizing sensitive information, reducing the risk of
data loss, privacy breaches, or data exposure. The application of federated learning in the healthcare industry holds
significant promise due to the wealth of data generated from various sources, such as patient records, medical
imaging, wearable devices, and clinical research surveys. This research conducts a systematic evaluation and
highlights essential issues for the selection and implementation of federated learning approaches in healthcare.
It evaluates the effectiveness of federated learning strategies in the field of healthcare. It offers a systematic analysis
of federated learning in the healthcare domain, encompassing the evaluation metrics employed. In addition, this
study highlights the increasing interest in federated learning applications in healthcare among scholars and provides
foundations for further studies.
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FL Federated Learning
CFL Clustered Federated Learning
IoMT Internet of Medical Things
AI Artificial Intelligence
DL Deep Learning
IoT Internet of Things
EHRs Electronic Health Records
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ECGs Electro Cardiograms
CNN Convolutional Neural Network
AUC Area Under the Curve
ML Machine Learning
NbAFL Noising Before Model Aggregation Federated Learning
CXR Chest X-Ray
SVM Support Vector Machine
KNN K-Nearest Neighbor
RF Random Forest
NB Naive Bayes
SSAE Stacked Sparse Autoencoder
BRATS Brain Tumor Segmentation
fMRI Functional Magnetic Resonance Imaging
ADRs Adverse Drug Reactions
HIPAA Health Insurance Portability and Accountability Act
APPI Act on the Protection of Personal Information
HITECH Health Information Technology for Economic and Clinical Health Act
MLP Multilayer Perceptron

1 Introduction

Healthcare and related services are crucial in preventing illnesses, treating medical conditions,
and promoting overall physical well-being. Healthcare providers have recently increasingly adopted
technology to streamline various processes, such as data monitoring, patient registration, self-care
applications, and lab testing. This technological integration empowers individuals to manage their
physical or mental health conditions during planning.

The volume of digital health data has witnessed a significant surge in recent years, mainly due to
the advent of the Internet of Medical Things (IoMT) revolution [1,2]. This technology enables sensing
and transmitting an individual’s health updates, which is invaluable in collecting comprehensive
healthcare data. Hence, Artificial Intelligence (AI) is employed to analyze this vast amount of
data, giving rise to various healthcare applications, such as remote patient monitoring and disease
prognosis. Combining IoMT and AI has revolutionized the healthcare landscape, providing efficient
and personalized healthcare solutions to improve patient outcomes [3–5].

The healthcare industry is characterized by generating and storing massive amounts of sensitive
data related to patient’s medical records, diagnoses, treatments, and other personal information
[6]. Safeguarding these data and ensuring its management and security present considerable chal-
lenges for healthcare organizations. With the increasing awareness of data breaches and privacy
concerns, users are becoming more cautious about how their personal information is handled and
protected [7–9].

On the other hand, deep learning [10–12] is a subset of artificial intelligence [13,14] that has shown
remarkable capabilities in analyzing vast datasets and extracting meaningful patterns and insights. DL
algorithms can process raw data or historical patient records to create models that simulate real-time
patient conditions. This ability makes DL highly valuable in various applications within the healthcare
industry, including disease diagnosis, treatment planning, and personalized medicine. In addition,
DL’s potential extends beyond healthcare, as it is crucial in strengthening cybersecurity efforts to detect
and prevent cyber threats, data breaches, and fraudulent activities in healthcare systems [15–18].
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Over the last five years, federated learning [19] has emerged as a powerful and innovative approach
in the field of machine learning, particularly in the context of privacy-preserving data analysis. FL
operates on the principle of training machine learning models on decentralized data sources, such
as individual hospitals, clinics, or patient devices, without directly sharing the raw data [20]. Instead,
only the local models are updated and exchanged between the clients and a parameter server. This
decentralized nature ensures that sensitive data remains localized and secure, mitigating the risks of
data breaches or unauthorized access [20–23]. Federated learning consists of three main components:
client devices, FL server, and communication protocol, as in Fig. 1.

Figure 1: An overview of federated learning systems

1) Client devices: These are the edge devices that hold the data used for training the model [24].
Clients consider part of the learning process using their data to train local models and sharing updates
with a central server.

2) Central server: The server is responsible for coordinating client learning. It compiles the model
updates and gives them access to the new global model [25].

3) Communication protocol: The protocol controls how data is transferred between clients and
servers. It defines how model updates are shared and aggregated and how the global model is allocated
to clients.

In contrast, traditional smart healthcare systems have often relied on centralized AI architectures
[26], where data from different sources are pooled into a central repository for training, as shown in
Fig. 2. Although this approach can be effective, it has inherent drawbacks. Communication delays and
data transmission inefficiencies can arise when dealing with large and distributed datasets, leading
to slower model updates and potential privacy concerns [20–23,27]. In addition, centralization can
hinder the system’s scalability, as it can struggle to handle the ever-increasing volume of healthcare
data generated [28].
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Figure 2: Centralized ML

Healthcare organizations can collaborate using federated learning to make better tools for helping
patients and predicting diseases [29]. The big deal in this study is that they can do it without sharing
private information. This is important as healthcare improves with data and computers, but they must
keep information safe. A malicious node could upload a faulty model, disturbing the federated learning
system. This is where blockchain technology arises, as it provides a ledger for secure and scalable
solutions with blockchain; models can be decentralized without relying on a central server [30–33].
Blockchain also permits the secure collection of data models from several sources. This technology
provides traceability, transparency, and immutability that can be combined with federated learning
to improve privacy protection [7,8]. Blockchain-based federated learning has the potential to be a
game-changer in healthcare. Integrating blockchain technology with federated learning has further
strengthened the security and trustworthiness of FL systems [34]. Blockchain provides a tamper-
resistant and decentralized ledger where the model updates can be recorded and verified, ensuring the
integrity of the training process and preventing any malicious tampering with the data or model [35].

The adoption of blockchain-based federated learning in the healthcare industry has seen signif-
icant progress, especially in the Internet of Things (IoT) and smart healthcare applications [9,34,36].
Internet of Things devices collect real-time patient data, and federated learning enables them to build
robust healthcare models while keeping patient data private within their respective systems.

There are some limitations, such as sensitive patient information, non-standardized data formats,
low-quality data, incompatible systems, legal and regulatory constraints, data ownership issues,
technological infrastructure, lack of standardization, patient consent and engagement, and Security
concerns [37]. Healthcare systems can overcome these limitations and create a more efficient and secure
infrastructure for data analysis and model development by adopting blockchain-based federated
learning [38]. This shift in mindset allows healthcare institutions to take advantage of the collective
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knowledge of decentralized data sets while protecting patient information confidentially. As a result,
it improves patient outcomes, diagnostic capabilities, and privacy in the healthcare sector [39].

The network edge needs to transition towards distributed AI technologies to establish intelligent
healthcare systems that are both scalable and privacy-protecting [9,40]. In response to increasingly
stringent data regulations worldwide, a machine learning approach known as federated learning has
emerged, which operates on distributed data sets.

As a result, Federated learning offers numerous advantages compared to centralized learning [41].
Firstly, it enables training a global model using data distributed across multiple sources. Secondly, its
primary focus is safeguarding data privacy by sharing only metadata and mathematical parameters,
ensuring the underlying data remains as private as possible to prevent attacks and traceability. The
long-term impacts of federated learning on healthcare research, treatment outcomes, and patient care
are as follows: 1) Improved research collaboration can accelerate the discovery of novel treatments,
biomarkers, and insights into various health conditions. 2) Patients can experience better treatment
outcomes and improved quality of care. 3) Timely identification of health risks allows healthcare
providers to implement preventive measures and early interventions, reducing the severity and pro-
gression of diseases. 4) Healthcare providers can benefit from more accurate diagnostic tools, leading
to quicker and more reliable detection of cancer, cardiovascular disease, neurological illnesses, and
other diseases. 5) Quicker and more cooperative drug discovery might lead to the development of
novel medications and treatments for various diseases, expanding patients’ healthcare alternatives.

In recent years, several research papers have been published on federated learning. However, there
are still unresolved technical aspects related to its application in medicine and healthcare. Several
recent surveys have highlighted the relevance of federated learning in these fields, with some focusing
on areas such as the IoMT and electronic health records (EHRs) [39,42,43].

Nguyen et al. [20] investigated significant federated learning (FL) applications in smart healthcare,
exploring sophisticated FL designs that benefit federated smart healthcare. They extensively addressed
crucial applications of FL in intelligent healthcare, including the management of EHRs, remote health
monitoring, medical imaging, and the detection of COVID-19 through federated approaches [44].
In addition, they investigated advanced FL designs that can potentially enhance federated smart
healthcare. However, there is still a need for a comprehensive examination of FL’s impact on medical
imaging, IoT, and the management of COVID-19 outbreaks.

Artificial intelligence and deep learning (DL) have a significant advantage in that they have the
potential for early disease detection and diagnosis [45]. AI and DL algorithms can analyze vast
amounts of medical data, including images, genetic information, and patient records, to identify
patterns and anomalies that indicate various diseases [2,36]. This early detection allows for timely
intervention and personalized treatment plans, ultimately increasing the chances of successful out-
comes and reducing healthcare costs associated with late-stage interventions [46].

In addition, AI and DL empower healthcare professionals by automating routine tasks, enabling
them to focus on more complex and critical aspects of patient care [2,3]. These technologies, from
predictive analytics for patient deterioration to personalized treatment recommendations based on
individual patient profiles, enhance clinical decision-making, as in Fig. 3. In addition, AI applications
facilitate the efficient management of healthcare data, leading to improved interoperability between
different healthcare systems and the creation of comprehensive patient records. This enhances the
continuity of care and supports medical research by providing large datasets for epidemiological
studies and drug discovery. Integrating AI and DL in healthcare promises more accurate diagnostics,
personalized treatments, and more efficient healthcare delivery [2,47].
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Figure 3: AI and DL applications in healthcare

This research provides an innovative overview of FL applications in critical healthcare domains,
encompassing EHR maintenance, COVID outbreak management, IoT utilization, disease prediction,
disease outbreak, drug discovery, healthcare research, and understanding of diseases, as shown in
Fig. 2. The primary contributions of the study can be summarized in Fig. 4.

Figure 4: Primary structure of the article

1) This study begins with an introduction to the concept of federated learning and an exploration
of its goals and the technological requirements for its use in smart healthcare.
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2) Types of healthcare in federated learning are extended in the section.

3) In-depth exploration of related work in federated learning, machine learning, and deep learning
are presented.

4) The detailed advantages of federated learning in the context of smart healthcare are initiated
in this section. These include disease prediction, understanding of diseases, research, data privacy
improvement, balancing accuracy and utility, and affordable health data training in federated learning.

5) Applications of federated learning in healthcare are explored.

6) The constraints of existing smart healthcare systems.

7) Lastly, the conclusion and address prospects in the scope of federated learning for smart
healthcare are emphasized.

2 FL for Healthcare: Types

Each type of federated learning system offers unique advantages to different use cases, highlight-
ing the versatility and potential of this decentralized machine learning approach. Federated learning
systems come in various types, each designed to address specific challenges and requirements in
decentralized machine learning scenarios. Types of FL are Horizontal Federated Learning, Vertical
Federated Learning, and Federated Transfer Learning [48].

2.1 Horizontal Federated Learning (HFL)
In health care, clients can collaboratively train a shared global model utilizing their respective

datasets, as depicted in Fig. 5. Horizontal federated learning is characterized by sharing data horizon-
tally, where multiple datasets have the same feature space but differ in samples [48–50].

Figure 5: Horizontal federated learning

Every horizontal FL group possesses complete access to the entire set of features and labels,
enabling them to train their local model using their dataset. The algorithm presented in [34] is an
excellent illustration of a standard horizontal federated learning configuration.

2.2 Vertical Federated Learning (VFL)
Vertical federated learning, also known as feature-based federated learning [20,48,50]. It comes

into the picture when collaborating parties possess datasets with distinct features but share similar
samples, as illustrated in Fig. 6. An instance of vertical federated learning within the Internet of
Medical Things applications can be observed in a smart healthcare environment, where entities share
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a learning model for collaborative training. For example, historical medical records stored at hospitals
and healthcare cost data at the insurance company can be utilized for intelligent healthcare decision-
making.

Figure 6: Vertical federated learning

2.3 Federated Transfer Learning (FTL)
The introduction of federated transfer learning aims to address the difficulty of consolidating

dispersed data and enhance statistical modeling when conducting data federation. Federated transfer
learning operates independently of specific prerequisites such as a shared feature or common sample
space. It facilitates transfer learning by offering solutions across the entire sample and feature
space during the process of data federation, as shown in Fig. 7. FedHealth algorithm represents
that notion of federated transfer learning within smart wearable healthcare devices [20,48,50]. The
algorithm utilizes federated learning to aggregate data while employing transfer learning to construct
personalized models, ensuring both model and data privacy and security are preserved [8,9].

Figure 7: Federated transfer learning

3 Related Work

In this section, the literature review will examine research related to medical data utilizing machine
learning, deep learning, and federated learning approaches. The review will specifically explore how
federated learning is compared to other techniques, such as mechanical, deep, and distributed learning.
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The primary focus is investigating various approaches involving machine, deep, and federated learning
methodologies.

3.1 Machine Learning Approach
“Machine learning” is a branch of artificial intelligence that focuses on creating statistical models

and algorithms that enable computers to learn and make decisions without explicit programming.
Machine learning techniques utilize algorithms trained on datasets to generate models capable of tasks
such as image categorization, data analysis, trend prediction, and language translation, as depicted in
Fig. 8. In addition, technologies based on machine learning have been employed to boost effectiveness.
For example, classify Electroencephalogram data and detect seizures [51,52], blood glucose pattern
classification and anomalies detection [53], prediction of distant metastasis from soft-tissue sarcomas
[54], and robot-assisted surgeries [55,56]. Machine learning is an effective method for spotting patterns
in medical images, but it must be utilized carefully because it can be abused if its advantages and
disadvantages are not recognized [57]. Table 1 summarizes Machine learning in the survey with some
recent methods.

Figure 8: Machine learning approach

Table 1: Summary of related work (machine learning)

Related works Authors Methods

[58] Mattfeldt et al. Artificial neural networks in machine learning
[59] Kundu et al. Machine learning, weka package’s random forest, and gaussian

process regression techniques
[60] Bahrami et al. An in-depth examination of ML and DL algorithms for

single-lead Electrocardiogram sleep disorder screening
[61] Bhatt et al. Machine learning, k-mode clustering
[62] Hu et al. Convolutional neural networks
[63] Khan et al. An automated method for identifying brain tumors using three

publicly available, unrestricted datasets
[64] Ogundepo et al. Machine learning technique
[65] Jagadeesha et al. Neural network, linear regression and SVM

Mattfeldt et al. [58] compared prostatic cancer and postoperative tumor progression. In this
survey, two applications of learning vector quantization and linear discriminant analysis were used in
multi-layer feedforward networks with backpropagation. The learning vector quantization networks,
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linear discriminant analysis, and multi-layer feedforward networks with backpropagation networks
produced the best results.

Kundu et al. [59] attempted to apply Machine Learning (ML) algorithm models on the protein-
ligand binding affinity data that was already available. They applied the Weka package’s Random
Forest and Gaussian process regression techniques to analyze the protein and ligand binding infor-
mation in the Protein data bank (Pdb) Bind database. Correlation coefficient R2 and root mean square
error were employed to evaluate the models.

Bahrami et al. [60] focused on deep convolutional neural networks (CNN) such as visual geometry
group (VGG16), Zeiler and Fergus networks (ZF-Net) and AlexNet, recurrent network, and hybrid
deep neural networks (DNN). This study provides valuable information for sleep research on designing
and selecting appropriate machine learning and deep learning algorithms for detecting sleep apnea.

Bhatt et al. [61] conducted a survey that classifies cardiovascular disease occurrence using machine
learning, which can assist doctors in reducing misdiagnosis. They employed a k-mode clustering
algorithm with Huang as the starting point to increase classification accuracy. Models were trained
on data divided 80:20 and achieved accuracy even with and without cross-validation.

Hu et al. [62] proposed model achieves an accuracy rate of 96% on the training set, 93% on
the validation set, and 82% on the test set. For Natural language processing (NLP), the chatbot can
manage basic conversations such as simple greetings, requests for input images, and basic suggestions
based on prediction results.

Khan et al. [63] used a pre-trained CNN model, EfficientNetB0, which is adjusted and trained in
two ways: on improved and tumor localization images. The most beneficial features were selected in the
last stage with an updated dragonfly optimization method. Finally, the most significant characteristics
were identified using extreme machine learning. The study was performed on three publicly available
datasets and resulted in enhanced accuracy.

Ogundepo et al. [64] employed the Cleveland dataset, which was analyzed using the Chi-square
test of independence, and then ten conventional classification models were trained for class predictions.

Jagadeesha et al. [65] trained new skin type classification models using reconstructed Hyperspec-
tral (HS) images of skin and tested them on a clinical dataset. The proposed models outperform RGB
based on image models.

3.2 Deep Learning Approach
In the deep learning methodology, computers are taught to acquire knowledge from inputs and

establish sophisticated connections among data utilizing neural networks. CNNs, Recurrent neural
networks (RNNs), and transformer architectures illustrate complex artificial neural networks utilized
in deep learning frameworks. In deep learning, the term “deep” denotes the abundance of concealed
layers within the neural network, with some models comprising hundreds or even thousands of such
layers. Training these algorithms and extracting features and patterns directly from data necessitates
extensive amounts of labeled data during the training phase, as shown in Fig. 9. Table 2 lists deep
learning in the survey with some recent methods.
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Figure 9: Deep learning approach

Table 2: Summary of related work (deep Learning)

Related works Authors Methods

[66] Sharma et al. VGG16
[67] Jain et al. CNN and deep learning techniques
[68] Amin et al. Stacked sparse autoencoder (SSAE)
[69] Rashid et al. MobileNetV2
[70] Balaha et al. VGG16, VGG19, MobileNet, MobileNetV2, MobileNetV3Large,

MobileNetV3Small,
NASNetMobile, and NASNetLarge

Sharma et al. [66] conducted a survey where they employed VGG16, a CNN model commonly
used for image recognition, to detect and classify pneumonia using two chest x-ray (CXR) image
datasets, as shown in Fig. 10. In the first dataset, they achieved an accuracy of 92.15%, a recall of
0.9308, a precision of 0.9428, and an F1 score of 0.937. In the second dataset, the accuracy, recall,
precision, and F1 score were reported as 95.4%, 0.954, 0.954, and 0.954, respectively. The survey
results indicated that VGG16 with neural network (NN) outperforms VGG16 with Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), and Naive Bayes (NB) in terms
of performance for both datasets.

Figure 10: Convolutional neural network architectures

Jain et al. [67] conducted a survey using CNN and deep learning techniques to identify COVID-
19-induced pneumonia in chest X-rays. They utilized transfer learning with Inception V3, Xception,
and ResNeXt models and examined their accuracy. The experimental results demonstrated promising
outcomes, and the Xception model achieved an accuracy of 98% in detecting COVID-19-induced
pneumonia. The evaluation metrics also showed positive performance, including precision, recall, F1
score, specificity, erroneous omission rate, false negative rate, false positive rate, and false discovery
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rate. The research accurately identified COVID-19 exposure using experimental data and differenti-
ated between COVID-19-induced pneumonia and regular pneumonia. Although both are common
conditions, COVID-19 presents a more significant risk in terms of its severity and fatality.

Amin et al. [68] utilized a high-pass filter image to emphasize homogeneities in Magnetic
resonance imaging (MRI) slices and then merge it with the input slices. The fused slices underwent
a median filter to smooth and enhance the edges, improving slice quality. Hence, a 4-connected seed
growth technique was applied based on the slice intensities, and a suitable threshold was employed
to cluster related pixels from the input segments. Enhanced segments were fed into a refined two-
layer stacked sparse autoencoder (SSAE) model for segmentation. The model’s hyperparameters were
thoroughly chosen through complete experimentation, featuring 200 hidden units in the initial layer
and 400 in the subsequent layer. The SoftMax layer was employed for image prediction, distinguishing
between images with and without tumors. It was trained and tested on various datasets, including Brain
Tumor Segmentation (BRATS), to assess the model’s performance. Multiple performance metrics
were employed to evaluate the proposed model, and the results demonstrated superior performance
compared to other approaches.

Rashid et al. [69] found that the likelihood of a patient surviving can be improved with an early
and accurate diagnosis. They classified melanoma using MobileNetV2. Using the ISIC 2020 dataset,
the proposed deep learning model’s effectiveness was assessed. The experimental findings showed that
the proposed deep learning technique performs better than cutting-edge deep learning algorithms in
terms of accuracy and computing cost.

Balaha et al. [70] proposed a threshold-based automatic approach for skin cancer detection, clas-
sification, and segmentation utilizing a meta-heuristic optimizer named the sparrow search algorithm
(SpaSA). Five U-Net models with different configurations and SpaSA optimizers were employed to
optimize the hyperparameters using eight pre-trained CNN models. For the “skin diseases image”
dataset, the best overall accuracy from the applied CNN experiments was 85.87% by the MobileNetV2
pre-trained model [70].

3.3 Federated Learning Approach
The federated learning approach trains AI models without sharing raw data, in which different

IoT devices contribute their data to train a centralized model. Each IoT device downloads the model,
trains it on its data, and encrypts the updates, which are then sent back, decrypted, averaged, and
integrated into the central model [71], as shown in Figs. 1 and 11. Federated learning has been gaining
popularity due to its potential to address privacy concerns while enabling efficient and collaborative
model training across decentralized data sources. Its appeal lies in its ability to train machine learning
models without centralizing sensitive data, thereby preserving user privacy. This approach has gained
interest across various sectors, including healthcare. Based on the graphs above, the number of articles
published with the dimensions indexed federated learning in healthcare is rising, as shown in Fig. 12.

Pneumonia detection has traditionally been performed by trained individuals, including doctors
and other healthcare experts [72]. The research conducted by Kareem et al. [73] aimed to utilize real-
time datasets in a privacy-preserving manner. This was achieved by the federated learning framework.
They conducted experiments using various CNN models, including Alexnet, DenseNet, Residual
Neural Network-50 (ResNet50), Inception, Visual Geometry Group-19 (VGG19), and other advanced
ML models for medical image classification. The evaluation metrics, including the Area Under the
Curve (AUC), were employed to compare the results. Preliminary findings indicated that ResNet-50
exhibits notably high performance on the testing dataset, achieving an accuracy of 93%.
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Figure 11: Federated learning approach

Figure 12: Trends of publication

Khan et al. [74] proposed a diagnostic system for pneumonia using a combination of a deep
learning model and federated learning. The system achieved an accuracy of approximately 90% in
pneumonia diagnosis. The approach involved training local models with patient data from each



2252 CMES, 2024, vol.140, no.3

hospital and then aggregating the knowledge to create a central model while preserving individual
patient data’s privacy [75].

Qayyum et al. [76] proposed a collaborative learning approach for COVID-19 diagnosis, utilizing
the concept of clustered federated learning. They aimed to create an automated diagnostic system
for COVID-19, which can help to improve the burden on healthcare systems worldwide that have
been under immense strain since the emergence of the COVID-19 pandemic in late 2019. They
conducted experiments on two benchmark datasets, chest X-ray [77] and chest ultrasound images
[78], to evaluate the effectiveness of their proposed framework. In their survey, they trained specialized
models for different types of COVID-19 imagery using centralized data. The results obtained from this
clustered federated learning approach show promising outcomes on both datasets, with performance
comparable to the traditional centralized baseline. Specifically, the proposed method achieved 16%
and 11% improvements in overall F1 scores over the traditional federated learning setup for the X-ray
and ultrasound datasets.

The success of this cooperative learning model for COVID-19 diagnosis indicated its potential
to contribute to more efficient and accurate automated diagnostic systems. Healthcare institutions
can collaborate and collectively train specialized models on their distributed data without sharing raw
data using the power of clustered federated learning. This enhances privacy and security and has the
potential to relieve the strain on healthcare systems by providing automated and reliable diagnostic
support in the ongoing battle against COVID-19.

The Wei et al.’s [79] survey introduced a new framework called noising before model aggregation
federated learning based on differential privacy. This approach involved adding artificial noise to
the clients’ side parameters before aggregating them, effectively preventing information leakage.
The survey demonstrated that NbAFL can achieve differential privacy at different protection levels
by appropriately adjusting the artificial noise variations. In addition, they established a theoretical
convergence bound for the loss function of the FL model trained with NbAFL. They proposed a K-
client random scheduling technique to enhance the aggregation process, randomly selecting K (where
1 ≤ K < N) clients from a total of N clients for each aggregation step. They identified an optimal value
of K that provides the best convergence performance for a given privacy level.

The survey conducted by Yi et al. [80] employed a federated learning model called “SU-Net,”
based on the U-Net architecture, to perform brain tumor segmentation. The “SU-Net” model
incorporated the advantage inception module and a dense block to extract features at multiple scales
and efficiently reuse data from earlier layers, enhancing gradient flows and information transfer. The
proposed “SU-Net” model achieved an impressive accuracy of 99.7%, surpassing both the traditional
U-Net model and the DeepLabv3+ model in the semantic segmentation of medical images.

Kumar et al. [34] proposed a survey detecting COVID-19 patients. They proposed a blockchain-
based federated learning method to train a global deep learning model utilizing a small quantity of
data collected from diverse sources (hospitals). As the data were collected from various hospitals with
various types of Computed Tomography (CT) scanners, they first proposed a data normalization
technique that deals with the heterogeneity of the data. Secondly, they utilized Capsule Network-
based segmentation and classification to find COVID-19 patients. Thirdly, they developed a technique
using blockchain technology and federated learning to jointly train a global model while main-training
anonymity.

The primary objective of the Heidari et al.’s [81] survey is to classify lung cancer based on severity
and identify malignant lung nodules in a CT scan of the lungs. Modern deep learning techniques were
employed to locate the malignant nodules. They trained a global DL model using a little data from
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many hospitals and block-chain-based federated learning. Blockchain technology was employed to
authenticate the data, and FL trained the model globally while protecting the privacy of the enterprise.
Additionally, lung cancer patients were categorized in local mode using the CapsNets approach. The
Kaggle Data Science Bowl (KDSB), Lung nodule analysis 2016 (LUNA 16), the local dataset, and
the Cancer Imaging Archive (CIA) datasets were utilized to test and train the learned algorithm.
The results demonstrated that the methodology accurately identifies lung cancer patients with 99.69%
accuracy and minimal potential category error.

Lincy et al. [82] introduced a strategy for early Type-2 Diabetes prediction, incorporating feature
selection techniques alongside a federated MLP method. They compared centralized machine learning
and decentralized, federated learning models. The experiments conducted on the widely used Pima
Indian Diabetes dataset reveal that the decentralized, federated architecture prioritizes privacy by
keeping data on individual client devices accessible only to them. Although this ensures data privacy,
the downside is a reduction in accuracy due to the prolonged time required to gather separately stored
data on the server. In summary, organizations emphasizing privacy can select a federated model,
whereas those prioritizing accuracy can lean towards a centralized model.

Astillo et al. [83] provided a lightweight DL-based anomaly detection model designed for the
Diabetes Management Control System. The classification model was designed to identify abnormal
data points to compare CNN with MLP algorithms. They employed independent learning (IL)
and FL techniques to preserve user data privacy. In addition, to get around DL’s computationally
taxing operations, the post-quantization compression technique was employed to make models into
lightweight versions. The FL approach had a greater recall rate (≥98.69%) than the IL method
(≤97.87%), based on the experiment’s findings. In addition, the FL-supported CNN-based approach
to anomaly detection outperforms the MLP-based method in terms of performance. The recall rate for
the former was an average of 99.24%, whereas the recall rate for the latter was only 98.69%. When the
original models were transformed into their lightweight version, the inference latency of the models
drastically decreased from more than 300 ms to less than two milliseconds without sacrificing recall
value.

The research by Hossen et al. [84] on Skin Disease Detection utilizing CNN for classification
and a federated learning strategy for data privacy preservation exhibited notable results in medical
imaging. In this survey, a custom image dataset with four categories of skin diseases was created, a
CNN model was proposed and evaluated against three benchmark CNN algorithms, and a federated
learning experiment was run to test how well data privacy can be maintained. An image augmentation
approach was applied for acne, eczema, and psoriasis to increase the dataset and broaden the model.
The proposed model attained precision of 86%, 43%, and 60%, and recall of 67%, 60%, and 60%. The
model in the federated learning strategy had an average accuracy of 81.21%, 86.57%, 91.15%, and
94.15% when the dataset was distributed among 1000, 1500, 2000, and 2500 clients. The CNN-based
skin disease classification combined with the federated learning approach is a breathtaking idea for
categorizing human skin illnesses while maintaining data security.

Jiménez-Sánchez et al. [85] conducted a study utilizing a collaborative, decentralized model incor-
porating three clinical datasets from various vendors. They demonstrated that they can strategically
schedule training samples by overseeing local and global classification predictions. This scheduling
effectively enhanced the alignment between domain pairs, improving classification performance.

Giuseppi et al. [86] introduced a federated learning approach named Federated learning con-
sensus (FedLCon), developed based on discrete-time average consensus theory findings. FedLCon is
employed to decentralize two existing FL algorithms: Federated averaging (FedAvg) and Adaptive
federated learning (AdaFed). The decentralization of FL algorithms through FedLCon enhances
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their implementation across federations with sparse communication graphs, improving privacy-related
capabilities. The study detailed the outcomes achieved by the evaluated algorithms in various scenarios,
specifically in the context of a COVID-19 detection task.

Balaji et al. [87] demonstrated that the superiority of aggregation methods such as Coordinate-
wise median (COMED) and Geometric median (GEOMED) over FedAvg is apparent, with a 30%
increase in accuracy due to their resilience to corrupted models. The study investigated the tradeoff
between achieving the optimal model and the communication overhead associated with the frequent
transmission of model weights from individual nodes to the global server. Employing higher local
epochs with a single aggregation method resulted in a marginal decline in model performance.
Examining various shuffling mechanisms, considering factors such as latency and the number of
combinations, revealed that layer shuffling is the most cost-effective option. This indicates that
federated learning and robust cryptographic measures make it feasible to enhance model performance
without compromising privacy.

To enhance the updating process of the federated model [88], Mixed supervised federated learning
(FedMix) employs an adaptive aggregation function that adjusts client weights based on both the
quantity and quality of their data. Experimental findings on two segmentation tasks illustrated the
efficiency of FedMix in learning from diverse supervisions, offering valuable insights into improving
the annotation burden on medical experts. In the semi-supervised federated scenario, FedMix sur-
passes the state-of-the-art approach of federated style transfer learning (FedST) [89]. Compared to
FedAvg [19], the suggested adaptive aggregation function consistently enhances performance on the
two tasks in the fully supervised setting. Wicaksana et al. [88] suggested that the techniques introduced
in FedMix hold broad applicability in federated learning for medical image analysis, particularly in
scenarios involving mixed supervisions.

Hansen et al. [90] created a stratified Cox regression model using data from hospitals in three
countries, ensuring that patient-specific information remained within the hospital premises to avoid
any data leakage risks. The key factors influencing the survival model are tumor volume and
performance status.

Cetinkaya et al. [91] addressed the classification of diverse chest diseases using a proposed
convolutional neural network architecture applied to chest X-ray images. In addition, a novel dataset
comprising 28,833 CXR images, including cases of COVID-19, non-Covid viral or bacterial pneu-
monia, lung opacity, and normal cases, is introduced by combining publicly available datasets for
federated learning in the proposed models. The initial training of the proposed network is centralized
using the integrated dataset, followed by federated training involving 20 institutions. Compression
techniques are subsequently employed to reduce the model size, improving communication efficiency
in federated training. Experimental comparisons are made among central training, federated training,
and communication-efficient federated training. The results demonstrated that federated training
for chest disease classification achieves an accuracy of 92.96%, presenting a viable alternative to
central training, which attains 93.34% accuracy in this context. Implementing model compression
on the client side reduces the communication cost of FL by ten times, and the model trained with
communication efficiency methods attains an accuracy of 92.44%. The study’s findings can motivate
medical organizations to initiate or adopt FL methodologies in their research. Table 3 summarizes
federated learning in the survey with these recent methods.
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Table 3: Summary of related work (federated learning)

Related works Authors Methods Dataset

[73] Kareem et al. Federated learning Real-time dataset from
hospitals and medical
institutions

[74] Khan et al. Deep learning model and a
federated learning technique

X-ray images

[76] Qayyum et al. Clustered federated learning
(CFL)

X-ray and ultrasound datasets

[79] Wei et al. Differential privacy (DP) Real-world federated database
[80] Yi et al. SU-Net for brain tumor

segmentation
LGG (Low-Grade Glioma)
Segmentation dataset “Brain
Magnetic resonance imaging
(MRI) Segmentation” in
Kaggle

[34] Kumar et al. Blockchain-based federated
learning

CC-19, related to the latest
family of coronavirus

[81] Heidari et al. Modern Deep Learning
techniques and
blockchain-based Federated
Learning

Cancer Imaging Archive
(CIA) dataset, Kaggle Data
Science Bowl (KDSB), LUNA
16, and the local dataset

[82] Lincy et al. Centralized machine learning
model and decentralized
federated learning model

Type-2 diabetes dataset

[83] Astillo et al. Convolutional neural network
and multilayer perceptron
(MLP)

Locally stored datasets

[84] Hossen et al. CNN algorithms and a
federated learning

Skin disease datasets

[85] Jiménez Sánchez et al. Federated learning
implementation

3 datasets of Full Field Digital
Mammography (FFDM),
coming from three different
private and public vendors

[86] Giuseppi et al. FedLCon has been employed COVID-19, Pneumonia and
Normal Chest X-ray
Posteroanterior (PA) Dataset

[87] Balaji et al. Aggregation techniques
FedAvg, COMED and
GEOMED have been
implemented for predicting
pneumonia

Pneumonia dataset

(Continued)
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Table 3 (continued)

Related works Authors Methods Dataset

[88] Wicaksana et al. FedMix have been
implemented

Three public breast
ultrasound datasets, namely
Breast ultrasound (BUS) [37],
Breast ultrasound image
segmentation (BUSIS) [38],
and UDIAT-Centre
diagnostic [39], are used, Skin
tumor segmentation. Human
against machine with 10000
training images (HAM10K)

[90] Hansen et al. Federated learning system Data were obtained from 1821
larynx cancer patient

[91] Cetinkaya Adopted federated learning
approach

Covid chest X-ray, COVID-19
Radiography, Covid chest
X-ray repository, Covid chest
X-ray dataset

[51] Sakib et al. Investigated two federated
learning

Four different publicly
available datasets,
Massachusetts institute of
technology-beth israel
hospital (MIT-BIH)
Supraventricular Arrhythmia
database MIT-BIH
Arrhythmia database, the
Institute of cardiological
technics (INCART) 12-lead
arrhythmia database, and the
Sudden Cardiac death holter
database

Sakib et al. [51] suggested an asynchronously updating Federated Learning (Async-FL) archi-
tecture designed for mobile and deployable Ultra Edge Nodes (UENs). The goal is to establish
decentralized and collaborative arrhythmia detection without the necessity of directly exchanging
Electrocardiogram (ECG) data with the cloud. In addition, their proposal is expected to reduce
network overhead, including lower bandwidth consumption, time, and memory requirements, as the
number of UENs increases. Given the rising demand for remote patient monitoring, particularly in
events like the novel coronavirus pandemic. Applying Async-FL in this ECG monitoring scenario can
pave the way for realizing a future-generation smart and widespread remote health monitoring system.
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4 Benefits of Federated Learning in Smart Healthcare

A critical component of medical research and healthcare that uses cutting-edge technologies and
data analysis is the prediction of people’s susceptibility to certain illnesses. Medical professionals can
identify patterns and risk factors associated with various diseases, as shown in Fig. 13, by combining
genetic information, lifestyle data, clinical records, and machine learning algorithms. This proactive
approach improves patient outcomes and lessens the burden on healthcare systems by facilitating early
intervention, individualized treatment plans, and preventative measures. Developing illness prediction
models integrating big data and artificial intelligence strengthens the ability to anticipate and mitigate
health risks. This leads to a more efficient and targeted approach to healthcare management.

Figure 13: Benefits of federated learning in smart healthcare

4.1 Disease Prediction
Federated learning is a revolutionary technology in Smart Healthcare, mainly when predicting a

person’s susceptibility to certain diseases. FL is a novel medical research and healthcare technique
where data analysis and state-of-the-art technology are essential. Hospitals can utilize federated
learning models to assess the probability of a particular patient developing an illness or contracting an
infection upon admission. A survey by Moshawrab et al. [43] thoroughly examined federated learning,
providing a theoretical explanation and comparing it to other technologies. Disease prediction
also highlights the application of federated learning in diagnosing cancer [92], diabetes [82], and
cardiovascular diseases [93].

4.2 Understanding of Diseases
The application of federated learning in healthcare is a promising avenue for accelerating medical

research and improving patient outcomes, particularly in the context of understanding the genetic
complexities underlying diseases such as cancer and Alzheimer’s disease [94]. Federated learning
offers a transformative approach to unlocking valuable insights and propelling the future of precision
medicine by harnessing the power of distributed data while prioritizing data privacy.
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Federated learning enables healthcare providers to collaborate and exchange knowledge and
insights while ensuring the privacy and security of their data. FL is utilized by both healthcare
providers, who can use it to develop prediction models for chronic illness risks using electronic health
records (EHR) [95], and consumers (patients), who can benefit from FL in tasks such as cardiac
medical examinations using wearable devices with electro cardiograms (ECGs) [74,76,96].

4.3 Research
Recently, an increasing number of researchers have directed their attention toward addressing the

challenges associated with federated learning and exploring more effective research approaches. The
future development of FL will primarily revolve around finding solutions to overcome the current
bottleneck issues [97–99]. Subsequent research in the field of FL will focus on devising mechanisms to
ensure privacy and security, exploring client cooperative training methods, and developing fair, robust,
and personalized federated learning techniques. These advancements aim to enable the widespread
deployment and application of FL technology in various domains, facilitating in-depth investigations
and research opportunities [75].

4.4 Data Privacy Improvement
Due to the requirement to develop more precise and privacy-preserving ML/DL models, federated

learning is receiving much attention in the healthcare industry. Various privacy-preserving methods
must be applied to further enhance privacy preservation in FL. Data-filtering [100], sanitization [101],
adversarial training [102], robust aggregation [103], homomorphic encryption [104], safe multiparty
computation [105], and differential privacy [106] are the techniques that are most frequently utilized in
FL to maintain privacy [107–109]. Differential privacy is frequently employed in real-time applications
since it is scalable and has less overhead [79,110]. A formal framework called differential privacy allows
one to measure how much privacy a protocol offers [111]. The fundamental theory of DP is that privacy
should be seen as a resource, one that is depleted as data is pulled from a dataset. Private data analysis
aims to obtain the most valuable information while consuming the least amount of privacy.

Differentially private federated learning is proposed as a potential technique for learning from
distributed medical data, such as histopathology scans [112–114]. Federated learning enables the
training of models without openly disclosing patient information, reducing privacy and confidentiality
concerns related to healthcare data [115]. They suggested that this is supplemented by differential
privacy’s quantitative limits on the level of privacy offered. They used independent and identically
distributed data (IID) and non-IID data distributions to show the effectiveness of federated learning
(FedAvg) with simulated real-world data. Private federated learning is an option for distributed
training on medical data since it produces results comparable to traditional centralized training [90]. A
great alternative for building smart and safe IoT devices is FL’s security features, especially considering
the General Data Protection Regulation (GDPR), Health Insurance Portability and Accountability
Act (HIPAA) [116], Health Information Technology for Economic and Clinical Health (HITECH)
[117], Act on the Protection of Personal Information (APPI) [118] increasingly strict data privacy
protection laws [119,120]. GDPR, HIPAA, HITECH, and APPI laws must be followed by healthcare
organizations and entities handling Protected Health Information (PHI) to guarantee patient security
and confidentiality. Considering these rules is essential to preserving confidence and safeguarding the
private integrity of medical records. For federated learning to be used in healthcare in a way that
is both compliant and successful, security protocols and any biases must be addressed. Flexibility,
adaptability, and a commitment to patient-centric and ethical principles will be essential in shaping
regulations that support the responsible advancement of federated learning in healthcare. Research
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effective and efficient privacy-preserving techniques must be investigated to incorporate them into
FL’s upcoming real-world projects.

4.5 Balancing Accuracy and Utility
Learning provides a balanced compromise between accuracy and utility while encouraging privacy

[121]. In addition, FL training preserves model generalizability with only minimal accuracy reduction.
As a result, FL empowers the smart healthcare system with enhanced scalability, owing to its
distributed learning capabilities.

4.6 Affordable Health Data Training
FL offers substantial benefits regarding communication cost reduction, such as minimizing

latency and lowering the transmit power required for raw data transmission [122]. This advantage
stems from model gradients typically being much smaller than the original datasets. Hence, FL
significantly conserves network bandwidth and helps mitigate network congestion risk, particularly
in large healthcare networks.

5 Applications of FL

The rapid development of artificial intelligence is advancing intelligent digital transformation
in numerous businesses. However, this progress gives rise to data fragmentation and islands issues,
impeding the seamless sharing of data across various domains and hindering its full potential value
realization. Federated learning can impact patients in the healthcare data-sharing process in several
ways: privacy protection, informed consent, data ownership and control, data portability, enhanced
clinical decision support systems, and ethical considerations. Federated learning holds immense
promise in revolutionizing healthcare across various domains [95], particularly in prognosis and
diagnosis, as shown in Fig. 14. In prognosis, federated learning can be instrumental in predicting and
managing chronic conditions such as heart disease, COVID-19, and diabetes [123]. Using data from
diverse sources such as hospitals, clinics, and wearable devices, a federated learning model can provide
more accurate and personalized prognostic insights, facilitating early intervention and improved
patient outcomes. In addition, in the diagnosis domain, federated learning can contribute significantly
to assessing mortality risks in COVID-19 patients [124], predicting outcomes in conditions such as
Parkinson’s disease [125], and discerning various types of cancer [126]. By collaboratively training
models on decentralized healthcare data while preserving privacy, federated learning enables the
development of robust diagnostic tools that enhance disease identification and treatment planning,
ultimately advancing the quality of healthcare delivery. Fig. 14 shows the application of FL in the
healthcare domain. This survey focuses on disease prediction and prevention and medical imaging
data, including X-rays, MRIs, and CT scans, for tasks such as tumor detection, drug discovery,
and development. Federated learning works especially effectively in healthcare applications where
data confidentiality and privacy are critical. Federated learning has shown potential in the following
machine learning model types and healthcare-related task examples: Clinical Prediction Models,
Disease Diagnosis Models, Epidemiological Surveillance, Natural Language Processing for EHRs,
Personalized Treatment Recommendations, Drug Discovery and Development, and Health Monitor-
ing and Wearables.
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Figure 14: Applications of FL in healthcare

5.1 Functional Magnetic Resonance Imaging (fMRI) Analysis
Healthcare professionals are concerned about potentially exploiting their data if it becomes

publicly accessible. Various neurological conditions and disorders were linked to fMRI data [127–129].
The study successfully develops the proposed framework, which consists of two crucial components:
the global server and data sharing. This proposed framework highlights the benefits of federated
learning and proposes potential applications, such as detecting rarer tumors with limited patient data
[129,130].

5.2 Electronic Medical Records
Electronic Medical Records (EMRs) support the development of machine learning algorithms

for predicting disease incidence, patient response to treatment, and other healthcare events [131].
Integrating Federated Learning with Electronic Medical Records (EMRs) addresses critical concerns
surrounding the privacy and security of sensitive health information. Federated Learning eliminates
the need to centralize or share this private data by allowing machine learning models to be trained
locally on devices where the data resides. Only aggregated model updates are exchanged, ensuring that
individual patient records remain confidential. This approach safeguards patient privacy, promotes
collaborative research, and models improvement in healthcare while adhering to stringent data security
regulations. The extensive utilization of electronic health records has significantly enhanced the
feasibility of collaboration across multiple institutions [132]. Various neurological conditions and
disorders were linked to fMRI data. The study effectively develops the proposed framework, which
consists of a global server and data sharing as its core components. This proposed framework
highlights the benefits of federated learning and presents potential applications, such as identifying
rarer tumors with a limited number of patients [132–134].

5.3 Adverse Drug Reaction Prediction (ADRs)
The pharmaceutical company, healthcare system, and medical experts are all extremely concerned

about Adverse Drug Reactions (ADRs). Machine learning techniques play a crucial role in pharma-
ceutical surveillance, helping to detect, predict, and understand adverse drug reactions. The structure
allows the training of a global model utilizing data from each site without uploading the raw data
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from those sites. For the initial instance, federated machine learning algorithms utilized distributed
electronic health data to predict adverse drug reactions (ADRs) [135–137].

5.4 High Expenses in Training Health Data
High costs in health data training arise from the substantial financial investments required

throughout preparing and utilizing healthcare data to train machine learning models and artificial
intelligence algorithms. Collecting data from diverse sources, such as hospitals, clinics, wearable
devices, and electronic health records, involves significant expenses in negotiating data-sharing agree-
ments and ensuring compliance with privacy regulations [138].

Setting up and maintaining the necessary storage and computing infrastructure to handle these
large-scale datasets also contributes to the overall costs. In addition, protecting patient data through
robust security measures and ensuring compliance with strict privacy regulations further adds to the
financial burden [139]. Employing skilled data scientists, machine learning engineers, and healthcare
domain experts, along with the time-consuming process of obtaining accurate data annotations,
compounds the expenses.

Training complex machine learning models also requires substantial computational power,
increasing electricity consumption and operational costs [140]. In order to manage these high costs,
data collaboration, cloud-based services, privacy-preserving techniques, and financial support from
governments and private organizations are potential solutions to foster responsible and sustainable
AI development in the healthcare industry.

5.5 Insufficiency of Accessible Medical Datasets on the Internet
The shortage of available medical datasets online presents a significant challenge for researchers

and developers seeking to advance healthcare AI and machine learning applications [28]. Although
the demand for data-driven healthcare solutions is rapidly growing, the availability of high-quality,
publicly accessible medical datasets remains limited [141]. Several factors contribute to this shortage.
First, medical data is inherently sensitive and subject to strict privacy regulations, such as HIPAA
[116], HITECH [117], APPI [118], and GDPR [111,119], making it challenging to share patient
information without compromising privacy [89]. Second, healthcare institutions often lack incentives
to release their valuable and comprehensive datasets due to concerns about potential data misuse or
competitive advantage [142]. In addition, the diversity and complexity of medical data, including
electronic health records, medical images, and genomic information, impose large-scale, diverse
datasets to build robust AI models [143]. However, assembling and maintaining such datasets requires
significant resources and collaborations across multiple institutions. As a result, researchers and
developers may encounter barriers in accessing sufficient data to adequately train and validate AI
models, hampering progress in developing innovative healthcare solutions that can revolutionize
diagnostics, personalized treatments, and healthcare management. In order to address this challenge,
it is crucial for governments, regulatory bodies, and healthcare organizations to foster data-sharing
collaborations, incentivize data contribution through appropriate data governance frameworks, and
promote responsible data anonymization techniques to protect patient privacy while facilitating the
growth and accessibility of medical datasets for the greater benefit of healthcare innovation [144].

6 Challenges and Directions

Implementing federated learning for healthcare applications comes with challenges. Federated
learning presents several difficulties in the healthcare industry, such as data heterogeneity, privacy
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and security, communication overhead, model aggregation, patient consent, imbalanced data, model
initialization and synchronization, and lack of standardization, as illustrated in Fig. 15.

Figure 15: Federated learning challenges in healthcare

6.1 Data Heterogeneity
Data were gathered from several users or devices in a federated learning healthcare environment.

These users or devices can represent diverse demographics, behaviors, and preferences [145,146]. As
a result, there can be variations in the patterns, characteristics, and distributions of the data gathered
from healthcare. Different devices can generate data in different types or representations, including
unstructured (text, pictures, audio), semi-structured, and structured data. Federated learning can have
difficulties integrating and processing such a wide range of data types while maintaining security
and privacy in healthcare [146]. Data transmission consistency across healthcare within a federated
learning system can be affected [147]. An imbalance in data distribution can result in some devices
having more data than others. Federated learning algorithms’ performance may be impacted by this,
mainly if it is not properly addressed. Federated learning must address data heterogeneity to guarantee
that the models trained on decentralized data properly generalize across healthcare clients while
preserving privacy and security. In federated learning systems, methods including data preparation,
adaptive algorithms, model aggregation methods, and differential privacy protections are frequently
employed to mitigate the effects of data heterogeneity.

6.2 Privacy and Security
In federated learning, models are trained using data spread among several clients or devices,

sometimes without direct access to the raw data [8]. However, during model updates or aggregation,
there is a chance that adversaries can infer private information regarding the training dataset from the
model’s gradients or parameters. When aggregating updates from several clients, methods including
differential privacy, secure aggregation, and encrypted model updates are employed to keep private
information safe. To guarantee the confidentiality, integrity, and privacy of sensitive data throughout
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the federated learning process, various cryptographic techniques, privacy-preserving algorithms,
reliable authorization procedures, and adversarial defense strategies must be used [9].

6.3 Communication Overhead
Although federated learning requires several healthcare data to communicate with a central server

or one another to coordinate the training process, communication overhead is a significant obstacle.
High bandwidth requirements, network latency, communication bottlenecks, heterogeneous networks,
privacy concerns, and asynchronous updates are some issues with communication overhead in feder-
ated learning [148]. The design and development of effective communication protocols, optimization
strategies, and distributed algorithms adapted to the features of federated learning environments are
necessary to address communication overhead in federated learning. By minimizing the quantity of
data transferred between devices and the central server, techniques including differential privacy,
federated averaging, and model compression can assist in minimizing communication overhead while
maintaining model performance and privacy.

6.4 Model Aggregation
In federated learning, particularly in healthcare settings, model aggregation combines locally

trained models from several clients or devices to generate a global model while maintaining data
confidentiality and privacy [9,75,149,150]. Developing effective communication protocols, privacy-
preserving algorithms, strong aggregation strategies, and methods for managing heterogeneity and
reliability concerns among distributed devices or clients in federated learning systems are all necessary
to address these model aggregation challenges.

6.5 Patient Consent
Patient consent in federated learning healthcare presents significant challenges, particularly in

healthcare settings involving sensitive medical data. To overcome these obstacles, a multidisciplinary
group comprising medical professionals, legal experts, ethicists, and technologists must create consent
management frameworks that balance patient autonomy, privacy protection, and the federated
learning-based advancement of medical research and healthcare innovation [151,152]. In addition,
utilizing technologies such as differential privacy and safe multiparty computation can provide a
cooperative study of sensitive healthcare data while improving patient privacy.

6.6 Imbalanced Data
Imbalanced data in federated learning healthcare settings poses several challenges that must be

addressed to ensure the effectiveness and fairness of machine learning models [153]. Addressing these
challenges requires a combination of algorithmic approaches, data preprocessing techniques, privacy-
preserving mechanisms, and evaluation strategies designed specifically for the imbalanced nature of
healthcare data in federated learning settings [154,155]. Collaboration between healthcare providers,
data scientists, and privacy experts is essential to develop robust and equitable machine learning
solutions for healthcare applications.

6.7 Model Initialization and Synchronization
Model initialization and synchronization present difficulties in federated learning in the healthcare

industry because of the sensitive nature of medical data, the diversity of data sources, and legal
restrictions [156,157]. Addressing these challenges in model initialization and synchronization in
federated learning healthcare requires a multidisciplinary approach involving expertise in machine
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learning, healthcare informatics, privacy-preserving techniques, regulatory compliance, and domain-
specific knowledge of healthcare systems and practices. Cooperation between researchers, healthcare
providers, legislators, and technology developers is necessary to overcome these obstacles and realize
the potential advantages of federated learning in enhancing healthcare outcomes.

6.8 Lack of Standardization
The development of standardized protocols, compatible systems, and ethical guidelines for the

secure and privacy-preserving sharing and analysis of healthcare data is necessary to address the
lack of standardization in federated learning healthcare [158]. This collaboration involves healthcare
providers, researchers, policymakers, and regulatory bodies. Standardization initiatives should focus
on standardizing data formats, protocols, privacy-preserving strategies, regulatory frameworks, and
governance procedures to promote federated learning in healthcare while guaranteeing patient privacy,
data security, and regulatory compliance [159].

Federated learning in healthcare should concentrate on resolving current issues, boosting pro-
ductivity, improving privacy-preserving techniques, maintaining standardization, addressing non-
IID data, optimizing communication overhead, real-time federated learning, ethical and regulatory
frameworks, and broadening its range of uses in the future [150] as shown in Fig. 16.

Figure 16: Future directions in federated learning

Federated learning can enhance the possible benefits of precision medicine and enhance healthcare
in the context of global health [160]. Collaborative efforts between researchers, healthcare providers,
and technology developers are essential to overcome these challenges and realize the potential of
federated learning in improving healthcare outcomes [161].
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7 Conclusion

Federated Learning, a promising decentralized AI strategy, has generated significant enthusiasm
for achieving privacy-enhanced and scalable healthcare services and applications. This study examines
the potential that Federated Learning brings to revolution in healthcare. It involves a comprehensive
survey and in-depth conversations centered around the latest research in this domain. In this survey,
an extensive examination is conducted on the fundamental concept of federated learning and its
associated frameworks, technologies, and recent research on various FL-related subjects. The survey
establishes a solid basis for understanding different FL components, exploring their advantages and
disadvantages, and exploring their implementation strategies.
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