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ABSTRACT

Crowdsourcing holds broad applications in information acquisition and dissemination, yet encounters challenges
pertaining to data quality assessment and user reputation management. Reputation mechanisms stand as crucial
solutions for appraising and updating participant reputation scores, thereby elevating the quality and dependability
of crowdsourced data. However, these mechanisms face several challenges in traditional crowdsourcing systems:
1) platform security lacks robust guarantees and may be susceptible to attacks; 2) there exists a potential for
large-scale privacy breaches; and 3) incentive mechanisms relying on reputation scores may encounter issues
as reputation updates hinge on task demander evaluations, occasionally lacking a dedicated reputation update
module. This paper introduces a reputation update scheme tailored for crowdsourcing, with a focus on proficiently
overseeing participant reputations and alleviating the impact of malicious activities on the sensing system. Here,
the reputation update scheme is determined by an Empirical Cumulative distribution-based Outlier Detection
method (ECOD). Our scheme embraces a blockchain-based crowdsourcing framework utilizing a homomorphic
encryption method to ensure data transparency and tamper-resistance. Computation of user reputation scores relies
on their behavioral history, actively discouraging undesirable conduct. Additionally, we introduce a dynamic weight
incentive mechanism that mirrors alterations in participant reputation, enabling the system to allocate incentives
based on user behavior and reputation. Our scheme undergoes evaluation on 11 datasets, revealing substantial
enhancements in data credibility for crowdsourcing systems and a reduction in the influence of malicious behavior.
This research not only presents a practical solution for crowdsourcing reputation management but also offers
valuable insights for future research and applications, holding promise for fostering more reliable and high-quality
data collection in crowdsourcing across diverse domains.
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1 Introduction

With the rapid development of 5G mobile communication technology and mobile smart devices,
crowdsourcing has become an important research direction in a world gradually transitioning into a

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.049964
https://www.techscience.com/doi/10.32604/cmes.2024.049964
mailto:kychen@gzhu.edu.cn


2298 CMES, 2024, vol.140, no.3

new era of ubiquitous sensing, connectivity, and intelligence. According to Huawei’s “Global Industry
Vision (GIV) 2025” forecast, by 2025, the global number of personal smart terminals (such as smart-
phones, smartwatches, portable computers, etc.) will reach 4 billion, the total number of connected
devices worldwide will reach 100 billion, the global annual data generated will reach 1800 exabytes
(EB), the adoption rate of AI in enterprises will reach 86%, and the prevalence of intelligent personal
assistants will reach 90%. As a result, crowdsourcing systems have gained widespread attention
in both industry and academia and have found applications in areas such as medical diagnostics
[1], environmental monitoring [2], road surveillance [3], and intelligent vehicular networks [4]. The
rapid evolution of 5G mobile communication technology and mobile smart devices has propelled
crowdsourcing into a pivotal research domain in a world transitioning towards a new era of pervasive
sensing, connectivity, and intelligence. Huawei’s “Global Industry Vision (GIV) 2025” anticipates that
by 2025, the global count of personal smart terminals (e.g., smartphones, smartwatches, portable
computers) will reach 4 billion, worldwide connected devices will total 100 billion, the annual global
data generation will hit 1800 exabytes (EB), the adoption rate of AI in enterprises will reach 86%, and
intelligent personal assistants will be prevalent in 90% of cases. Consequently, crowdsourcing systems
have garnered extensive attention in both industry and academia, finding applications in diverse areas
such as medical diagnostics [1], environmental monitoring [2], road surveillance [3], and intelligent
vehicular networks [4].

Traditional crowdsourcing systems are typically composed of three integral components: the task
demander, sensing platform, and sensing users, and their operational workflow [5] is delineated as
follows: 1) the task demander disseminates tasks to the sensing platform; 2) sensing users assess and
decide whether to accept the tasks; 3) the sensing platform aggregates task data from enlisted users;
and 4) the sensing platform analyzes the data and furnishes it to the task demander. Nevertheless,
conventional crowdsourcing systems contend with frequent data transmissions between the platform
and users, resulting in network congestion and operational inefficiencies [6]. Additionally, incentive
mechanisms [7] have been introduced to motivate users to engage with crowdsourcing systems.
Fu et al. [8] presented a task assignment scheme (PCTA-SG) based on employee location privacy
protection and an employee elite selection mechanism but lacked a reputation management module
to ensure the authenticity of user-uploaded data. Jiang et al. [9] proposed an incentive mechanism
protecting user rights using uncertain and hidden bids but could not effectively safeguard task
demander interests due to the absence of a reputation management module. Huang et al. [10]
researched potential combinations of traditional Automated Passenger Counters (APC) and a novel
source capable of collecting detailed mobile demand data but did not include a reputation management
module to prevent malicious data uploads. However, these mechanisms face several challenges in
traditional crowdsourcing systems: 1) platform security lacks robust guarantees and may be susceptible
to attacks [11]; 2) there exists a potential for large-scale privacy breaches [12]; and 3) incentive
mechanisms relying on reputation scores may encounter issues as reputation updates hinge on task
demander evaluations, occasionally lacking a dedicated reputation update module.

To address the first two challenges, we propose the integration of a blockchain-based crowd-
sourcing framework. Blockchain, functioning as a decentralized and immutable distributed digital
ledger [13,14], emerges as an ideal fit for crowdsourcing systems. The incorporation of smart contracts
[15] within the blockchain system enables the efficient execution of diverse crowdsourcing workflow
tasks within complex transactional environments [16]. The entire framework operates on smart
contracts, obviating the need for trust in third-party entities. Whether pertaining to task publication,
submission, reward collection, or distribution, the entire process unfolds with transparency, rigor, and
immutability.
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In data transactions, identity privacy pertains to the sensitive personal information stored in the
blockchain, encompassing the user’s actual identity and transaction account addresses (referred to
as pseudonyms or nicknames). The disclosure of this information is inconvenient and necessitates
confidentiality. When users engage in blockchain services using nicknames or account addresses,
frequent input and output operations can enable malicious individuals to link these activities to
the user’s real identity, resulting in the exposure of sensitive information. While blockchain address
generation does not mandate real-name authentication and allows users to create multiple transaction
account addresses for added privacy protection, the transparency of all transaction paths permits
attackers to trace a user’s data based on addresses, analyze correlations, and combine external
information to obtain the user’s identity and private details. Transaction data privacy pertains to the
confidentiality of the transaction content stored within the blockchain, including transaction amounts
and participants. The inherent openness and transparency of the blockchain pose a risk to transaction
data privacy. For instance, in supply chain scenarios, blockchain technology facilitates the provision
of open and transparent information, aiding enterprises in making well-informed decisions swiftly.
However, if sensitive data such as cash flows is leaked and seized by competing companies, it can lead to
significant losses. Therefore, safeguarding transaction data privacy within the blockchain is of utmost
importance. To protect transaction data privacy, cryptographic techniques, such as homomorphic
encryption algorithms, searchable encryption algorithms, and attribute-based encryption algorithms,
are commonly employed. Thus, in our framework, we leverage the Cheon-Kim-Kim-Song (CKKS)
encryption scheme to ensure data security [17]. CKKS is recognized as a leading homomorphic
encryption scheme due to its exceptional performance and effectiveness in preserving user privacy.

However, a challenge persists within this framework, namely the absence of a reputation update
module. To remedy this, we have enhanced the task publication module and introduced a reputation
management module, proposing a reputation management scheme based on the Empirical Cumulative
distribution-based Outlier Detection method (ECOD) [18]. Presently, research on blockchain-based
crowdsourcing often fixates on specific aspects, neglecting a holistic perspective. For instance, in the
implementation of user incentive mechanisms, emphasis is frequently placed on utilizing reputation
for incentives, overlooking the rationality and authenticity of updating user reputations. Our ECOD-
based reputation management scheme circumvents reliance on subjective evaluations from task
demanders, rendering it more reasonable and reliable. Reputation updates are executed through smart
contracts, thereby preventing manual alterations.

This paper introduces an ECOD-based reputation update scheme tailored for crowdsourcing,
with a focus on proficiently overseeing participant reputations and alleviating the impact of malicious
activities on the sensing system. Our scheme embraces a blockchain-based crowdsourcing framework
utilizing a homomorphic encryption method to ensure data transparency and tamper-resistance.
Computation of user reputation scores relies on their behavioral history, actively discouraging
undesirable conduct. Additionally, we introduce a dynamic weight incentive mechanism that mirrors
alterations in participant reputation, enabling the system to allocate incentives based on user behavior
and reputation. Our scheme undergoes evaluation on 11 datasets, revealing substantial enhancements
in data credibility for crowdsourcing systems and a reduction in the influence of malicious behavior.

The main contribution of this paper can be summarized as follows:

1. We propose a reputation-based update scheme for ECOD. ECOD is an unsupervised anomaly
detection algorithm that does not require extensive model training and can be applied to multi-
dimensional data. It outperforms other anomaly detection algorithms in terms of accuracy and
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computing speed. By leveraging ECOD’s ability to detect anomalies in user-submitted data, we
update user reputation scores and provide corresponding incentives based on these scores.

2. We present a novel crowdsourcing framework based on smart contracts, effectively addressing
trust and third-party intermediary issues. The CKKS encryption scheme ensures privacy
protection during the data transmission process, while the ECOD-based reputation update
scheme protects the interests of both task demanders and users. This prevents malicious data
uploads by users, thereby reducing potential losses. Task demanders can also provide incentives
for negative evaluations that impact user reputation.

3. We evaluate our scheme across 11 datasets, demonstrating significant improvements in data
credibility for crowdsourcing systems and a reduction in the influence of malicious behavior.

The remainder of this paper are organized as follows: In Section 2, we delineate some drawbacks
of existing crowdsourcing frameworks and encapsulate our contributions. Section 3 furnishes a
comprehensive description of the entire crowdsourcing framework workflow and the ECOD-based
reputation update scheme. In Section 4, we present experimental results. Finally, Section 5 concludes
the article, offering insights into the future directions of the crowdsourcing framework.

2 Related Work

Existing crowdsourcing frameworks often confront challenges in implementing effective rep-
utation update schemes and ensuring user privacy during the incentive process. Typically, these
frameworks rely on methods where task demanders offer positive or negative evaluations of user data
to update reputation scores, and some lack a reputation update module entirely.

Tian et al. [19] proposed a distributed numerical estimation mechanism that achieved user privacy
protection but relied on adding Gaussian noise to the data, which could not entirely eliminate the
impact of Gaussian noise, often yielding suboptimal results in practice. Wu et al. [20] introduced a
blockchain-based data truth estimation mechanism using additive homomorphic encryption, allowing
user participation without knowledge of real data but could not ensure privacy security during the user
incentive process. Huang et al. [21] presented an incentive mechanism based on complete information
dynamic games, using homomorphic watermark technology for digital rights protection but lacked a
reputation module, making it unable to guarantee user behavior as non-malicious. Zhang et al. [22]
proposed a vehicle-based mobile crowdsourcing system using homomorphic encryption for privacy
protection and efficient user incentive mechanisms but did not implement a reputation module to
identify and penalize low-reputation malicious users. Xie et al. [23] introduced a drone-assisted mobile
crowdsourcing framework based on reputation incentives and edge computing but relied on task
demander evaluations for reputation updates, without accounting for malicious task demanders.
Sun [24] proposed a task diffusion solution based on a social network influence propagation model
but lacked a reputation management module, failing to effectively prevent malicious user feedback.
Fu et al. [8] presented a task assignment scheme (PCTA-SG) based on employee location privacy
protection and an employee elite selection mechanism but lacked a reputation management module to
ensure the authenticity of user-uploaded data. Jiang et al. [9] proposed an incentive mechanism pro-
tecting user rights using uncertain and hidden bids but could not effectively safeguard task demander
interests due to the absence of a reputation management module. Huang et al. [10] researched potential
combinations of traditional Automated Passenger Counters (APC) and a novel source capable of
collecting detailed mobile demand data but did not include a reputation management module to
prevent malicious data uploads. Tutsoy et al. [25] proposed an AI based long-term policy making
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algorithm aiming to maximize the number of the students attending the schools while minimizing the
number of the casualties. Tutsoy et al. [26] proposed a study that can contribute to marketing science
by presenting a strong estimation of future consumer behavior in tourism through machine-learning-
based predictions. Corrochano et al. [27] proposed a new hybrid physics-based machine learning model
with a simple, robust and generalizable architecture, which allows reconstructing databases from very
few sensors and with a very low computational cost.

Hence, this paper introduces the following contributions: We propose a reputation update scheme
based on ECOD. ECOD, as an unsupervised anomaly detection algorithm, does not necessitate
lengthy model training and can be applied to multi-dimensional data. Its accuracy and operational
speed surpass those of other anomaly detection algorithms. Leveraging ECOD’s ability to detect
anomalies in user-submitted data, we update user reputation scores and provide corresponding
incentives based on these scores.

The entire crowdsourcing framework operates based on smart contracts, effectively eliminating
trust issues associated with third-party intermediaries. The CKKS encryption scheme ensures privacy
protection during data transmission, and the ECOD-based reputation update scheme safeguards the
dual interests of task demanders and users. It prevents users from maliciously uploading data that
could lead to losses for task demanders and task demanders from providing negative evaluations that
impact user reputation and incentives.

3 Our Crowdsourcing System

In this paper, we present a custom reputation update scheme designed for crowdsourcing,
emphasizing the efficient management of participant reputations and mitigation of the impact of
malicious activities on the sensing system. The reputation update scheme is based on the Empir-
ical Cumulative Distribution-based Outlier Detection method (ECOD). Our framework employs
blockchain technology in crowdsourcing, integrating a homomorphic encryption method to ensure
data transparency and resistance to tampering. User reputation scores are computed based on their
historical behavior, actively discouraging undesirable actions. Furthermore, we propose a dynamic
weight incentive mechanism that adjusts based on changes in participant reputation, allowing the
system to distribute incentives according to user behavior and reputation.

As shown in Fig. 1, both data demanders and data providers are assigned reputation scores,
which are influenced by their behavior. Task demanders who consistently send rewards punctually
and engage in other positive behaviors see an increase in their reputation scores. Similarly, users
who consistently provide valid data and exhibit positive behaviors experience an increase in their
reputation scores. Conversely, those who do not engage in these positive behaviors face a decrease
in their reputation scores.

Task demanders must specify the required number of users for a task (i.e., ranging from a
minimum to a maximum), the minimum task waiting time (i.e., tasks start to be allocated after this time
if the number of participants meets the minimum requirement or reaches the maximum requirement),
and can optionally set a minimum reputation score requirement.

Users have the discretion to accept a task based on the reputation score of the demander.
Additionally, users need to provide the cost required to complete the task through encrypted bidding.
Smart contracts consider both the user’s reputation score and bidding amount to select an appropriate
number of users for the task.
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Figure 1: System framework

3.1 Intelligent Crowdsourcing System
In this framework, each data demander (i.e., task demander) ri has specific task requirements li.

These sensing tasks necessitate data providers (i.e., users) to collect data on platforms such as smart
terminals and transmit the sensed data to the data demander via the blockchain. The data collected
by data providers uj concerning the task li is denoted as di,j. Smart contracts aggregate the data sent
by data providers to derive a result di, considered an estimation of the task’s ground truth d∗

i . It is
important to emphasize that the true values d∗

i of the tasks remain unknown to both data demanders
and data providers. These critical symbols are detailed in Table 1.

Table 1: Description of important symbols

Symbol Description

U The data provider set
R The demander set
L The task set
SR The winning set of demanders
SUi The winning set of providers

corresponding to the demanders

(Continued)
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Table 1 (continued)

Symbol Description

ai, Demander ri’s bidding
bi,j Provider uj’s bidding
âi, ai’s ciphertext
b̂i,j bi,j’s ciphertext
pri Fees paid by demanders ri

puj Fees received by providers uj

di The task li

‘

s data estimate
d̂i di’s ciphertext
v, B, N, h, � Encryption parameters

Since smart contracts are transparent and open to the public, it is crucial to employ encryption
services to safeguard the data (i.e., collected data) and information (i.e., privacy of the transacting
parties). This encryption ensures the confidentiality of the data and the privacy of the participants
involved in the transactions.

The primary steps of our intelligent crowdsourcing system are illustrated in Fig. 2 and outlined as
follows:

1. Bidding Encryption and Task Publication & Acceptance:
(a) Data demanders ri encrypt their bids ai using the public key of the encryption service center.

The bid ai signifies the maximum reward they are willing to pay if the task li is successfully
executed (Step 1).

(b) Data demanders submit a data collection request to a smart contract, including the sensing
task li, the encrypted bid âi, the number of users to accept the task min, max, the minimum
waiting time t, and an optional minimum reputation score requirement rep (Step 2).

(c) The smart contract publishes the collected task set L to the public (Step 3).

(d) Data providers uj assess the reputation score of the data demander to decide whether
to accept the task. Upon acceptance, data providers need to send their bid bi, j to the
encryption service center, where bi,j denotes the cost of uj required for completing the task
li (Step 4).

(e) Data providers then submit the set of tasks Dj ⊆ L they are willing to perform and the
corresponding li ∈ Dj encrypted bids b̂i,j to the smart contract (Step 5).

2. Data Provider Selection and Incentive Mechanism:
(a) With the assistance of the encryption service center, smart contracts use the received

encrypted bids âi to determine a set of winning data demanders SR.

(b) When the number of participants reaches the maximum max or the minimum waiting time
t is met with the minimum number of participants min, the smart contract combines the
encrypted bids b̂i, j of data providers with their reputation scores to determine the set of
winning data providers SUi for each winning data demander ((ri ∈ SR)’s task li.
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(c) The fees pri to be paid by each winning data demander ri and the rewards puj to be paid to
each winning data provider uj are calculated (Step 6).

(d) In reality, puj = ∑
i;li∈Dj

pi,j.pi,j represents the reward obtained by data providers uj for each
task li they execute.

Figure 2: Intelligent crowdsourcing system framework

3. Data Encryption:
(a) Each selected data provider uj ∈ SUi encrypts the data di,j collected for each task li ∈ Dj

using the public key of the encryption service center (Step 7).

(b) The encrypted data d̂i,j is submitted to the smart contract (Step 8).

4. Data Fusion:
(a) The smart contract computes the fusion result d̂i from the encrypted data submitted by

winning data providers for each task li (Step 9).

(b) It decrypts these results using the encryption service center, obtaining plaintext values di

(Step 10).

(c) The plaintext outcomes are subsequently forwarded to the respective winning data deman-
ders ri ∈ SR (Step 11), where di represents an estimation of the ground truth d∗

i for the
task li.
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5. Reputation Score Update:
(a) Following the acquisition of plaintext values di, the smart contract employs the ECOD

algorithm to identify data anomalies and adjust the reputation scores of both data
demanders and providers accordingly (Step 12).

6. Reward Collection:
(a) Finally, the smart contract retrieves fees pri from winning data demanders ri (Step 13) and

disburses rewards puj to winning data providers uj (Step 14).

This comprehensive process ensures privacy, oversees reputation, and establishes a secure, trans-
parent, and efficient crowdsourcing environment. It leverages encryption, smart contracts, and
reputation-based mechanisms to streamline data collection and processing while safeguarding the
interests of both data demanders and providers.

3.2 Anomaly Detection with ECOD
The ECOD (Elliptic Curve-Based Outlier Detection) algorithm stands out as an unsupervised

anomaly detection method, recognized for its exceptional performance in this domain. This section
offers a concise insight into the ECOD algorithm’s procedure, while Section 4 provides comprehensive
experimental results, detailing its accuracy. The workflow of the ECOD algorithm is succinctly
summarized in Algorithm 1.

Algorithm 1: Anomaly detection with the ECOD algorithm

1: Input: input data X = Xi
n
i=1 ∈ R

n×d with n samples and d features; X (j)
i refers to the j-th feature of

the i-th sample.
2: Output: outlier scores O := ECOD(X) ∈ R

n.
3: for each dimension j in 1,..., d do
4: Estimate left and right tail ECDFs:

5: left tail ECDF: F̂ (j)
left(z) = 1

n

∑n

i =1 I{X (j)
i } ≤ z for z ∈ R,

6: right tail ECDF: F̂ (j)
right(z) = 1

n

∑n

i =1 I{X (j)
i } ≥ z for z ∈ R.

7: where I{•} is the indicator function that is 1 when its argument is true and is 0 otherwise.
8: Compute the sample skewness coefficient for the j-th feature’s distribution:

9: γj =
1
n

∑n

i =1(X
(j)
i − X (j))

[
1
n

∑n

i =1(X
(j)
i − X (j))2

] 3
2

,

10: where X (j) = 1
n

∑n

i =1 X (j)
i is the sample mean of the j-th feature.

11: end for
12: for each sample i in 1,..., n do
13: Aggregate tail probabilities of X i to obtain outlier score Oi:
14: Oleft−only(Xi) = −∑d

j=1 log(F̂ (j)
left(X

(j)
i )),

15: Oright−only(Xi) = −∑d

j=1 log(F̂ (j)
right(X

(j)
i )),

16: Oauto(Xi) = −∑d

j=1[I{γj < 0}log(F̂ (j)
left(X

(j)
i )) + I{γj ≥ 0}log(F̂ (j)

right(X
(j)
i ))].

17: Set the final outlier score for point X i to be Oi = maxOleft−only(Xi), Oright−only(Xi), Oauto(Xi).
(Continued)
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Algorithm 1 (continued)
18: end for
19: Return outlier scores O = (O1, ..., On).

3.3 Reputation Update with ECOD
Within the task allocation process, task demanders establish a minimum reputation score (rep)

requirement for each task to be accepted. The smart contract evaluates whether the reputation score
(repuj) of each potential data provider (uj) in the pool of candidates for task (li) acceptance (SL) exceeds
the specified minimum reputation score (rep). If this criterion is satisfied, the user is included in the
set of winning data providers (SUi) for the task (li).

This reputation update scheme ensures that only data providers with reputation scores surpassing
the defined threshold are eligible for task participation. Leveraging ECOD-based reputation scoring
offers an effective method for assessing the trustworthiness and reliability of data providers. It serves
to exclude users with low reputation or potential malicious intent from task participation, thereby
enhancing the overall quality and reliability of crowdsourced data. As previously highlighted, the
ECOD algorithm proves to be a robust tool for unsupervised anomaly detection. Its capability
to accurately pinpoint data providers with abnormal behavior or low reputation scores makes it
a valuable asset within the reputation management module of our crowdsourcing framework. By
integrating ECOD-based reputation scoring, the framework ensures the selection of only reputable
and trustworthy data providers for tasks, contributing significantly to the overall success and reliability
of the crowdsourcing system. This reputation update mechanism plays a pivotal role in upholding a
high standard of data quality and user trust within the platform. Algorithm 2 identifies users eligible
to accept the task based on their reputation scores.

Algorithm 2: Identify users eligible to accept the task based on their reputation scores
1: Input: task collection L, alternate data provider set SL.
2: Output: the set of winning data providers SUi corresponding to the task li.
3: for each li ∈ L (i = 1, 2, ..., m) do
4: for each member uj of the set of candidate data providers Sli corresponding to each task li do
5: if repuj

> rep then
6: add the user uj to the set of winning data providers SUi for the task li

7: end if
8: end for
9: end for
10: Return the winning set of data providers SUi corresponding to task li.

Algorithm 3 employs the ECOD algorithm for data quality assessment and subsequent updates
to user reputation scores. Upon the submission of data by collectors, the smart contract employs the
ECOD algorithm to assess data quality. This evaluation leads to the updating of reputation scores and
the calculation of rewards, considering both the reputation score and the cost incurred by the data
collector. Noteworthy is the algorithm’s robust scalability, demanding minimal data for fitting and
training. Task demanders or a subset of users with the highest reputation scores can provide training
data. The anomaly score, indicating the likelihood of data being anomalous, increases with higher
values. Anomalous data is denoted as 1, while normal data is marked as 0. User reputation scores,
initially set at 0.5, span from 0 to 1 and undergo changes based on the proportion α of anomalous
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data in their submissions. The reputation score adjustment is determined by the following formula:

�rep =

⎧⎪⎨
⎪⎩

+0.05, 0 ≤ α ≤ 0.03
−0.05 × (1 + α), 0.03 ≤ α < 0.1
−0.05 × (2 + α), α ≥ 0.1

Algorithm 3: Employs the ECOD algorithm for data quality assessment and subsequent updates to
user reputation scores
1: Input: data di,j collected for each task li ∈ Dj.
2: Output: user’s reputation score repuj

.
3: for each di,j ∈ Dj do
4: calculate the proportion α of abnormal data di,j through ECOD(di,j).
5: if 0 ≤ α ≤ 0.03 then
6: � rep = +0.05.
7: else if 0.03 ≤ α < 0.1
8: � rep = −0.05 × (1 + α).
9: else
10: � rep = −0.05 × (2 + α).
11: end if
12: repuj

+ = � rep.
13: end for
14: Return repuj

.

The guidelines governing user conduct and rewards based on their reputation scores are as follows.
(a) User Reputation Below 0: Users with a reputation score falling below 0 are ineligible to accept tasks.
To restore their reputation score, a fine must be paid, resetting it to 0.3. (b) User Reputation Below 0.3:
When a user’s reputation score is below 0.3, they receive a reward equivalent to their submitted cost
for task completion, denoted as puj = bi,j × (1+ rep). In essence, they are compensated for their efforts,
with the reward capped to cover their costs. (c) User Reputation Above 0.3: Users boasting a reputation
score surpassing 0.3 are entitled to rewards puj = bi,j × (2 + rep) for task completion. Their reputation
score mirrors their trustworthiness and reliability in the system, influencing their earnings positively.
These regulations establish an incentive framework motivating users to maintain a reputation score
exceeding 0.3 by submitting high-quality and reliable data. Users with lower reputation scores face
penalties and restricted rewards, while those with higher reputation scores enjoy increased trust and
enhanced compensation for their contributions. This structured approach fosters responsible and
ethical user behavior, contributing to the overall quality and reliability of crowdsourced data within
the platform.

Algorithm 4 verifies whether the user’s reputation score falls below 0, proceeding to the subsequent
step if it does. Upon confirming that the user’s reputation score is below 0, a conditional check assesses
whether the user opts to pay a fine. The algorithm assumes that remitting the fine will partially restore
the user’s reputation score. In the scenario where the user’s reputation score is below 0.3, and they
choose not to pay a fine, it signifies that the user’s reputation remains below the acceptable threshold.
Consequently, the user is granted a reward equivalent to their submitted cost for task completion. This
mechanism ensures compensation for users with lower reputation scores, albeit constrained to covering



2308 CMES, 2024, vol.140, no.3

their costs. When the user’s reputation score attains or exceeds 0.3, signifying their good standing, they
become eligible for rewards.

Algorithm 4: Incentive mechanism with user reputation scores
1: Input: User’s Reputation Score repuj

.
2: Output: User’s Reward puj .
3: if repuj

≤ 0 then
4: if user uj pays fine then
5: repuj

= 0.3.
6: end if
7: else if 0 < α ≤ 0.3
8: puj = bi,j × (1 + rep).
9: else
10: puj = bi,j × (2 + rep).
11: end if
12: Return puj .

4 Evaluation Results

In the realm of the reputation management scheme, the precision of the reputation score update is
heavily contingent on the identification of anomalous data; thus, the reliability of the ECOD algorithm
assumes paramount importance. Consequently, experiments have been undertaken to juxtapose the
ROC curves, precision, and runtime of the ECOD algorithm. The experimentation transpired on a
Windows laptop equipped with an Intel(R) Core(TM) i7-10875H CPU @ 2.30 GHz and 16 GB of
RAM. We employed 11 datasets in the.mat format, extracted from the ODDS report. Table 2 furnishes
comprehensive insights into dataset sizes, dimensions, and anomaly statistics.

Table 2: Dataset Description

Dataset Number of samples (n) Number of dimensions (d) Outlier (%)

Arrhythmia (mat) 452 274 14.601
Breastw (mat) 683 9 34.992
Cardio (mat) 1831 21 9.612
Ionosphere (mat) 351 33 35.897
Optdigits (mat) 5216 64 2.875
Pima (mat) 768 8 34.895
Satellite (mat) 6435 36 31.639
Satimage-2 (mat) 5803 36 1.223
Shuttle (mat) 10,000 9 7.120

Wbc (mat) 378 30 5.555
Wine (mat) 129 13 7.751

The ensuing discussion revolves around a comparative experiment involving 11 datasets in the.mat
format, wherein the ECOD algorithm was pitted against IForest, k-nearest neighbors (KNN), and
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local outlier factor (LOF). The assessment centered on the receiver operating characteristic (ROC)
and average precision (AP). The ROC and AP results for the four algorithms across the 11 datasets
are elucidated in Tables 3 and 4. As delineated in Table 3, ECOD and IForest consistently clinched the
top spot across almost all datasets. Particularly noteworthy is ECOD’s average ROC of 0.863, securing
its position as the foremost algorithm among the quartet. Table 4 accentuates the dominance of ECOD
and IForest in terms of Average Precision (AP), with both algorithms consistently leading in nearly all
datasets. ECOD attains an average AP of 0.652, firmly establishing itself as the preeminent performer
among the four.

Table 3: Receiver operating characteristic (ROC) results

Dataset IForest KNN LOF ECOD

Arrhythmia (mat) 0.802 (1) 0.786 (3) 0.779 (4) 0.802 (1)
Breastw (mat) 0.987 (2) 0.976 (3) 0.470 (4) 0.994 (1)
Cardio (mat) 0.923 (1) 0.724 (3) 0.574 (4) 0.897 (2)
Ionosphere (mat) 0.847 (3) 0.927 (1) 0.875 (2) 0.831 (4)
Optdigits (mat) 0.721 (2) 0.371 (4) 0.450 (3) 0.733 (1)
Pima (mat) 0.678 (2) 0.708 (1) 0.627 (4) 0.664 (3)
Satellite (mat) 0.702 (1) 0.684 (2) 0.557 (4) 0.661 (3)
Satimage-2 (mat) 0.995 (1) 0.954 (3) 0.458 (4) 0.985 (2)
Shuttle (mat) 0.998 (1) 0.738 (3) 0.524 (4) 0.998 (1)
Wbc (mat) 0.931 (4) 0.938 (2) 0.935 (3) 0.975 (1)
Wine (mat) 0.816 (3) 0.518 (4) 0.905 (2) 0.949 (1)
AVG 0.837 (2) 0.757 (3) 0.650 (4) 0.863 (1)

Table 4: Average precision (AP) results

Dataset IForest KNN LOF ECOD

Arrhythmia (mat) 0.506 (1) 0.397 (3) 0.374 (4) 0.473 (2)
Breastw (mat) 0.972 (2) 0.927 (3) 0.322 (4) 0.988 (1)
Cardio (mat) 0.576 (2) 0.345 (3) 0.163 (4) 0.579 (1)
Ionosphere (mat) 0.789 (3) 0.924 (1) 0.821 (2) 0.719 (4)
Optdigits (mat) 0.055 (1) 0.022 (4) 0.029 (3) 0.053 (2)
Pima (mat) 0.503 (3) 0.515 (2) 0.430 (4) 0.541 (1)
Satellite (mat) 0.654 (1) 0.543 (3) 0.390 (4) 0.585 (2)
Satimage-2 (mat) 0.929 (1) 0.419 (3) 0.027 (4) 0.860 (2)
Shuttle (mat) 0.986 (1) 0.204 (3) 0.142 (4) 0.981 (2)
Wbc (mat) 0.590 (2) 0.529 (4) 0.558 (3) 0.783 (1)
Wine (mat) 0.279 (3) 0.095 (4) 0.361 (2) 0.608 (1)
AVG 0.622 (2) 0.447 (3) 0.329 (4) 0.652 (1)
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Figs. 3 and 4 visually illustrate that among a range of unsupervised learning techniques, ECOD
and IForest demonstrate high accuracy across 11 datasets. Notably, ECOD consistently delivers
outstanding performance even in scenarios where IForest exhibits subpar results.

Figure 3: Receiver operating characteristic (ROC) results

Figure 4: Average precision (AP) results

We infer that the time complexity of ECOD is O(n · d), where n represents the sample size, and
d stands for the dimension. Table 5 and Fig. 5 elucidate alterations in ECOD’s runtime concerning
the augmentation of both sample size and dimension on the experimental computer. The experiments
underscore ECOD’s commendable performance, particularly in scenarios involving substantial sample
sizes and elevated dimensions.
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Table 5: ECOD running time

d = 10 d = 100 d = 1000 d = 10,000

n = 1000 0.068 0.173 1.163 11.460
n = 10,000 0.171 0.468 5.244 55.190
n = 100,000 0.640 7.185 70.541 567.105
n = 1,000,000 11.403 130.974 694.405 5376.593

Figure 5: ECOD running time

The paper highlights a beneficial aspect of ECOD, which is that it does not require retraining when
dealing with new sample points with a larger sample size, assuming that data shifts do not occur. This
property makes ECOD advantageous for real-time detection. The accuracy and runtime efficiency
of ECOD contribute significantly to the smooth operation of both reputation updates and the entire
crowdsourced sensing system.

Additionally, a preliminary evaluation was also carried out on the CKKS encryption algorithm,
comparing its performance with that of Brakerski/Fan-Vercauteren (BFV) [28] and fast fully homo-
morphic encryption scheme over the torus (TFHE) [29].

BFV: The BFV cryptosystem operates on exact calculus, albeit working with integers necessitates
dealing with rounding errors. Consequently, the precision is contingent on the degree of rounding
applied to each value. To ensure successful decryption, the resultant value must remain sufficiently
low, limiting the initial precision level. To strike a balance between precision and output size, input
instances and weights were scaled to fit within 8 bits. With BFV, a negligible loss of 0.01 percentage
points in precision was observed, indicating only one additional correct guess out of 10,000 samples
in clear domain computation.

CKKS: Designed for approximate calculations, the CKKS cryptosystem assumes that if the
maximum output value is significantly distinct from other values, the encrypted network should
yield identical results. This assumption stems from the network’s nature as a low-degree polynomial
function. In practice, the precision of CKKS matched that of the clear values at 96.34.
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TFHE: Utilizing the same scaling approach as BFV, ensuring each input instance and weight fits
within 8 bits, resulted in a comparable 0.01 percentage point loss in precision. The scaling decision
aimed to strike a balance between precision and computational efficiency.

As show in Table 6, the substantial speed contrast between BFV and CKKS can be attributed
to parameter discrepancies, with BFV ciphertexts being roughly twice the size of CKKS ciphertexts.
This size disparity translates into slower operations in the BFV context, underscoring the imperative
of parameter optimization prior to computational tasks.

Table 6: Encryption algorithm running time comparison

BFV CKKS TFHE

KeyGen 4.5 s 1.96 s 0.16 s
Features encryption 0.16 s 0.29 s 0.08 s
Weights encryption 0.24 s 0.35 s 16 s
Network evaluation 2.16 s 0.56 s >3 days
Total time 7.06 s 3.16 s >3 days

5 Conclusions

The paper delves into the contemporary landscape of crowdsourced sensing frameworks, under-
scoring the prevalent inadequacies in existing solutions, particularly the dearth of effective mechanisms
for reputation updates and privacy protection during the user incentive process. Many of these
frameworks hinge on task publishers’ evaluative feedback, lacking a robust reputation update method-
ology. Within this paper, a novel reputation update scheme leveraging the ECOD anomaly detection
is proposed. Empirical findings showcase ECOD’s prowess in anomaly detection, manifesting in
high accuracy, swift runtime, and commendable scalability. The algorithm adeptly updates user
reputation scores, ensuring the seamless functioning of the crowdsourced sensing system. However,
an apprehension lingers regarding potential privacy leaks of user identities during transactions.
Consequently, the text advocates for future research to delve deeper into developing privacy protection
mechanisms for the incentive process.
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