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ABSTRACT

Brain tumors pose a significant threat to human lives and have gained increasing attention as the tenth leading
cause of global mortality. This study addresses the pressing issue of brain tumor classification using Magnetic
resonance imaging (MRI). It focuses on distinguishing between Low-Grade Gliomas (LGG) and High-Grade
Gliomas (HGG). LGGs are benign and typically manageable with surgical resection, while HGGs are malignant
and more aggressive. The research introduces an innovative custom convolutional neural network (CNN) model,
Glioma-CNN. GliomaCNN stands out as a lightweight CNN model compared to its predecessors. The research
utilized the BraTS 2020 dataset for its experiments. Integrated with the gradient-boosting algorithm, GliomaCNN
has achieved an impressive accuracy of 99.1569%. The model’s interpretability is ensured through SHapley Additive
exPlanations (SHAP) and Gradient-weighted Class Activation Mapping (Grad-CAM++). They provide insights
into critical decision-making regions for classification outcomes. Despite challenges in identifying tumors in images
without visible signs, the model demonstrates remarkable performance in this critical medical application, offering
a promising tool for accurate brain tumor diagnosis which paves the way for enhanced early detection and treatment
of brain tumors.

KEYWORDS
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1 Introduction

Brain tumor disorders are serious conditions that threaten people’s life. There has been a surge in
awareness of these disorders recently. Tenth among all causes of mortality, for both men and women,
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is brain cancer. An estimated 97,000 [1] people worldwide pass away from brain tumors every year, and
an additional 126,000 are diagnosed with them, according to the International Agency for Research
on Cancer.

The brain consists primarily of neurons, which are specialized cells incapable of undergoing
cell division or increasing in number over time. Tumors, on the other hand, are characterized by
unregulated and abnormal cell growth, leading to an excessive cell count in a specific tissue or organ.
Given that neurons within the brain do not possess the ability to multiply, the occurrence of a brain
tumor represents an irregular and uncontrolled proliferation of cells in the vicinity of the brain’s
structural regions. Brain tumor happens in Brain tissue. It can affect anyone at almost any age. Primary
brain tumors encompass tumors that emerge from the brain tissue or its immediate environs. Glioma
tumors develop in the brain’s glial cells, which can be divided into two primary categories: benign
and malignant. Benign means noncancerous cells, whereas malignant denotes cancerous cells. Benign
tumors have smooth, uniform margins and grow slower than malignant tumors, which feature wavy
edges. In general, Grades I and II gliomas are referred to as low-grade gliomas (LGG), and grades III
and IV gliomas are referred to as high-grade gliomas (HGG) in nature [2]. Since the LGGs are benign
tumors, surgical resection can be used to remove them. Patients with LGG had survival rates of 70%
to 97% after 5 years and 49% to 76% at 10 years. Within 5 years, between 52% and 62% of patients
had a recurrence. In these recurring cases, 17% to 32% develop into HGGs, while others have LGGs
[3]. Two imaging methods that can detect brain tumors are magnetic resonance imaging (MRI) and
computed tomography (CT scan).

Medical specialists have said for a long time that brain tumors in clinics are complicated to
diagnose using human interpretation. Thus, it is a crucial need and important for more reliable
and trustworthy advanced detection techniques of tumor, commonly used computer-aided diagnosis
(CAD) [4,5]. Now a days, CAD technology is widely available techniques that is used in diagnostic
applications in medical that depend on the type of medical images, which is trying to differentiate
between healthy and unhealthy(diseased)tissue.

Currently, image classification is a popular research area and a key area of study in the fields of
image processing and computer vision. Those pattern recognition methods can be used with images
from the medical field. Pre-processing by feature extraction is the foundation for medical picture
classification; for instance, brain scans are used to identify and categorize the type of tumors [6–8].

However, this work employs a novel lightweight Convolutional Neural Network (CNN) model
called GliomaCNN for classifying brain tumors incorporating MRI scans. The points that follow
could be used to summarise this study’s contribution:

• Employed the BraTS 2020 dataset to perform the classification of MRIs into the LGG and
HGG classes based on tumor characteristics and features extracted from the images.

• Proposed a novel lightweight CNN architecture, GliomaCNN for the classification of brain
tumors into HGG and LGG categories, featuring reduced computational complexity while
maintaining high classification accuracy.

• Evaluated alongside various alternative models and previous research endeavors to analyze its
comparative performance in brain tumor classification which demonstrated its efficacy and
potential contributions to the field.
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• Enhanced the trustworthiness of GliomaCNN using two explainable AI techniques, SHapley
Additive exPlanations (SHAP) and Gradient-weighted Class Activation Mapping (Grad-
CAM++) enabling to provide interpretable insights into the model’s prediction processes and
elucidate the important features contributing to its predictions.

The following sections make up the remaining portion of the paper: In Section 2, the pertinent
literature in the field is summarized. The materials and methods used to create the GliomaCNN archi-
tecture are described in Section 3; Section 3.5 encompasses the outcomes and discussions pertaining
to our model. Section 4 delves into the aspects of interpretability within Explainable AI (SHAP, Grad-
CAM++) and Section 5 serves as the conclusion of the study, presenting a summary of its findings
and suggesting directions for more study.

2 Related Works

Deep learning methods are widely used to classify brain tumors using MRI scans because of their
high accuracy. Rasool et al. [7] proposed a new hybrid CNN-based architecture to categorize brain
MRIs into three classes. They provided two strategies based on CNN. The first approach uses Google
Net combined with a Support Vector Machine (SVM). The pre-trained CNN model from Google-
Net is used for feature extraction, and SVM is used for classification. The CNN model used in the
first technique is also used in the second method. The sole difference is that the softmax classifier is
used to do the classification task rather than utilizing SVM. The dataset for their experiment consists
of 3064 MRIs in total, which are separated into three groups: glioma, meningioma, and pituitary.
They were able to hit 98.1% accuracy using their first approach. To lessen the enormous computing
cost, Hemanth et al. [9] presented a Deep-CNN with a modified training algorithm. By making fewer
parameter tweaks, the improved training algorithm hopes to cut costs. They obtained MRI scans of
brain tumors from M/s. Devaki Scan Centre utilized those scans for their investigation. The dataset
includes 220 total photos that have been divided into four classes. Their suggested model was successful
in achieving 96.4% accuracy. Their training dataset was perfectly balanced because it only had 80
photos total, 20 for each class. Montaha et al. [10] proposed two methods for identifying brain tumors.
Two proposed models are Long Short Term Memory (LSTM) wrapped with a TimeDistributed
function and TimeDistributed-CNN-LSTM. In this study, BraTS records spanning three years were
used. A training dataset is created by merging the BraTS 2018 and 2019 datasets. The BraTS 2020
test data was employed. The TD-CNN-LSTM network outperforms 3D-CNN in their experiment,
with the greatest test accuracy of 98.90%. An explainable AI model for chest X-ray classification
was proposed by Ghnemat et al. [11] They evaluated their model on five datasets. A customized
Visual Geometry Group-16 (VGG-16) model with a reduced number of parameters and layers was
used to classify the images. 90.6% testing and validation accuracy is achieved by their model with a
relatively small dataset of 6432 images. Zeineldin et al. [12] did work on deep neural network (DNN)
explainability for MRI brain tumor analysis. The MRI data are from BraTS challenges 2019 and
2021. They have utilized visual explanations for automatic brain glioma grading using NeuroXAI.
They acquired an accuracy of 98.62%. Gaur et al. [13] has used a multi-input CNN model. Before
inputting the images are resized to 150 × 150 × 3 and for better classification results Gaussian noises
are introduced. They have used SHAP and LIME (Local Interpretable Model-Agnostic Explanations)
to determine the regions of the tumor. Using K-Fold cross-validation they have achieved training and
validation accuracy of 94.64% and 85.37%, respectively. Table 1 provides a year-wise breakdown of
statistics related to brain tumor classification research.
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Table 1: Year-wise statistics of brain tumor classification

Year Reference Dataset Methods Results

2022 Aamir et al. [14] Brain tumor dataset Customized CNN Accuracy 98.95%
2022 Zahid et al. [15] BraTS 2018 ResNet101 Accuracy 94.4%
2022 Shaik et al. [16] BraTS 2019 MANet Accuracy 96.51%
2022 Ait Amou et al. [17] Brain tumor dataset CNN and bayesian

optimization
Accuracy 98.70%

2022 Chattopadhyay et
al. [18]

BraTS2020 CNN model Accuracy 99.74%
(RMSProp
optimizer)

2023 Hossain et al. [19] RMB image dataset MBINet Accuracy 99.00%
2023 Abd

El-Wahab et al. [20]
Brain tumor dataset BTC-fCNN Accuracy 98%

(Adam optimizer)
2023 Simo et al. [21] Brain tumor MRI dataset Deep CNN Accuracy 98.70%
2023 Mehnatkesh et al. [22] Brain tumor classification

MRI images
Deep ResNet Accuracy 98.694%

2023 Kurdi et al. [23] Brain MRI for brain tumor
detection

Meta-heuristics
optimized CNN

Accuracy 98.00%

2023 Zhu et al. [24] Brain tumor images from
harvard medical school
website

RBEBT Accuracy 99.00%

We have taken the recent work on brain tumor classification from 2022 and 2023. In all research
works, CNN models are used for classification. We proposed a novel lightweight CNN model and
trained it using the gradient-boosting algorithm to ensure higher accuracy.

3 Methods
3.1 Methodology

We utilized our GliomaCNN for the classification task. For the dataset, BraTS 2020 [25–27] is
used. Fig. 1 elucidates the intricacies of the proposed methodology.

The proposed methodology is comprised of multiple steps:

1. The first crucial stage in the pre-processing process is the conversion of 3D images into 2D
representations. The procedure then entails identifying and excluding images with less than
0.5% tumor annotation in the Region of Interest (ROI) mask. The dataset is finally divided
into separate sets for training, validation, and testing.

2. Develop a lightweight CNN model with a few hidden layers.

3. Run multiple models and pick the model that gives the highest accuracy

4. Analysis of model performance using various performance metrics.

5. Impose explainable AI (XAI) to find the model interpretability.

6. An ablation study to determine the best combination of hyperparameters of the proposed
model.
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Figure 1: Proposed methodology

3.2 Models and Architecture
Many methods have been proposed for categorizing images. CNNs are a specific type of neural

network that has proven highly effective in tasks like recognizing and classifying images.

Within the domain of computer vision, Convolutional Neural Networks have become dominant
due to their exceptional accuracy in image classification. Convolution layers in these networks include
the convolution, batch normalization, and max-pooling layer. When we think about an image, we can
visualize it as a cuboid with channels, height, and width, as depicted in Fig. 2. For instance, a colored
RGB image has three channels, while a grayscale image has just one. Fig. 3 depicts the convolution
operation.

To extract meaningful information from an image, we use a filter, also known as a kernel. Typically,
this kernel is a smaller n×n block compared to the original image. We slide this kernel across the entire
image, creating a new image that captures important features from the original one. This fundamental
operation is known as the convolution process. A whole CNN model architecture is given Fig. 4.

The pooling layer is an essential component of CNNs. Its main role is to gradually shrink the
spatial dimensions of the data, which helps in reducing the number of parameters and computational
load in the network. This, in turn, helps prevent overfitting. The pooling layer works on each depth
slice of the input separately and spatially resizes it. Different kinds of polling lanes are used, such as:
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1. Max Pooling: It returns the highest value found in its immediate rectangular area.

2. Average Pooling: It returns the average value found in its immediate rectangular area.

3. Weighted Average Pooling: It returns the weighted average value found in its immediate
rectangular area. The weight is based on distance from its center pixel.

4. Min Pooling: It returns the minimum value found in its immediate rectangular area.

Figure 2: Representation of RGB image

Figure 3: Convolution operation

Figure 4: CNN architecture
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Batch normalization (BN) is an algorithmic technique employed in the training of DNNs to
enhance both the speed and stability of the learning process. Unlike operating on the entire dataset,
BN operates within mini-batches of data. Its primary purpose is to expedite the training procedure,
permitting the utilization of more substantial learning rates, thereby facilitating smoother and more
efficient learning. Batch normalization formula can be defined as:

zn = z − mz

sz

(1)

where mz is the average of the neuron’s output and sz is the standard deviation of it. In the context
of CNN, batch normalization functions in a similar manner. Convolutions in CNNs employ shared
filters that traverse the input data’s feature maps, typically representing an image’s height and width.
These filters are uniform across all feature maps. Consequently, the resulting outputs can consistently
undergo normalization and be distributed across the various feature maps.

To classify an image, a fully connected layer after the convolution layers are added. Before passing
the output of convolution layers, the output needs to be flattened. The final production of the fully
connected layer is the logits. We propose a novel architecture GliomaCNN which is trained using the
gradient-boosting [28] algorithm in which the base estimator is our GliomaCNN. Our CNN model is
very small containing only three CNN layers each followed by a maxpool layer. The architecture of
our GliomaCNN is given in Fig. 5.

Figure 5: Architecture of GliomaCNN

All convolutional layers employ a kernel size of 3 × 3, while the max-pooling layers also use a
3×3 kernel. In addition to that three fully connected layers with Gaussian Error Linear Unit (GELU)
activation function are utilized. For the final layer, we chose the softmax activation function.

There are 512 neurons in the first fully connected layer, 256 neurons in the second fully connected
layer, and two neurons in the final layer as our dataset has two classes. For the activation function, the
GELU [29] is used.

Fig. 6 depicts the parameters of each layer of the proposed CNN model. In convolution layer one,
the Conv2D block has 1792 parameters. Batch normalization layer’s input is the output of the previous
Conv2D block. The output of the first Conv2D block is 64 channels. So the input of BatchNorm2D is
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64 channels. The parameter is double the input size because the mean and the standard deviation are
calculated for each input channel of the BatchNorm2D layer. So, the total parameter of BatchNorm2D
is 128. A similar calculation goes for convolution layer 2 and convolution layer 3. The total parameter
from three convolution blocks is 371,712. The dense layer contains three linear layers. Only linear layers
contribute to increasing the model’s parameters. The activation function does not have any parameters.
The total parameter of the dense layer is 82, 052, 354.

Figure 6: Parameter of the proposed CNN architecture, GliomaCNN

As previously mentioned, gradient boosting trains each base estimator sequentially. This is
because the learning target hm for each base estimator depends on the outputs of the base estimators
that were fitted earlier in the boosting process. The complete ensemble’s output on a sample, given
the M fitted base estimators in gradient boosting, is oi = ∑M

m=1 εm
i , where ε is a pre-defined scalar in

the interval (0, 1], which is referred to as the shrinkage rate or learning rate in gradient boosting. The
training of the gradient boosting m-th base estimator can be summed up as follows:
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1. Decide the learning target on each sample rm
i : The learning target is specified as

rm
i = −δL(o[:m]

i ), yi

δo[:m]
i

, given the ground truth yi and the cumulative output from base estimators

fitted previously: o[:m]
i = ∑m−1

p=1 εop
i . Thus, the learning objective is just the negative gradient of

the training loss L with respect to the total output of base estimators fitted prior to o[:m]
i . Then,

using gradient descent, the parameters of hm can be fitted given lm.

2. Fit the m-th base estimator using least square regression, that is, lm = 1
B

∑B

i=1 ||rm
i − om

i ||2
2 is the

training loss for the m-th base estimator.

3. Update the accumulated output: o[:m+1]
i = o[:m]

i + εo[:m]
i , and proceed to the (m+1)-th base

estimator’s training procedure after that. rm
i = yi − Softmax(o[:m]

i ) is the cross-entropy loss for
classification, and yi is the one-hot encoded vector of the class label yi.

Fig. 7 presents the data flow of gradient boosting during the training and evaluating stages,
respectively. Notice that the training stage runs sequentially from the left to right.

(a) Training (b) Evaluating

Figure 7: (a) refers the data flow during training and (b) shows the data flow during evaluation of
gradient boosting algorithm

3.3 Dataset
We used BraTS 2020 [25,26] for our research. This dataset has two classes: LGG and HGG. Two

random MRI scans from the dataset are shown in Fig. 8. For a single patient, each dataset includes
one ROI and four 3D MRI sequences (T1, T1-weighted, T2-weighted, and T2 Fluid Attenuated
Inversion Recovery), all stored in Neuroimaging Informatics Technology Initiative (NIfTI) files. Each
3D volume also includes 150 2D MRI slices or images from various brain regions. The single slices are
in single-channel grayscale format with a dimension of 240 × 240.

As we are working with two-dimensional images, it is essential to use 2D image data exclusively.
We obtained the dataset from Kaggle, comprising 57,198 Hierarchical Data Format-5 (HDF5) files
containing 2D images that had been preprocessed from MRI sequences. Each HDF5 file contains four
distinct MRI sequences. Following this, we conducted image cropping along all margins to eliminate
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the non-informative black regions surrounding the brain MRI scans. This strategic cropping procedure
was employed to eliminate extraneous areas and optimize the precision of our classification outcomes.
After cropping the images, the dimension of the new images became 190 × 190. A selection of the
dataset’s images with ROI is displayed in Fig. 9. Not all scans encompass informative brain regions. To
isolate images featuring substantial brain volume, we quantified the proportion of brain tissue within
each image. We selected images containing a minimum of 20% brain coverage. Table 2 illustrates the
total number of images for each class after filtering.

(a) HGG (b) LGG

Figure 8: BraTS dataset contains two classes. (a) HGG and (b) LGG

Figure 9: Samples from the dataset

Table 2: Dataset statistics

LGG HGG

Amount 24,628 77,220

We implemented an additional filtering step utilizing the ROI images. In certain slices, the tumor
occupies such a minimal portion that it becomes challenging to discern any abnormalities in the brain
scan. To address this concern, we selected images where the mask contained a minimum of 0.5%
annotation. Fig. 10 shows a brain scan from the HGG class with an ROI mask. The ROI mask features
a yellow dot enclosed by a red outline, making it unidentifiable in the original brain scan. In this
particular scan, there is no tumor present in the original brain scan but it is visible through the ROI
mask. So it is quite impossible to detect this abnormality in the brain scan through visual inspection.

After filtering out the images by the above criteria, the total image count in our final dataset is
shown in Table 3.

We partitioned the dataset using a 70:10:20 ratio into subsets for training, validation, and testing.
During the data splitting process, we took great care to ensure that all MRI scans belonging to the
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same individual were correctly allocated to their respective sets. The amount of data after splitting is
given Table 4.

(a) Brain Image (b) ROI mask

Figure 10: HGG brain scan with very small ROI mask

Table 3: Final dataset statistics

LGG HGG

Amount 24,628 69,668

Table 4: Dataset statistics after splitting

Train Test Validation

LGG HGG LGG HGG LGG HGG

17,240 48,764 4924 13,936 2464 6968

3.4 Evaluation Metrics
In this research, We used the accuracy, recall, precision, F1-score, roc-auc score, and Mathews

correlation coefficient to rate the performance of the models.

3.4.1 Accuracy

The accuracy or error rate is one of the most commonly utilized measures in practice by numerous
researchers to assess classifier classification efficiency. The Eq. (2) represents the formula of accuracy:

Accuracy = TN + TP
TN + TP + FN + FP

(2)

3.4.2 Precision

Precision is the percentage of correct modules among those predicted to be defective. Precision
is essential, especially when class distributions are heavily skewed. Using the Eq. (3) precision can be
computed:

Precision = TP
FP + TP

(3)
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3.4.3 Recall

Recall counts the percentage of correct positive forecasts among all potential positive forecasts.
The Eq. (4) is used to calculate the recall.

Recall = TP
TP + FN

(4)

3.4.4 F1-score

The harmonic mean of recall and precision is the F1-score. By dividing the precision and recall
product by the sum of precision and recall, it can be calculated. The F1-score is obtained using Eq. (5).

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

3.4.5 Mathews Correlation Coefficient (MCC)

The Matthews correlation coefficient is used in machine learning to assess the precision of binary
and multiclass classifications. It is considered a fair measure that may be applied even when the
classes have sizes that are significantly different and take into account genuine and false positives and
negatives. A correlation coefficient value between −1 and +1 is essentially what the MCC is. Average
random prediction is indicated by a value of 0, whereas inverse prediction is indicated by a value of
−1, and perfect prediction is indicated by a value of 1. Additionally, the statistic is known as the phi
coefficient. The equation of the MCC score is 6:

MCC − Score = TP ∗ TN − FP ∗ FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(6)

3.5 Result of Ablation Study
Ablation studies investigate the performance of AI models by removing certain components to

understand their performance. On a CNN model, an ablation study can be done by changing different
models’ parameters and hyperparameters. For instance, a number of convolution layers, maxpool
layers, kernel size, dense layers optimizer, and learning rate.

In case study 1, we varied the number of convolution layers. We increased the convolution layer
count from three to five at first. The performance of the proposed model with various numbers of
convolution layers is illustrated in Table 5. Configuration 1 gives the highest accuracy. The accuracy
decreased when a second convolution layer with twice as many output channels as the first layer was
added. Adding another convolution layer helped to increase the accuracy a little bit but it increased
the model parameters.

Table 5: Case study 1: Changing convolution and maxpool layer

Configuration
No.

No. of convolution
layer

Maxpool layer Test accuracy (%) Finding

1 3 3 98.8494 Highest accuracy
2 4 4 98.4730 Lowest accuracy
3 5 5 98.5949 Accuracy

increased
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In our case study 2, we experimented with changing the number of dense layers in our model.
The performance outcomes are detailed in Table 6. In Configuration 1, we maintained the baseline
model without any additional dense layers. This led to a decrease in model accuracy. Configuration
2 achieved the highest accuracy. It incorporated three additional dense layers with 512, 256, and 2
nodes, respectively. Configuration 3 added one more dense layer with 1024 nodes, making a total of
four dense layers. Though it did not fall below the accuracy of Configuration 1, it still didn’t quite
match the performance achieved in Configuration 2.

Table 6: Case study 2: Changing number of dense layer

Configuration No. Dense layers Test accuracy (%) Finding

1 No extra layers 97.2853 Lowest accuracy
2 512 → 256 → 2 98.8494 Highest accuracy
3 1024 → 512 → 256 → 2 98.5949 Accuracy decreased

We tested the best-performer model from the previous two case studies with different activation
functions. From this case study, We discovered that the performance of the model is significantly
influenced by the activation functions. Table 7 presents the model’s accuracy when various activation
functions are used. The GELU activation function gave us the highest accuracy whereas Tanh pulled
down the accuracy to the worst. A little improvement was noticed when we changed the activation
function from the Rectified Linear Unit (ReLU) to Sigmoid Linear Units (SiLU).

Table 7: Case study 3: Changing activation function

Configuration No. Activation Test accuracy (%) Finding

1 Tanh 90.7847 Accuracy dropped
2 GELU 99.1410 Highest accuracy
3 SiLU 99.0138 Accuracy improved
4 ReLU 98.8494 Previous accuracy

We tested with various learning rates on GliomaCNN in this case study. The outcomes are
presented in Table 8. In Configuration 1, the model’s performance was evaluated with a learning
rate of 1.00E − 05, maintaining the highest level of accuracy achieved in the previous case study.
However, in Configuration 2, where the learning rate was increased to 2.00rmE − 05, a slight decrease
in accuracy was observed compared to the previous configuration. In Configuration 3, the learning
rate was increased to 1.00rmE − 04 in which the accuracy dropped more.

Table 8: Case study 4: Varying learning rate

Configuration No. Learning rate Test accuracy (%) Finding

1 1.00E-05 99.1410 Previous accuracy
2 2.00E-05 98.8229 Accuracy dropped
3 1.00E-04 96.1453 Lowest accuracy
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In case study 5, we tested GliomaCNN with different optimizers. Among all the optimizers we
tested, RMSProp gave the highest accuracy of 99.1569%. AdamW gave the second-best outcome. The
difference between the accuracies of using AdamW and RMSProp are very close. The SGD optimizer
made the model performance worse. Table 9 shows the accuracy for each optimizer.

Table 9: Case study 5: Changing optimizer

Configuration No. Optimizer Test accuracy (%) Finding

1 AdamW 99.1410 Initial accuracy
2 Adam 99.0509 Accuracy decreased
4 Stochastic gradient

descent (SGD)
97.1580 Lowest accuracy

3 RMSProp 99.1569 Highest accuracy

Our initial model architecture featured four convolutional layers, achieving an accuracy of
98.473%. Subsequently, we removed the last convolutional layer, leaving us with three convolutional
and max-pooling layers, which led to an improved accuracy of 98.8498%. Throughout both config-
urations, we applied the ReLU activation function within the dense layers. Notably, switching from
ReLU to the GELU activation function resulted in a modest accuracy boost, reaching 99.141%.

In the final stage of experimentation, we transitioned from the RMSProp optimizer, which was
previously AdamW, and observed the highest achieved accuracy of 99.1569%.

Fig. 11 shows a bar chart illustrating the increase in accuracy by changing the model configura-
tion.

Figure 11: Summary of ablation study
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3.6 Optimal Model Evaluation
We achieve an accuracy of 99.1569% by doing the ablation study. The Table 10 presents the recall,

precision, and F1-score of the individual classes of the GliomaCNN. The MCC score is 0.978. The
scores imply that, even though the dataset is imbalanced, the model performs very well in classifying
LGG and LGG brain images.

Table 10: Class-wise scores of the proposed model

Class Recall Precision F1-score

LGG 0.975833 0.991744 0.983724
HGG 0.997130 0.991509 0.994311

The confusion matrix in Fig. 12 illustrates the performance of the proposed model by displaying
the count of images classified into each category. Label 0 represents class LGG, and label 1 represents
class HGG. The misclassification rate of class LGG is higher, as can be seen from the confusion matrix.
The dataset we used is imbalanced. This imbalance affected the performance of the model. The amount
of images from the LGG class was much lower than that from the HGG class. Because of the lack of
enough LGG class images, the GliomaCNN did not learn as well as the HGG class. That is why the
misclassification rate is higher for the LGG class.

Figure 12: Confusion matrix

We have employed five sequential estimators in the gradient boosting algorithm, which is our
proposed CNN model. Fig. 13 illustrates the training loss per epoch for each estimator, with the X-
axis indicating the number of epochs and the Y-axis representing the percentage of loss and.

Using the same dataset, we tested other pre-trained models and compared their results with our
suggested model. Our model beats all other models. The Table 11 shows hyper-parameters, the test
and validation results of all the tested models.
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Figure 13: Train loss vs. epoch curve for five base estimators

Table 11: Result table of the comparison with other pre-trained models

Models Batch size Epoch Optimizer Learning rate Val
accuracy (%)

Test
accuracy (%)

GliomaCNN 8 7 RMSProp 1.00E-05 99.459 99.1569
Bidirectional encoder
representation
from image
transformers
(BEiT) with one
hidden layer

32 10 AdamW 1.00E-05 98.9928 99.0350

BEiT 32 10 AdamW 1.00E-05 98.8868 98.9502
Swin-Transformer 32 10 AdamW 5.00E-05 98.3991 98.6373
VGG-19 32 10 AdamW 1.00E-05 98.526 98.3987
DenseNet-121 32 10 AdamW 1.00E-05 98.0492 98.0594
ResNet-152 32 10 AdamW 1.00E-05 98.113 98.1177
Vision Transformer
(ViT) with one hidden
layer

32 15 AdamW 2.00E-05 97.392 97.4072

ViT 32 10 AdamW 2.00E-05 97.360 96.9618

Fig. 14 illustrates a performance comparison between the proposed model and various pre-trained
models. From the illustration, we can see our model outperforms the others in general, with the
impact of data imbalance apparent in the bar charts. Notably, we achieve higher precision, recall,
and F1-score for the HGG class compared to the LGG class, indicating our model’s effectiveness
in distinguishing between them. The bar chart for accuracy and MCC score further emphasizes the
exceptional performance of our model, GLiomaCNN, surpassing all other models in the comparison.

Using the BraTS 2019 dataset, we evaluated the performance of our model and obtained an
accuracy of 92.6923%. Table 12 displays the class-wise results.
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(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

(e) MCC Score

Figure 14: Test scores of all the tested models

Table 12: Class-wise scores of proposed model on BraTS 2019 dataset

Class Precision Recall F1-score

LGG 0.937500 0.737705 0.825688
HGG 0.924528 0.984925 0.953771



2442 CMES, 2024, vol.140, no.3

We compared our model’s performance against existing literature in the field of 2D MRI-based
brain tumor analysis. Our evaluation is presented in Table 13. Table 13 shows that most results from
prior studies fall within the range of 84% to 97% accuracy.

Table 13: Comparison of accuracy with some existing papers

Paper Dataset for Used Prediction Dimension Classifier Classification
classification sequence classes accuracy

Zahid et al. [15] Multimodal brain
tumor segmentation
challenge 2018
(BraTS 2018)

T1, T1CE, T2,
FLAIR

2D ResNet101 94.4%

Shaik et al. [16] Multimodal Brain
Tumor
Segmentation
Challenge 2019
(BraTS 2019) and
Figshare

Glioma,
Pituitary,
Menin-gioma,
LGG and
HGG

2D MANet 96.51%

Naser et al. [30] The Cancer Imaging
Archive (TCIA)

T1, FLAIR, and T1
post-contrast

Normal and
Tumour

2D Modified
VGG-16

89%

Hemanth et al. [9] Abnormal MR
brain tumor images
from M/s. Devakr
Scan Centre

T1, T2 FLAIR, T2 Metastasis,
Meningioma,
Glioma and
Astrocytoma

2D Modified Deep
CNN

96.40%

Kalaiselvi et al. [31] Multimodal brain
tumor segmentation
challenge 2013
(BraTS 2013) and
whole brain atlas
(WBA)

T2 Normal and
Tumoros

2D FLSCBN (CNN
model with
hyperparameter
adjustment)

88.91%

Shahzadi et al. [8] Multimodal brain
tumor segmentation
challenge 2015
(BraTS 2015)

FLAIR HGG and
LGG

2D LSTM 84%

GliomaCNN Multimodal brain
tumor segmentation
challenge 2020
(BraTS 2020)

T1, T2, T2 FLAIR HGG and
LGG

2D Proposed
ensemble model

99.1569%

3.7 Comparison of Accuracy with Some Existing Papers
However, our model achieved a significantly higher accuracy of 99.1569%, as mentioned earlier.

The highest accuracy among the referenced papers was recorded by Shaik et al. [16]. They have used a
MANet to achieve an accuracy of 96.51%. The second highest accuracy among the referenced papers
was recorded by Hemanth et al. [9]. They have used a modified Deep CNN classifier to obtain an
accuracy of 96.40%. Zahid et al. [15] achieved 94.4% using ResNet101. Naser et al. [30] with a modified
VGG-16 classifier used T1 pre-contrast, Fluid-attenuated inversion recovery (FLAIR), and T1 post-
contrast 2D sequences, achieving 89% accuracy. Kalaiselvi et al. [31] reported an accuracy of 88.91%
using T2 sequences on the BraTS 2013 dataset. In a similar vein to our work, Shahzadi et al. [8]
employed LSTM for classifying HGG and LGG tumors. They achieved 84% accuracy on the BraTS
2015 dataset.
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4 Explainable AI

To understand how the model predicts and which regions are important for a particular prediction,
explainable AI is employed. In this section, we analyze our proposed model’s prediction with two
commonly used XAI frameworks which are SHAP and Grad-CAM++.

4.1 SHAP Analysis
As AI technology advances, it becomes increasingly challenging for humans to comprehend and

follow the inner workings of the algorithms involved. These algorithms often appear as enigmatic
“black boxes,” with their intricate mathematical processes reduced to an unintelligible state. This
opacity extends to the data-driven models they produce, rendering them inscrutable to even the
engineers and data scientists responsible for their development. The ability to articulate precisely what
transpires within these AI algorithms, let alone how they arrive at specific conclusions, often eludes
those intimately familiar with their construction. Several research initiatives have been launched to
improve the deep learning systems’ usability and transparency in response to this problem.

Using the game theoretically ideal Shapley values, Lundberg et al. [32] developed SHAP, a
technique to explain specific predictions. This method aims to clarify predictions by assessing the role
of each attribute. It makes use of a heatmap to visualize a proposed network and identify the target
class by highlighting the critical image region. Blue areas signify a strong association with negative
categorization, whereas pink regions indicate a pronounced link to positive classification. In essence,
it reveals the areas of the image that the model values most highly for prediction purposes. The SHAP
output on correctly classified MRI scan images is shown in Fig. 15.

(a) Class: LGG (b) Class: HGG (c) Class: HGG (d) Class: HGG

Figure 15: SHAP output of correctly classified images

The last three images belong to the HGG class, where the tumor is easily discernible. Examining
the shape output, we notice that in the case of these last three images (b, c, d), the pink mark is
prominently concentrated on the tumor region of the original image. Conversely, the first image
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belongs to the LGG class, where the tumor is not evident. In this instance, the SHAP markings are
distributed across the entire image. By analyzing the heatmap image, we can deduce that our proposed
model categorizes images based on the region that genuinely influences the determination of the
tumor type.

The SHAP output on misclassified MRI scan images is shown in Fig. 16.

(a) Class: LGG (b) Class: HGG (c) Class: HGG (d) Class: HGG

Figure 16: SHAP output of misclassified images. The model predicted the opposite of the actual class
label

The model initially misclassified the first image as HGG when it was an LGG due to its confusion
of normal brain tissue with a tumor, as revealed by SHAP analysis. Conversely, for other brain tumor
images (b, c, d), the model incorrectly labeled them as LGG when they were HGG because it had
difficulty pinpointing the precise tumor location, evident from the widespread pink marker in the
SHAP analysis. GliomaCNN struggles to detect these tumors as they are not visible signs of tumors.

4.2 Grad-CAM++ Analysis
In a study by Selvaraju et al. [33], Grad-CAM was introduced as a technique to generate ‘visual

explanations’ for decisions made by various CNN-based models, enhancing their interpretability.
Grad-CAM enables visual evaluation of the model’s focus, ensuring it identifies relevant patterns in
the image and activates accordingly.

From the CAM output of correctly classified images, the red-highlighting image regions are
considered to be important for model prediction. The highlighted portion of the tumor indicates
that our model can identify the tumor. From the CAM output of correctly classified images, the
red-highlighting image regions are considered to be important for model prediction. The highlighted
portion of the tumor indicates that our model can identify the tumor. The correctly classified original
and Grad-CAM heatmap images are depicted in Fig. 17. In the first image, the tumor is not visible,
and Grad-CAM++ highlighted the rightmost small portion of the image, which is the background.
There is no visible tumor in that scan, so Grad-CAM++ did not highlight any portion of the brain,
which makes sense.
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(a) Class: LGG (b) Class: HGG (c) Class: HGG (d) Class: HGG

Figure 17: Grad-CAM output of correctly classified images

Analyzing the misclassified images, we found some interesting findings. The first image is from
class LGG, but the model predicted it as HGG. The Grad-CAM++ heatmap shows the region of the
brain where the color is whitish, like a tumor. However, it is not a tumor, though the marked region is
similar to a tumor. The Grad-CAM++ output on misclassified MRI scan images is shown in Fig. 18.

(a) Class: LGG (b) Class: HGG (c) Class: HGG (d) Class: HGG

Figure 18: Grad-CAM++ output of misclassified images. The model predicted the opposite of the
actual class label

For the other three images, the model predicted them as an LGG class. In those three scans, even
though the images are from the HGG class, there is no visible sign of a tumor in the brain. The marking
of Grad-CAM++ is random for those images. It is very hard to tell the presence of the tumor from
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the visual inspection of the last three images. The model misclassified those images because there is no
solid sign of a tumor.

5 Conclusion

This study endeavors to propose an innovative lightweight CNN model called GliomaCNN,
designed for the categorization of brain tumors into LGG and HGG, with an emphasis on achieving
exceptionally high accuracy within the context of a highly imbalanced dataset. Our approach involves
utilizing the proposed GliomaCNN as a base estimator for the gradient-boosting classifier. We
achieved an outstanding accuracy of 99.1569%, which is remarkable for such a small CNN model.
Our model performs best with the RMSProp optimizer in conjugation with 0.00001 learning rate.
The validation accuracy was 99.459%. To understand the reasoning behind the classification, we used
Grad-CAM++ and SHAP. These tools provide important insights by emphasizing the critical areas
in the input photos that had a major impact on the model’s classification results. From the output of
those two expandable AI methods, it can be concluded that our model classifies images based on the
correct region. In several instances, these misclassifications stemmed from images where there were
no discernible signs of a visible tumor. The model’s misclassification of such cases was found to be
logically justified, as it is challenging for any classifier to correctly identify tumors in images where
they are absent. Overall, we tried to develop a model as small as possible without compromising the
performance. We succeeded in achieving a very high accuracy which beats all other state-of-the-art
pre-trained models that we tested as well as other previous works in this field. In the future, We will
test our GliomaCNN with other ensemble techniques, for instance, voting, snapshot ensemble, fast
geometric ensemble, etc. We will employ more datasets not only brain tumor MRIs but also MRIs
from other parts of the body. We plan to fine-tune the GliomaCNN model to extend its applicability
for tumor classification in other anatomical regions.
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