
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.050517

ARTICLE

Integrating Neighborhood Geographic Distribution and Social Structure
Influence for Social Media User Geolocation

Meng Zhang1,2, Xiangyang Luo1,2,* and Ningbo Huang2

1Key Laboratory of Cyberspace Situation Awareness of Henan Province, Zhengzhou, 450001, China
2State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450001, China

*Corresponding Author: Xiangyang Luo. Email: luoxy_ieu@sina.com

Received: 08 February 2024 Accepted: 30 April 2024 Published: 08 July 2024

ABSTRACT

Geolocating social media users aims to discover the real geographical locations of users from their publicly available
data, which can support online location-based applications such as disaster alerts and local content recommen-
dations. Social relationship-based methods represent a classical approach for geolocating social media. However,
geographically proximate relationships are sparse and challenging to discern within social networks, thereby
affecting the accuracy of user geolocation. To address this challenge, we propose user geolocation methods that
integrate neighborhood geographical distribution and social structure influence (NGSI) to improve geolocation
accuracy. Firstly, we propose a method for evaluating the homophily of locations based on the k-order neighbor-
hood geographic distribution (k-NGD) similarity among users. There are notable differences in the distribution
of k-NGD similarity between location-proximate and non-location-proximate users. Exploiting this distinction,
we filter out non-location-proximate social relationships to enhance location homophily in the social network.
To better utilize the location-proximate relationships in social networks, we propose a graph neural network
algorithm based on the social structure influence. The algorithm enables us to perform a weighted aggregation of
the information of users’ multi-hop neighborhood, thereby mitigating the over-smoothing problem of user features
and improving user geolocation performance. Experimental results on real social media dataset demonstrate that
the neighborhood geographical distribution similarity metric can effectively filter out non-location-proximate
social relationships. Moreover, compared with 7 existing social relationship-based user positioning methods, our
proposed method can achieve multi-granularity user geolocation and improve the accuracy by 4.84% to 13.28%.
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1 Introduction

Man is a natural social animal [1]. In the era of Internet advancement, social media have emerged
as dynamic and thriving platforms for social engagement. These platforms provide individuals with
a convenient, real-time, and expansive means of communication, leading to a growing inclination
towards information acquisition and social interactions on social media [2]. As of January 2024, the
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monthly active users of popular social media platforms such as Twitter/X1, Instagram2, and Facebook3

have surpassed 7.5 billion4. The openness and interactivity of social media, coupled with the ever-
increasing number of users, have resulted in a wealth of diverse information within online social media,
such as personal interests, consumption habits, etc. Among them, the geographic locations of social
media users serve as a bridge between the virtual and physical worlds, which can be applied to various
location-based real-world applications [3–6]. By leveraging user location data, relevant organizations
can gain more accurate insights into population distribution and activities, facilitating timely alerts
and the implementation of corresponding rescue and protection measures [7,8]. Additionally, it enables
the delivery of localized content to users, enhancing their quality of life [9]. However, challenges arise
in directly accessing users’ residential location information due to factors such as personal privacy
protection and platform policies [10,11]. Consequently, the task of leveraging publicly available social
relationship data to infer users’ residential locations becomes particularly crucial.

Previous methods based on social relationships geolocate users under the assumption that users
tend to engage in social interactions with other users in close proximity, allowing for the inference
of user locations based on the distribution of neighbors’ locations [12–16]. However, the high ratio
of location-proximate social relationships is required to achieve accurate geolocation accuracy, as
demonstrated in previous studies, which does not align with the characteristics observed in real-
world datasets. Similarity breeds connection [17]. In real-world social interactions, individuals tend to
engage in frequent social connections with others who share similar interests, rather than location. This
implies that users who have social relationships often exhibit high similarity in terms of their interests.
For instance, we may interact with individuals who share our admiration for a particular celebrity,
mentioning or liking their tweets. For user geolocation, relationships based on location proximity
are crucial, but other multi-type relationships serve as structure noise which impacts geolocation
accuracy [18]. We analyzed the location homophily of user social relationships in multiple social
media datasets [19–21], as shown in Table 1. In online social media, relationships driven by location
proximity constitute a relatively small proportion of the overall social relationships. Therefore, it is
necessary to design appropriate metrics to distinguish location-driven social relationships from other
categories, filter out location-independent ones, and thereby increase the proportion of location-driven
relationships, which is more conducive to user geolocation.

Table 1: The proportion of location-homophilic social relationships across different datasets

Dataset GeoText [19] BrightKite [20] Twitter-US [21]

Proportion 0.22 0.29 0.08

Several studies [16,22] have attempted to determine location-homophilic social relationships using
structure characteristic. Research [22] proposes the social closeness metric to measure the number
of common neighbors between two users with a social relationship. It demonstrates that when the
proportion of common first-order neighbors between two users exceeds 50%, the probability of
them being within 10 km of each other is 83%. When the number of mutual friends decreases to
10%, the probability of the two users being within 10 km drops drastically to 2.4%. Based on this
funding, research [16] filters out social relationships with social closeness below a certain threshold.

1https://www.x.com
2www.instagram.com
3www.facebook.com
4https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/
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However, as shown in Fig. 1, on a dataset from real social media, using the social closeness makes it
difficult to discern whether users’ social relationships are location proximity. Figs. 1a and 1b show the
distribution of social closeness in location-homophilic social relationships and location-heterophilic
social relationships, respectively. It is obvious that the distribution of social closeness in these two
types of relationships is similar, and both are predominantly concentrated in the lower interval (≤0.1).
Therefore, it is crucial to establish a metric that can confirm location-homophilic social relationships.

Figure 1: Distribution of social closeness across different relations. The horizontal axis represents the
level of social closeness, while the vertical axis represents the number of edges. Each bar represents the
number of edges at the corresponding level of social closeness

Therefore, we focus on designing an appropriate metric of discerning location-driven relationships
and better utilizing the location homophily in social networks. In this manuscript, we propose a social
media user geolocation method integrating neighborhood geographic distribution and social structure
influence (NGSI). In detail, to better distinguish between location homophilic and heterophilic rela-
tionships, we design a novel metric called k-order neighborhood geographical distribution similarity
(k-NGD). We discretize the continuous latitude and longitude information and assign a discrete
location label to each user. Then, we compute the distribution of discrete locations for each user’s k-
order neighborhood. The distribution of k-NGD is significantly different between location homophilic
and heterophilic relationships. Our proposed NGSI utilizes this finding to identify and filter out
heterophilic location relationships. To better leverage the filtered social network structure, we use
personalized PageRank (PPR) [23] to calculate the strength of social structure influence between users.
Based on this strength, a graph neural network-based (GNN-based) model is designed to performs a
weighted aggregation of neighboring nodes to geolocate users.

The main contributions of this manuscript are as follows:

• A novel method to evaluate the homophily of relationships based on the k-order neighborhood geo-
graphical distribution similarity of users is proposed. The k-NGD of friends exhibits significant
differences between homophilic and heterophilic relationships, enabling us to identify and filter
out heterophilic relationships. This method enhances the location homophily of social networks.

• A GNN-based method utilizing social network structure influence for inferring user locations is
designed. By using PPR, we obtain the structure influence between users, allowing for weighted
aggregation of neighboring users. This approach enhances the exploration and utilization of
location influence within the social structure, thereby improving user localization performance.
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• Series of experiments on real-world social media dataset to evaluate the effectiveness of proposed
method are conducted. Compared to 7 existing social relationship-based user geolocation
methods, our proposed approach outperforms others in terms of geolocation accuracy.

The remaining sections of this manuscript are organized as follows: In Section 2, we provide
an overview of literature relevant to our study. In Section 3, we present the preliminaries required
for understanding the content of this manuscript. Our proposed method is thoroughly described
in Section 4. In Section 5, we analyze the performance of user localization in social media. Finally,
we conclude the manuscript with a summary of our work and provide future directions for further
research in Section 6.

2 Related Works

In this section, we provide a review of previous methods for social media user geolocation based on
social relationships and introduce the graph deep learning methods utilized by geolocation methods.

2.1 User Geolocation Based on Social Relationships
Social relationship is the prevalent data in social media, and users tend to engage in social behavior

based on certain similarities. Location similarity is one of the reasons for user interaction. Therefore,
based on social relationships, it is possible to infer user location by utilizing known locations of friends.
Existing approaches for geolocating users based on social relationships can be broadly classified
into two categories: (1) constructing probabilistic models between social proximity and geographic
distance to leverage neighbor distances and friend probabilities for location inference; (2) propagating
information through edges within social network to incorporate high-order information.

For the first category of methods, Backstorm et al. [14] propose FindMe which utilizes the dis-
tances between users with known locations and their friends to construct a distance-friend probability
model, establishing an association between distance magnitude and the likelihood of becoming friends.
FindMe takes the locations of friends as candidate locations. The location which maximizes the
probability of becoming friends with other neighbors is selected as the user’s location. Based on the
research by Backstrom et al. [14], McGee et al. [24] further discriminate geographically close social
relationships by utilizing a decision tree, which establishes connections between various properties of
social relationships (such as direction, categories, etc.) and location proximity. The Spot-Tightness [22]
analyzes the relation between distance and social closeness to construct a probability model. Building
on the geolcoation from FindMe, Spot-Tightness incorporate social closeness as another factor in
calculating probabilities. On the basis of Spot-Tightness, Spot-Energy [22] leverages social coefficient
to further consider the structural information of user neighborhoods. In these methods, they rely
primarily on the spatial distribution of the user’s first-order neighborhood, which is susceptible to
the impact of sparse first-order location information.

The approach based information propagation within social networks has evolved beyond the
confines of first-order friendships. Jurgens [15] propose the Spatial Label Propagation (SLP) algo-
rithm, which treats a user’s latitude and longitude as user labels and uses the geometric median of
propagated locations from neighbors as the user’s location. Through multiple rounds of propagation,
higher-order information can be utilized, which can tackle the issue of sparse location information
of first-order neighbors. Compton et al. [25] extend the SLP algorithm by introducing the frequency
of social relationships as weights to infer user locations through weighted user location information.
The Sequence Spatial Label Propagation (SSLP) [16] further considers the impact of location outliers
in a user’s neighborhood on the accuracy of location inference. Therefore, SSLP filters out neighbor
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nodes with few common neighbors in the first order, which reduces the time required for propagation,
and improves the accuracy of user geolocation. Rahimi et al. [26] propose a method based on Graph
Convolutional Networks (GCN) [27] module to propagate and aggregate neighbor features. They
apply adjacency matrix of social network as input features, and establish the correlation between
aggregated features and location labels. By leveraging high-order social relationships, these methods
enable a more comprehensive understanding of the spatial information within the network and
enhances the geolocation accuracy.

Existing works have paid limited attention to non-location-proximate social relationships in
user social networks. Among them, SSLP [16] utilizes user social closeness to discover and filter
non-location-proximate social relationships. However, the distinction between location-homogeneous
social relationships and non-homogeneous social relationships in the distribution of social closeness
is not clear. In addition, previous methods based on information propagation ignore user social graph
structural characteristics in user geolocation. To tackle above limitations, we propose the k-order
neighborhood geographical distribution, which discerns and filters heterophilic social relationships
by comparing the geographical distribution similarity of user neighborhoods. Additionally, based on
the filtered social network, we calculate the structural influence between users and introduce structural
influence-weighted aggregation of user neighborhood features to more accurately geolocates users.

2.2 Graph Deep Learning Method
Social network can be viewed as a natural graph structure, where users are nodes and social

relationships between them are edges. As such, existing social relationship-based user geolocation
algorithms are closely related to graph algorithms. This subsection will introduce commonly used
graph algorithms in user geolocation.

Label Propagation (LP) algorithm [28] leverages label information of a network as node features
to iteratively propagate labels among nodes based on local similarity and connectivity relationships,
achieving label prediction for unlabeled nodes. DeepWalk [29] is a graph embedding method based
on random walks. It generates node sequences by performing random walks on graphs, which are
then used as input for word2vec [30] learning. The learned low-dimensional embedding capture
adjacency relation features of nodes. Building upon DeepWalk, node2vec [31] introduces a biased
random walk graph embedding algorithm. It incorporates a bias towards selecting the next node
during the generation of node sequences. Recently, the rapid development of deep learning has greatly
promoted the effective representation of graph data by graph neural networks, leading to significant
advancements and improvements in graph-based tasks [32]. Among them, Graph Convolutional
Networks (GCNs) [27] utilize the adjacency matrix to capture node relationships, propagating and
aggregating features based relationships through multiple layers. Graph Attention Networks (GAT)
[33] use attention mechanisms [34] to compute aggregation weights based on similarity, considering
varying neighbor influences. In order to better scale GNN models to large graphs, GraphSAINT
[35] introduces a GNN paradigm based on sampling subgraphs, decoupling sampling from GNN to
facilitate the extension of various GNN models.

3 Preliminaries

In this section, we provide definitions for the terminologies used throughout the manuscript and
introduce the concept of user geolocation based on social relationships.

Definition 1 (User Social Network). The user social network, denoted as G = (V , E), is
constructed based on the social relationships between users. V represents the set of users, and E denotes
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the collection of social relationships among users, with E ⊆ V × V . The user set V can be divided
into V = V u ∩ V l, where V u represents the set of users without location labels, and correspondingly,
V l represents the set of users with known locations.

Definition 2 (Geographical Homophilic Edge). For eij ∈ E, nodes vi and vj belong to the same
location, that is, li = lj.

Definition 3 (Geographical Heterophilic Edge). For eij ∈ E, nodes vi and vj do not belong to the
same location, that is, li �= lj.

Definition 4 (Global Location Homophily). Global Location Homophily is the ratio of the number
of geographical homophilic edges to the total number of edges in the graph, denoted as Eq. (1).

h =
∣∣{(vi, vj

)
:
(
vi, vj

) ∈ E ∧ li = lj

}∣∣
|E| . (1)

Definition 5 (k-order neighborhood). The k-order neighborhood of a user in a social network
refers to the set of nodes that can be reached within k hops from the user. Specifically, the k-order
neighborhood of user v is denoted as Nk(v).

User Geolocation Based on Social Networks. Given a social network G = (V , E) constructed from
user online social relationships, along with a subset of labeled users V l and their corresponding location
information, we leverage the social relationships between unlabeled users V u and labeled users V l in
the social network to infer user locations.

We summarize the notations used in this manuscript as shown in Table 2.

Table 2: Frequently used notations

Notation Description

G User social network
V/V l/V u User set/labeled user set/unlabeled user set
E Social relationship set
A/Ã Adjacent matrix/normalized adjacency matrix
Ys/Yc User location state-level label matrix/city-level label matrix
Ls/Lc State-level/city-level location set of users
dk

v Geographical distribution vector of v’s k-order neighborhood
sk Similarity of geographical distribution in user neighborhood
Nk(v) k-order neighborhood of user v
H User representation matrix
thet Similarity threshold of geographical neighborhood distribution

4 Proposed Method

To better explore and utilize the location homophilic relationships in user social networks,
this manuscript proposes a joint approach that combines neighborhood geographical distribution
and social structural influence for social media user geolocation. It consists of two parts: location
homophilic relationship distinguish based on k-order neighborhood geographical distribution simi-
larity and user location inference based on the strength of social structural influence.
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For the first part, we first construct the geographical distribution characteristics of user k-order
neighborhood. Then we compute the similarity of geographical distribution characteristics between
two users with social relationships in their k-order neighborhood, and filter out social relationships
with low similarity to reduce location-heterophilic social relationships in the social network.

For the second part, we incorporate multi-order neighborhood information of users for aggrega-
tion, further leveraging the social network structure. To avoid over-smoothing of node features caused
by aggregating too much neighborhood information, we introduce personalized PageRank [23] to
learn the network structural influence between users in multi-order neighborhoods, and perform a
weighted aggregation of user information accordingly. Finally, user location inference is performed
based on the aggregated features.

4.1 Location Homophilic Relationship Discerning Based on k-NGD
Existing methods for evaluating location homophily between two users in a social network often

rely on the number of common neighbors to assess [16,22]. As shown in Fig. 1, this approach may not
clearly reflect the correlation between the number of common friends and location homophily in social
networks with low location homophily. As a result, filtering location-heterophilic social relationships
based on social closeness alone makes it challenging for location inference algorithms to achieve
satisfactory results. Therefore, we distinguish the location homophily strength of social relationships
from the perspective of the geographical distribution of user neighborhoods, as Fig. 2.

Figure 2: Illustration of homophily strength between nodes v1 and v2. Here, we use the 2-order
neighborhood of the two nodes as an example

Firstly, we extract the neighboring nodes within k-order neighborhood of user v. For the nodes
with known locations among them, we map their geographical location labels to the corresponding
dimensions, constructing the k-order neighborhood geographical distribution feature, denoted as dk

v .
We calculate k-order neighborhood geographical distribution as Eq. (2).
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dv
k =

∑
u∈Nk(v)

yu, (2)

where yu denotes the position label vector for user u, with only one dimension corresponding to the
geographical label being 1 and the others being 0. Then, to eliminate the dimensional differences
between features and improve model performance, we normalize the geographical distribution features
of user neighborhoods. We adopt the Z-score normalization to process the geographical distribution
features, as Eq. (3).

d̃k
v = norm(dk

v ) =
[(

dv1 − μ
(
dk

v

))
σ

(
dk

v

) ,

(
dv2 − μ

(
dk

v

))
σ

(
dk

v

) ,

(
dv|L| − μ

(
dk

v

))
σ

(
dk

v

) ]
, (3)

where μ
(
dk

v

)
represents the mean value of each dimension in the distribution vector dk

v , and σ
(
dk

v

)
denotes the variance of each dimension.

Next, for two users vi and vj in the social network, we calculate the similarity score of their
neighborhood geographical distribution using cosine similarity. The formula is as follows:

sk
ij =

⎧⎪⎪⎨⎪⎪⎩
dvi

k · dvj

k∣∣dvi

k
∣∣ ∣∣dvj

k
∣∣ ,

〈
vi, vj

〉 ∈ E

0,
〈
vi, vj

〉
/∈ E

. (4)

In Eq. (4), dvi and dvj represent the neighborhood geographical distributions of nodes vi and
vj respectively. When there is a social relationship between two nodes, the distribution similarity is
calculated based on the similarity of their neighborhood geographical distributions. For users without
social relationships, their similarity is directly set to 0. As geographical proximity is one factor driving
users to build social relationships, the similarity of neighborhood location distributions between two
users with the same location should be significantly higher than that between users with different
locations. This idea was further validated in our subsequent experiments. Subsequently, we set a
similarity threshold thet to filter out social relationships with similarity scores below this threshold,
which are highly likely to be heterophilic relationships. Meanwhile, for nodes with low degrees, in
order to prevent their social relationships from becoming excessively sparse during filtering location-
heterophilic social relationships and to avoid the emergence of isolated nodes (nodes without any social
relationships), we impose restrictions on the node degrees of the social relationships being filtered,
which is shown as following:

deg (vi) > tdeg ∧ deg
(
vj

)
> tdeg, (5)

where deg() represents the degree of node. The restriction requires that only social relationships with
node degrees greater than the threshold tdeg can be filtered. For nodes with very low degrees, we retain
all their social relationships to prevent the social connections of these nodes from becoming excessively
sparse and affecting the geolocation results.

4.2 User Geolocation Based on Social Structure Influence
In user location inference, using only the first-order neighborhood of users to infer their locations

may encounter issues of sparse neighboring users and missing location information. Therefore,
effectively utilizing higher-order neighborhood information of users is a primary focus of our study.
GNN methods such as GCN [27], when incorporating higher-order information, may suffer from
the problem of over-smoothing with excessive stacking of layers. This leads to increased similarity in
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node representations, making it more challenging to distinguish node location in the network. In this
section, we propose a user geolocation method based on the strength of social structure influence. By
leveraging structural influence to assign varying weights to neighboring nodes, weighted aggregation
of neighbors’ features can effectively mitigate the over-smoothing issue.

Personalized PageRank can assess the influence of an individual user on other users within a
social network by leveraging its connectivity. We calculate the positional impact between users based
on social network characteristics using the filtered user social network, starting from an individual
user, as follows:

Ã = Normalize (A) , (6)

π i = (1 − β) Ãπ i + βIi, (7)

where Ã denotes the normalized adjacency matrix of the social network and Ã ∈ R
|V |×|V |. πi represents

the stationary distribution resulting from a random walk starting at node vi, πi ∈ R
1×|V |, which

captures the user’s network structural influence on other user nodes in the network. During each
propagating iteration, there is a probability of β to transition back to the starting node and restart,
thereby continually enhancing the influence of neighboring users. With a probability of 1−β, the walk
continues, allowing for the calculation of the influence strength between higher-order neighborhoods.
For the influence among all users in social network, the global structure impact weight matrix � is
obtained by aggregating according to the Eq. (7), as shown in Eq. (8).

� = β
(
I − (1 − β) Ã

)−1
. (8)

Based on the global influence matrix �, we weight and fuse the features from multiple levels of
neighbors to obtain the representation of user nodes.

H0 = σ (XW + b) , (9)

H = �H0 = β
(
I − (1 − β) Ã

)−1
H0, (10)

where the initial feature matrix of the nodes is denoted by X. Firstly, the node features undergo a
non-linear transformation to obtain the matrix H0. Then, based on the weighted aggregation using
the social network structural weight matrix, the final node features H are obtained.

The global structure influence matrix among users is constructed based on their social relation-
ships and through random walks with certain probabilities. During the random walk process, on one
hand, PPR has a probability of stopping and returning to the starting node, resulting in higher weights
for the low-order neighboring nodes in the influence matrix. On the other hand, when PPR continues
to walk towards neighbors, the structural information such as the number of paths between two nodes
contributes to varying influence weights for higher-order nodes. Therefore, based on these two factors,
the PPR-based GNN exhibits significant variations in the aggregation weights of different nodes
when aggregating higher-order neighborhoods. This approach not only facilitates better learning of
structural information in social networks but also effectively alleviates the over-smoothing issue.

Due to the high computational complexity of computing the inverse matrix in PPR, we propose
a model based on the insights from research [36]. The model formulated in Eq. (4) is shown to be
equivalent to the PPR-based GNN when stacked with an infinite number of layers.

H0 = XWθ + b, (11)

H(k+1) = (1 − β) ÃH(k) + βH0, (12)
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where k denotes the propagating layers. Assuming that we use K layers, H(K) represents the final node
embeddings. Finally, we utilize the node embeddings H(K) to infer user locations, as Eq. (13).

Ŷ = softmax
(
H(K)W(K) + b(K)

)
, (13)

where W(K) is learnable parameters and b(K) denotes bias vector. This equation maps node representa-
tions to corresponding geographical locations, and each dimension of Ŷ represents the probability of
a user being located at the corresponding location. The location of user v is determined as follows:

Lv = max
j

(
ŷj

v

)
. (14)

Based aforementioned methods, we summarize the overall algorithm proposed as Algorithm 1.

Algorithm 1: Overall algorithm of proposed method
Input: User social network G, location labels Y L, user location set L

Output: Location Y u of V u

// Filter out location-heterophilic relationships.
1. for user v ∈ V do
2. Obtain v’s k-order neighborhood Nk (v) from G
3. Initialize dv based on Nk (v) and Y L

4. for user u ∈ Nk(v) do
5. if u ∈ V l then
6. dv = dv + Y l

u

7. end
8. end
9. end

10. for edge
〈
vi, vj

〉 ∈ E do
11. if G.degree(vi) > tdeg and G.degree(vj) > tdeg and sk

ij < thet then
12. Remove edge

〈
vi, vj

〉
from G

13. end
14. end

// User geolocation
15. Utilize node embeddings obtained by DeepWalk as the initial features X of the nodes
16. Compute structural influence matrix � between nodes based on PPR via Eq. (8)
17. Compute user representation H via Eq. (10)
18. Calculate the loss between predicted labels Ŷ obtained by Eq. (13) and ground-truth labels Y l

19. Update parameters of all model
20. Infer location labels Y u of users in V u

5 Experiments

In this section, we evaluate the proposed method on real-world dataset from various aspects.

5.1 Experiment Settings
5.1.1 Dataset Analysis

In our experiments, we use the Brightkite dataset provided by SNAP, which includes the initial
social network of users and their check-in records. In this manuscript, our primary objective is to infer
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the user’s primary residence address. Therefore, we first need to determine the user’s primary residence
address. We perform clustering on the check-in coordinates of users using the Density-Based Spatial
Clustering of Applications with Noise algorithm (DBSCAN) [37], and determine the center location
of the largest cluster as the user’s primary residence. We then use reverse geocoding to convert the
user’s coordinates into “Country-State-City”format. Due to the concentration of users primarily in the
United States region, we select 30,127 users located in the United States and divide them into a training
set and a test set with an 8:2 ratio for geolocation experiments. We summarize the information of the
dataset in Table 3. Based on the users’ primary residence locations, we plot the geographic distribution
map of the users, as shown in Fig. 3.

Table 3: Statistics of datasets

Information |V | ∣∣V l
∣∣ |V u| |Ls| |Lc| |E|

Number 30,127 24,102 6,025 50 338 105,543

Figure 3: Geographic distribution map of the users

5.1.2 Baselines

To comprehensively evaluate our proposed method, we compare it with two existing classes of
social relationship-based user geolocation methods.

• FindMe [14] employs the fitting distance-friend probability model and selects the friend location
that maximizes the friend probability as the user’s location.

• Friendly [24] classifies social relationships and improves the fitting formula based on the
FindMe.

• Spot-Tightness [22] constructs a probabilistic model between social intimacy and distance,
estimating the user’s location based on the social intimacy estimation between the target and
the neighbors.

• Spot-Energy [22] uses the energy and social coefficient between users as measures of neighbors’
locations, selecting the neighbor with the maximum value of the joint indicators as the target
user’s location.
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• SLP [15] utilizes the known latitude and longitude of users as node labels, propagates through
the social network, and determines the user’s location by calculating the geometric median of
neighboring locations.

• Deepwalk-MLP [29] employs deepwalk to learn node representations of the user social network,
followed by Multi-Layer Perception (MLP) for node geolocation.

• SSLP [16] builds upon SLP by incorporating a filtering mechanism based on social intimacy
scores to select neighboring users.

• GCN-LP [26] utilizes the user adjacency matrix as the input to highway-GCN for user
classification and positioning.

5.1.3 Evaluation Metrics

During the user location inference experiments, we defined two categories of labels, namely state
and city. The inferred location of a user corresponds to the latitude and longitude of the city-level
city. The inference error of a user is measured as the distance between the true latitude and longitude
of the user and the inferred latitude and longitude, denoted as (ED)(v), with units in kilometers. The
calculation of (ED)(v) is defined by Eq. (15).

ED(v) = haversine (coor (Lc(v)) , coor (v)) , (15)

where haversine means haversine distance and coor represents the latitude and longitude of a user or
the city center.

To comprehensively assess the geolocation performance of methods, we utilize five commonly
used metrics in existing research: state-level accuracy, metropolitan-level accuracy (accuracy within
161 kilometers), mean distance error, median distance error, and coverage rate. Equations for calcu-
lating the above metrics are as Eqs. (16)–(20).

• Acc@State: The accuracy of user location classification at the state level.

Acc@State =
∣∣{v|L′

s(v) = Ls(v) ∧ v ∈ V u
}∣∣

|V u| . (16)

• Acc@161: The accuracy of user localization within a 161-kilometer radius.

Acc@161 = |{v|ED(v) ≤ 161 ∧ v ∈ V u}|∣∣∣V̂ u

∣∣∣ (17)

• MedianED: The median error distance between inferred locations and true locations for users
with unknown locations.

MedianED = median
({

ED(v)|v ∈ V̂ u
})

. (18)

• MeanED: The mean error distance between inferred locations and true locations for users with
unknown locations.

MeanED =
∑

v∈V̂u ED(v)∣∣∣V̂ u

∣∣∣ . (19)

• Coverage: The ratio between the number of locatable users and the total number of users with
unknown locations.
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Coverage =
∣∣∣V̂ u

∣∣∣
|V u| . (20)

In Eqs. (16)–(20), V̂ u represents the number of locatable users using the geolocating method.
Here, Acc@State represents the geolocation accuracy of the method at the state level. According to
international urban planning, the range of metropolitan areas is usually within 100 miles (161 km), and
Acc@161 evaluates the geolocation accuracy of the model at the metropolitan level [38]. Acc@State
and Acc@161 evaluate the accuracy of methods at different granularities. MeanED measures the
overall geolocation error distances of methods, while MedianED represents the median value among
all error distances. MeanED and MedianED together depict the distribution of user geolocation error
distances. Coverage refers to the evaluation of the method’s ability to geolocate the range of users, that
is, the proportion of users that can be geolocated.

5.1.4 Parameter Settings

We utilize DeepWalk [29] to obtain node embeddings as initial features X in the user social
network. The parameters for DeepWalk were set as follows: embedding dimension of 256, walk length
of 40, and window size of 8. We found that setting thet to 0.6 achieved optimal results, while Dropout
rate was set to 0.4. In the graph neural network, we set K to 3 and β to 0.2. The learning rate is set to
0.01, and the L2 regularization weight is set to 0.005.

5.2 Analysis of k-NGD on Homophilic and Heterophilic Relationships
The metric proposed by existing methods have very similar distributions on location homophily

and heterophily relationships, making them difficult to distinguish (as shown in Fig. 1). To verify the
differential distribution of k-order neighborhood geographic similarity proposed in this manuscript on
two types of social relationships, we conducted an analysis of the neighborhood geographic similarity
between two users with social relationships. We categorize social relationships into two types: location
homophily edges and location heterophily edges, and compare the distribution characteristics of k-
NGD on these two types of social relationships. Based on the labeled data in the Brightkite dataset,
we plotted the following distribution figures as Figs. 4 and 5.

Figure 4: Distribution of NGD similarity for two types of social relationships at the state level
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Figure 5: Distribution of NGD similarity for two types of social relationships at the city level

In Fig. 4, the 2-NGD similarity scores for heterophily edges exhibit a relatively evenly distributed
concentration between 0.1 and 0.8, followed by a rapid decline in the range of 0.8 to 1.0. Conversely,
the 2-NGD similarity scores for homophily edges are highly concentrated in the range above 0.9,
displaying a distinctly different distribution from that of heterophily edges. At the city level as Fig. 5,
the differences in similarity are more pronounced. The 2-NGD similarity scores for heterophily edges
exhibit a high concentration around 0.2, with a significant decrease in the number of heterophily edges
as the similarity score increases. In contrast, the number of homophily edges shows a sharp increase
after 0.8. Therefore, we can effectively distinguish the homophily of user locations and efficiently filter
heterophily edges by utilizing the similarity of neighborhood geographical distributions between two
users. NGSI allows us to increase the proportion of homophily social relationships within the social
network.

5.3 Geolocation Performance of the Proposed Method
From Table 4, it can be observed that NGSI achieves a geolocation accuracy of 68.98% at the

provincial level, which represents an improvement of 4.8% and 7.3% compared to existing methods.
Compared to eight existing social relationship-based user positioning methods, NGSI exhibits signifi-
cant performance enhancements. The proposed approach not only enables the positioning of all users
with social relationships but also achieves a higher Acc@161 by 4.84% compared to the state-of-the-art
(SOTA). Additionally, it reduces the average distance error by over 100 km and decreases the median
error distance by 24.4%.

Table 4: Comparison of overall geolocation performance

Methods Acc@State (%) Acc@161 (%) MeanED (km) MedianED (km) Cover. (%)

FindMe [14] – 61.60 737.7 36.89 90.4
Friendly [24] – 54.79 862.9 64.61 89.0
Spot-Tightness [22] – 56.14 857.0 52.16 96.7
Spot-Energy [22] – 59.53 787.4 41.12 96.0
SLP [15] – 59.12 619.9 49.7 99.1

(Continued)
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Table 4 (continued)

Methods Acc@State (%) Acc@161 (%) MeanED (km) MedianED (km) Cover. (%)

Deepwalk-MLP [29] 61.68 61.85 754.1 43.0 100
GCN-LP [26] 64.12 63.23 725.5 38.9 100
SSLP [16] – 64.59 508.5 30.1 45.98
NGSI (proposed) 68.98 68.07 602.2 29.4 100

In the first category of relationship-based user geolocation methods, FindMe [14] exhibits the
highest geolocation accuracy, but with lower coverage. Spot-Energy [22] demonstrates better overall
geolocation performance, while Friendly [24] scores lower across all metrics. Both FindMe and
Friendly geolocate users based on their first-order neighbors. When the location information of these
first-order neighbors is unknown, the user cannot be geolocated, leading to low coverage. Friendly
introduces local social relationship discrimination based on FindMe. But due to the dataset using in
experiments containing only one type of undirected social relationship, the lack of social relationship
properties such as relationship types and directions results in poor geolocation capability. Based
on Spot-Tightness, Spot-Energy introduces the social coefficient of user neighborhoods, enhancing
user geolocation performance. However, as Spot-Energy still relies on the distance-friend probability
model, constrained by the representational capacity of the basic model, its geolocation performance
remains significantly lower compared to NGSI.

Compared to the first category, the second category of methods based on information propagation
exhibits significant improvements in inferring user locations. The SLP [15] algorithm achieves an
average error distance that is only surpassed by the proposed method in this manuscript. Its smaller
error distance is attributed to the fact that user location inference is obtained through the geometric
mean of neighboring user locations, where the geometric mean represents the geometric center closest
to each neighbor’s location, resulting in smaller inference distance errors. Although SSLP [16] achieves
relatively high accuracy in location inference on this dataset, it can only infer the location of less than
50% of all users. As shown in Fig. 1, our previous analysis reveals that social closeness of users is
concentrated within 0.1 and the ability to distinguish between homophilic and heterophilic locations
is not strong. This results in the overall poorer performance of SSLP in location inference.

After transforming the user localization problem into a node classification problem (GCN-LP
[26], Deepwalk-MLP [29], and the proposed NGSI in our manuscript), not only can multiple levels
of localization be achieved for nodes, but also the localization performance is superior. Here, we
primarily compare localization algorithms at the state level with those commonly used within a
161 km range. Deepwalk-MLP only uses node embeddings obtained from deepwalk to infer user
locations, while GCN-LP and NGSI utilize the mapping between social structure relationships and
location to continuously learn parameters, resulting in significantly better localization performance
than Deepwalk-MLP. NGSI not only utilizes information from users with known locations to filter
out a large number of heterophilic location relationships, thereby improving the homophily of the
social network’s location, but also uses the influence strength of user network structure to weight
the aggregation of neighborhood features, resulting in a significant improvement in user geolocation
performance.
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Compared to the second category of information propagation-based methods, the first category of
methods that geolocation based on neighboring users’ locations generally exhibit lower coverage and
lower accuracy than the second category. This is because in social networks, the first-order neighbors
of users are often unlabeled nodes, making it impossible to infer the location of users in such cases,
leading to a lower user coverage. Meanwhile, methods based on information diffusion can more
comprehensively consider the information propagation process in the network, effectively utilizing
multi-order information and network structure in social networks to achieve better geolocation results.

5.4 Analysis of thet on Geolocation Performance
In this section, we analyze the impact of the threshold value thet on the filtered number of social

relationships, the proportion of location heterophilic relationships, the change in global location
homophily ratio, and the accuracy of user location inference.

First, we calculate the 2-NGD to measure the geographical distribution similarity between users.
We filter the social relationships that are less than the threshold thet and analyze the filtered number
of social relationships and the proportion of heterophilic relationships. As shown in Fig. 6, we have
chosen two partitioning methods (state-level, city-level) and selected eight intervals between 0.1 and
0.8. As the thet threshold increases, the number of filtered edges rises from 396 to 17,027. When the
threshold exceeds 0.5, the number of edges filtered based on city-level labels reaches 15.86% to 21.65%
of the total edges. At this stage, the overall proportion of filtered social relationships with heterophilic
locations decreases, but it still remains above 90%. In the city-level, when thet is set to 0.8, out of the
22,849 filtered edges, the proportion of social relationships with heterophilic locations remains high
at 94%. Despite filtering out a large number of heterophilic social relationships, the homophilic social
relationships are still retained.

Figure 6: Relationship between threshold thet and filtered edges. The blue bars represent the number
of filtered edges, while the orange stars (�) indicate the proportion of heterophily edges among the
filtered edges

When setting different thet thresholds, we have removed a large number of user social relationships.
Next, we will mainly analyze the impact of thet on the global location homophily ratio of user social
networks and its influence on the accuracy of location inference. Fig. 7 illustrates the positioning
results at two level granularity when thet is set from 0 to 0.8. We conducted five experiments under
different thet settings and obtained the distribution of positioning accuracy as shown in Fig. 7. The
global position homophily ratio consistently increases with the rise of thet. Meanwhile, the user’s
geolocating accuracy initially increases, reaching its peak at thet = 0.6, and then starts to decline.
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Thus, with appropriate filtering of social relationships, the position homophily of the social network
increases, making the proximity between users and their neighbors more evident and beneficial for user
location inference. However, as thet increases, excessive removal of social relationships leads to an overly
sparse social network, causing a decrease in positioning accuracy. For instance, when filtering social
relationships based on city-level tags, approximately 22% of social relationships can be filtered. Setting
an appropriate thet and filtering the location heterophilic social relationships in the social network based
on k-NGD enhances the positioning performance.

Figure 7: Accuracy and global homophily proportion at different levels. The blue bars represent
the geolocation accuracy (Acc@161), while the orange triangle (�) indicate the global homophily
proportion of all edges

6 Conclusion

In this manuscript, we propose a social media user positioning method based on uniting neighbor
geographical distribution and social structure influence, called NGSI. NGSI first utilizes the similarity
of users’ neighborhood geographical distributions to filter out location-heterophily social relation-
ships, thereby enhancing the overall geographical homophily of the social network. Furthermore,
it further leverages the structural information of user social networks to calculate the strength
of influence between users and selectively aggregates neighboring node features. The experimental
results demonstrate that our proposed NGSI not only provides multi-granularity user positioning but
also significantly outperforms existing methods for user geolocation based on social relationships.
Moreover, we conduct a comprehensive analysis of neighborhood geographical distribution similarity
and found significant differences in the distribution between location-homophilic and location-
heterophilic social relationships. We observed that over 90% of the filtered social relationships based
on 2-NGD are location-heterophilic relationships.

In future work, we aim to further integrate the multiple types of user attributes in social media
and explore differentiate algorithms. This will enable more accurate filtering of location-heterophilic
social relationships, thereby enhancing user positioning performance.
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