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ABSTRACT

This study introduces a long-short-term memory (LSTM)-based neural network model developed for detecting
anomaly events in care-independent smart homes, focusing on the critical application of elderly fall detection.
It balances the dataset using the Synthetic Minority Over-sampling Technique (SMOTE), effectively neutralizing
bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks. The proposed
LSTM model is trained on the enriched dataset, capturing the temporal dependencies essential for anomaly
recognition. The model demonstrated a significant improvement in anomaly detection, with an accuracy of 84%.
The results, detailed in the comprehensive classification and confusion matrices, showed the model’s proficiency
in distinguishing between normal activities and falls. This study contributes to the advancement of smart home
safety, presenting a robust framework for real-time anomaly monitoring.
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1 Introduction

Smart homes are revolutionizing how healthcare is delivered, offering a wide range of applications
and services that contribute to the well-being and safety of individuals. Classified smart home services
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include healthcare, indicating the growing role of smart homes in this domain [1]. Smart homes
provide a variety of devices such as security, health, assisted living, communication, convenience, and
comfort, which can be categorized into lifestyle support, energy consumption and management, and
safety [2,3]. In addition, smart healthcare is gaining momentum among the plethora of application
contexts, signifying its increasing significance [4]. The applications of wireless sensor networks have
prompted the development of smart healthcare, smart environment monitoring, and smart homeland
security [5,6].

The functions and roles of smart homes are continuously evolving due to recent developments in
Information and Communication Technology (ICT) and the Internet of Things (IoT) [7,8]. Smart
healthcare is one of the domains in smart cities, with a different approach and business model,
including assisting diagnosis and treatment, drug research, health management, disease prevention,
risk monitoring, virtual assistants, and smart hospitals [9,10]. The rapid growth of IoT technology has
revolutionized human life by inaugurating the concept of smart healthcare, among others [11,12]. With
the help of modern technologies, such as the smart healthcare kit, networking devices, cloud service
systems, and health information integration platforms, healthcare, security, and well-being services are
provided to users at home [13].

Smart home systems provide a safe, comfortable, and convenient living environment for users,
whereby users enjoy featured home services supported by the data collected and generated by smart
devices in smart home systems. The rapid proliferation of embedded devices has led to the growth
of IoT with applications in numerous domains such as home automation, healthcare, education, and
agriculture [14,15]. A smart home is a collaborative collection of devices and subsystems, indicating
its potential to integrate various technologies for healthcare purposes [16].

Smart homes are increasingly playing a vital role in healthcare, providing a wide array of services
and applications that contribute to the well-being and safety of individuals. The continuous evolution
of smart home functions and roles, coupled with advancements in ICT and IoT, indicates the growing
significance of smart homes in the healthcare domain. In this context, robust anomaly detection
systems that can accurately identify and alert caregivers to fall events are paramount. This research
focuses on addressing this critical need using the capabilities of smart homes for healthcare. The
contributions of this study are as follows:

• Innovative Application of Long Short-Term Memory (LSTM) Neural Networks for Smart
Home Safety: This study introduces a novel LSTM-based neural network model designed to
detect anomaly events in care-independent smart homes. The proposed approach focuses on
the critical application of elderly fall detection, addressing a significant challenge in smart home
healthcare.

• Addressing the Challenge of Unbalanced Datasets: The Synthetic Minority Over-sampling
Technique (SMOTE) effectively balances the dataset and recognizes the prevalent issue of
unbalanced datasets in time-series classification tasks. This crucial preprocessing step neutral-
izes bias, ensuring a fair and unbiased model training process.

• Temporal Dependency Modeling for Anomaly Recognition: The proposed LSTM model is
trained on the enriched dataset to capture temporal dependencies essential for anomaly recog-
nition. This enables the model to distinguish between normal activities and falls, significantly
improving anomaly detection accuracy.

• Comprehensive Evaluation and Validation: The effectiveness of our model is thoroughly
evaluated through a comprehensive set of classification and confusion matrices. The results



CMES, 2024, vol.140, no.3 2691

detail the model’s proficiency in accurately identifying anomalies, with an overall detection
accuracy of 84.

• Contribution to Smart Home Safety and Elderly Care: This study contributes significantly
to advancing smart home safety by presenting a robust framework for real-time anomaly
monitoring. It mainly emphasizes elderly fall prevention, enhancing the well-being and safety
of individuals in care-independent living environments.

The rest of the paper is organized as follows: Section 2 presents the related work; the proposed
approach is described in Section 3. Sections 4 and 5 indicate the results and conclusion.

2 Related Work

This section gives a detailed analysis of recent research in anomaly detection. A comparative
analysis of the research is presented in Table 1.

Anomaly detection in smart homes is critical to ensuring the security and well-being of individuals.
Various frameworks have been proposed to address this challenge using technologies such as fog
computing, big data analysis, cloud computing, and machine learning. Lawal et al. [17] proposed a
hybrid anomaly mitigation framework for IoT using fog computing to ensure faster and more accurate
anomaly detection. Similarly, Ansari et al. [18] evaluated big data frameworks for the analysis of smart
grids and proposed a real-time anomaly detection framework based on smart meter data collected
in smart grid big data. These frameworks demonstrated the integration of advanced technologies
to address anomaly detection challenges in smart home environments. Hammad et al. [19] proposed
an unsupervised TinyML approach for detecting urban noise anomalies in smart city environments.
Trilles et al. [20] introduced an anomaly detection model that is based on artificial intelligence.

Apostol et al. [21] analyzed the data collected by smart meters using an autoregressive integrated
moving average (ARIMA)-based framework for anomaly detection, highlighting the challenges in
removing false positives. They underscored the complexity of anomaly detection in smart home
environments and the need for robust frameworks. In addition, reference [22] discussed the drift-
aware methodology for anomaly detection in the smart grid, emphasizing the importance of addressing
evolving anomalies in real-time.

Moreover, the use of advanced technologies such as graph neural networks (GNN) for anomaly
detection in the Industrial Internet of Things (IIoT)-enabled smart transportation, smart energy, and
smart factories was proposed by [23]. This highlighted the application of cutting-edge technologies in
addressing anomaly detection challenges in diverse smart home settings.

Machine learning and deep learning have also been applied to detect anomalies in smart homes.
Demedeiros et al. [24] highlighted the common use of machine learning and deep learning for anomaly
detection in IoT and sensor networks.

Similarly, Meidan et al. [25] proposed a collaborative anomaly detection method using an
autoencoder to differentiate frequent and infrequent traffic flows. These frameworks demonstrated
the integration of advanced computational techniques for effective anomaly detection.

Farooq et al. [26] proposed a blockchain-based smart home network architecture for intrusion
detection empowered with a fused real-time sequential deep extreme learning machine (RTS-DELM)
system model. They highlighted the potential of blockchain technology in enhancing security and
anomaly detection in smart home environments.
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Overall, the proposed frameworks for anomaly detection in smart homes encompass a wide range
of technologies, including fog computing, big data analysis, machine learning, and blockchain. These
frameworks aim to address the evolving challenges of anomaly detection in smart home environments,
emphasizing the need for real-time, accurate, and robust detection methods.

Table 1: Recent research

Source Approach Technology used Focus area Contributions

[17] Hybrid
anomaly
mitigation
using fog
computing

Fog computing IoT anomaly detection Faster and
accurate anomaly
detection in IoT
environments.

[18] Big data
frame-works
for smart grids

Big data analysis Smart grid
detection

Anomaly Real-time
anomaly
detection
framework based
on smart meter
data.

[21] ARIMA-based
framework for
smart meters

ARIMA models Smart meter data analysis Highlighted
challenges in
removing false
positives.

[22] Drift-aware
methodology
for smart grid

NA Smart grid
detection

Anomaly Emphasized the
importance of
addressing
evolving
anomalies in real
time.

[23] GNN for
anomaly
detection in
IIoT

GNN IoT-enabled smart
en-environments

Application of
GNN in smart
transportation,
energy, and
factory settings.

[24] Machine
learning and
deep learning
in IoT

Machine learning,
Deep learning

IoT and sensor networks The common use
of machine
learning (ML)
and deep learning
(DL) for anomaly
detection in IoT.

[25] Collaborative
anomaly
detection using
autoencoder

Autoencoder IoT traffic flows Differentiation
between frequent
and infrequent
traffic flows.

(Continued)
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Table 1 (continued)

Source Approach Technology used Focus area Contributions

[26] Blockchain-
based smart
home network

Blockchain,
RTS-DELM

Smart home security Enhanced
security and
anomaly
detection using
blockchain and
deep learning.

[27] Deep
learning-based
fall detection

Deep learning IoT-enabled
healthcare

Smart Application of
deep learning in
health-related
anomaly
detection.

[28] Autoencoders
for IoT
anomaly
detection

Autoencoders IoT networks Versatility of deep
learning across
various domains
highlighted.

[29] Image real-time
detection
mechanism

LSE-Yolo neural
network

Smart grid,
Monitoring

Energy Real-time
anomaly
detection using
deep learning.

3 Proposed Approach
3.1 Dataset Balancing

The development of the proposed model was divided into two critical stages: data preprocessing
and model training. A pivotal aspect of the preprocessing stage involved addressing the class imbalance
inherent in the dataset. Fig. 1 depicts the original distribution of the ‘Normal’ and ‘Anomalous’ classes,
showing a significant disparity with the ‘Normal’ class vastly outnumbering the ‘Anomalous’ class.
Such an imbalance can introduce biases in the model, leading to poor generalization performance,
particularly for the minority class.

The SMOTE was employed to mitigate this issue. This technique generated synthetic examples of
the minority class, aiming to balance the class distribution without losing valuable information. The
efficiency of this operation is illustrated in Fig. 2, which exhibits the post-SMOTE distribution where
the frequency of ‘Normal’ and ‘Anomalous’ classes is nearly identical, demonstrating successfully
balancing the dataset.

Preparing a balanced dataset is essential for training robust anomaly detection models, ensuring
the model is not overly biased towards the majority class. This foundational preprocessing step
facilitates a more equitable and accurate evaluation of the model’s performance across all classes,
which is crucial in anomaly detection, where the cost of misclassifying an anomaly can be significant.
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Figure 1: Distribution of target

Figure 2: Distribution of target after SMOT

3.2 LSTM Model
In the second stage of the methodology, the LSTM network was employed to identify anomalies

within the balanced dataset. The LSTM model (Fig. 3) was initialized with an architecture to capture
temporal dependencies and anomalies in time series data (Algorithm 1). The network comprised
multiple layers with a predefined number of hidden units and utilized activation functions apt for
sequence modeling. This study processed the data to ensure normalization of input features, enhancing
the model’s ability to learn effectively.

The data was divided into distinct training and testing sets to facilitate the evaluation of the
model’s generalization capabilities. During training, the model underwent numerous epochs where
each batch was sequentially fed through the LSTM layers. A binary cross-entropy loss function was
utilized to quantify the discrepancy between the predicted outcomes and the actual labels, and the
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gradients of this loss were backpropagated to refine the model parameters. After each epoch, the model
was assessed on the testing set, and key performance metrics, including accuracy, precision, and recall,
were computed to gauge the detection efficacy.

Figure 3: LSTM cell

Upon completing the training process, the LSTM model was tasked with predicting anomalies in
new, unseen data. The predictions were thresholded to classify events into ‘normal’ or ‘anomalous’,
providing a discrete indication of the model’s anomaly detection results. This LSTM-based approach
(Algorithm 1) is a robust framework for identifying anomalous patterns, which is critical in ensuring
timely and accurate detection within smart environments.

Algorithm 1: Anomaly Detection Using LSTM
1: Initialize the LSTM model with desired architecture
2: Define the number of layers, units in each layer, and activation functions
3: Prepare the dataset for training and testing
4: Normalize the input features
5: Split the dataset into training and testing sets
6: for each epoch do
7: for each batch in the training set do
8: Forward pass through the LSTM layers
9: Calculate the loss function (e.g., binary cross-entropy)
10: Backpropagate the error and update the model weights
11: end for
12: Evaluate the model on the testing set
13: Calculate performance metrics (e.g., accuracy, precision, recall)
14: end for
15: After training, use the model to predict anomalies on new data
16: Threshold the output to determine the anomaly label
17: return Anomaly detection results

4 Results and Discussion
4.1 Dataset Representation

In the study of enhancing safety within smart home environments, mainly focusing on the
independent living of the elderly, a pivotal dataset from Kaggle titled “Anomaly Detection Falling
People” has been employed [30]. This dataset originates from a thesis aiming to develop safer
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smart environments by detecting falls among elderly individuals. In order to address the challenge
of fall detection, the dataset comprises three-dimensional parameters: X, Y, and Z, that represent
sensor positions on the body at each recorded sample. The dataset excludes timestamps from each
measurement to mitigate the low dimensionality often encountered in time series classification tasks
and prevent timestamps from becoming the principal component for classification, which can lead to
unbalanced learning tasks and restrict the generalizability of the findings. The sensor data, obtained
through four sensors affixed to the person’s chest, ankles, and belt, is encoded through one-hot
encoded representations to delineate each sensor’s activity. In addition, the dataset is annotated with
labels to indicate the nature of the event being recorded, where ‘0’ signifies a normal event and ‘1’
represents an anomalous event, specifically a fall. This structured approach facilitates the development
of machine learning models capable of distinguishing between normal activities and fall events, thereby
contributing to the creation of safer living environments for the elderly through anomaly detection
techniques in neural networks.

Violin plots were generated to indicate the relationship between the features and the target variable
within the dataset. Fig. 4 presents a violin plot that illustrates the distribution and density of the
sensor position values (X, Y, Z) for the target variable, which categorizes the events as normal (0)
or anomalous (1). This visual representation allows for examining the feature distributions across the
two classes, providing insights into how each sensor position correlates with the occurrence of a fall.
Similarly, Fig. 5 showcases a violin plot of the one-hot encoded sensor activity features (010-000-024-
033, 010-000-030-096, 020-000-032-221, and 020-000-033-111) against the target variable. This plot
offers an intuitive understanding of the sensor activation patterns in relation to the labeled events,
highlighting the potential predictors of a falling incident. The breadth and contours of the violins in
both plots are indicators of the feature value distributions, revealing significant differences between
normal activities and fall events, which are crucial for the model’s ability to distinguish between these
two scenarios.

Pair plots were constructed to comprehend the intricate relationships between the features and
the target variable indicative of normal and anomalous events, as depicted in Fig. 6. Fig. 6 provides
a granular view of the pairwise relationships between the sensor position features (X, Y, Z) and
the target, with a distinct separation observable between the normal (0) and anomalous (1) data
points. The plots provide a multidimensional perspective of the feature interactions and how they
collectively relate to the occurrence of falls, which is essential for developing robust anomaly detection
models. Fig. 7, on the other hand, visualizes the pairwise relationships between the one-hot encoded
sensor activity features (010-000-024-033, 010-000-030-096, 020-000-032-221, and 020-000-033-111)
and the target. These representations are particularly telling, highlighting the disparities in sensor
activations corresponding to normal and fall events. The density distributions along the diagonals
of both pair plots illuminate the underlying data structure, which can be applied to enhance the
predictive performance of machine learning algorithms employed in detecting falls within smart home
environments for the elderly.



CMES, 2024, vol.140, no.3 2697

Figure 4: Violin plot of position

Figure 5: Violin plot of sensors
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Figure 6: Pair plot of position

Figure 7: Pair plot of sensors

A series of histogram plots were examined to deepen understanding of the relationship between
the sensor positions and the target variable. These figures illustrate the distribution of the X, Y, and
Z sensor position values by anomaly type. Fig. 8 displays the distribution of the X position, with
separate histograms for normal (0) and anomaly (1) classes, highlighting the differences in the density
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of sensor readings that correspond to normal activities vs. fall events. Similarly, Fig. 9 exhibits the
distribution of the Y position values, and Fig. 10 shows the Z position values, both partitioned by
the same anomaly classification. In these histograms, the overlaid density plots provide a smooth
distribution estimate, which aids in visualizing the probability density of the sensor readings across the
two categories. The variance and skewness of these distributions indicate the feature’s discriminative
power in differentiating between normal behavior and falls. These insights derived from the histogram
analysis are instrumental in informing the feature selection process for the subsequent development
of anomaly detection models.

Figure 8: Hist plot for X

Figure 9: Hist plot of Y
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Figure 10: Hist plot of Z

An integral component of the exploratory data analysis is the correlation matrix, depicted in
Fig. 11, which quantifies the linear relationships between the sensor-based features and the target
variable. This matrix provides a color-coded heatmap, facilitating the immediate visual discernment of
the strength and direction of the correlations. Sensor positions X, Y, and Z exhibit modest correlations
with each other, indicative of some degree of interdependence likely attributable to the nature of
human movement. The one-hot encoded sensor activity features (010-000-024-033, 010-000-030-096,
020-000-032-221, and 020-000-033-111) demonstrate negligible correlations with the position features,
suggesting that they contribute distinct information regarding the sensor activities. All features show
relatively low correlations with the anomaly target, with the most notable relationships being negative
correlations observed in the Y position and 010-000-030-096 features. This correlation matrix is pivotal
in our analysis as it underscores the potential of each feature as an independent predictor for anomaly
detection, thereby informing the feature engineering and selection process for the development of our
neural network model.

4.2 Performance Analysis
The LSTM model’s effectiveness in predicting anomalies in the dataset was evaluated by observing

the variation in accuracy and loss over training epochs. Fig. 12 illustrates these metrics, where the
left panel displays the loss curves and the right panel the accuracy curves for both the training and
testing sets. Initially, at epoch 0, the model exhibited a training loss of 0.544760 and an accuracy
of 74.19%, alongside a test loss of 0.530500 and 75.57%. Over successive epochs, the training loss
consistently decreased, indicating an improvement in the model’s ability to generalize from the training
data. Correspondingly, training accuracy increased to 87.79% by epoch 9, demonstrating the model’s
enhanced predictive capabilities.
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Figure 11: Correlation matrix

The test loss and accuracy exhibited more variability, suggesting a nuanced response to the
model’s generalization on unseen data. The lowest test loss recorded was 0.468904 at epoch 6, with
a corresponding test accuracy of 83.62%, the highest accuracy achieved during the evaluation period.
Despite fluctuations, the general trend in test accuracy also showed an upward trajectory, affirming
the model’s ability to generalize well. The slight increase in test loss at epochs 7 and 8, followed by a
decrease at epoch 9, can indicate the onset of overfitting; however, the test accuracy at epoch 9 reached
83.72%, implying that the model maintained its predictive performance. These trends underscore the
LSTM model’s potential in detecting anomalies within the given dataset, with a clear indication of
learning over time as reflected by the convergence of the loss curves and the incremental increase in
accuracy.
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Figure 12: Accuracy and loss function

The performance of the anomaly detection model is encapsulated in the classification report
presented in Fig. 13. The report comprehensively assesses the model’s precision, recall, F1-score, and
support for both normal and anomalous classes. The model achieved a high precision of 0.97 for the
normal class, showing it is highly effective at identifying true normal cases. However, the precision
for the anomalous class was significantly lower at 0.19, indicating a higher rate of false positives for
anomaly detection. The recall scores exhibit an inverse pattern; the model showed a recall of 0.85
for the normal class and a higher recall of 0.60 for the anomalous class, indicating that the model is
reasonably sensitive to detecting true anomalies.

Figure 13: Classification report

The F1-score, which balances precision and recall, stood at 0.91 for the normal class, underscoring
the model’s robustness in correctly classifying normal events. The anomalous class had an F1-score of
0.28, reflecting the difficulties in achieving a balance between precision and recall for this class. The
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support for the classes shows the number of true instances for each class in the dataset, with 28,420
normal events and 1610 anomalous events.

The efficacy of the anomaly detection model was further analyzed using a confusion matrix, as
illustrated in Fig. 14. The matrix delineates the number of true positive, true negative, false positive,
and false negative predictions. The model correctly identified 24,167 instances (true negatives) for
the ‘Normal’ class while misclassifying 4253 instances as ‘Anomalous’ (false positives). In contrast,
the model accurately detected 971 instances (true positives) for the ‘Anomalous’ class but incorrectly
labeled 639 instances as ‘Normal’ (false negatives). The relatively high number of false positives, in
comparison to true positives, mirrors the precision challenges highlighted in the classification report
and indicates a propensity of the model to alarm for normal events incorrectly. Despite this, the model
demonstrated a substantial true positive rate, capturing a significant proportion of true anomalies.
This performance is critical in contexts where detecting anomalies is paramount, even at the risk of a
higher false positive rate.

Figure 14: Confusion matrix

The confusion matrix provides a clear visual and quantitative assessment of the model’s perfor-
mance, revealing a trade-off between sensitivity to actual anomalies and the acceptance of false alarms.
Future work should aim to enhance the model’s precision for anomaly detection, potentially through
more complex feature engineering or additional contextual data to reduce the rate of false positives
without compromising the true positive rate.

4.3 Comparative Analysis
A qualitative analysis was conducted to compare the performance characteristics of various

traditional machine learning models with our LSTM-based approach for anomaly detection. Table 2
indicates that Support Vector Machines (SVMs) excel in high-dimensional spaces and are memory
efficient, but they falter when applied to large datasets and exhibit poor performance in the presence
of noise, making them less ideal for complex anomaly detection tasks. Random Forest models stand
out for their ability to handle non-linear data and provide valuable feature importance scores. However,
they are prone to overfitting and can become computationally burdensome with many trees, potentially
limiting their scalability in real-time applications. Gradient Boosting Machines (GBMs) are often
unmatched in predictive accuracy and offer considerable flexibility but require careful tuning to avoid
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overfitting. Their suitability tends to be for applications where accuracy is paramount. In contrast, our
LSTM model demonstrates a superior capability to capture temporal dependencies and process entire
data sequences, which is crucial for identifying anomalies in time series. Despite the LSTM’s need for
substantial data for training and its computational intensity, its applicability to time series forecasting
and anomaly detection in sequential data is unmatched, especially in scenarios where temporal context
is key to distinguishing between normal and anomalous patterns.

Table 2: Qualitative analysis

Model Strengths Weaknesses Use case suitability

SVM • Effective in
high-dimensional spaces

• Memory efficient

• Not suitable for large
datasets

• Poor performance
with noise

• Binary classification with
a clear margin of
separation

Random forest • Handles non-linear data
• Provides feature

importance scores

• Overfitting can occur
• A large number of

trees can make the
model slow

• Multi-class classification
• Feature selection

Gradient
boosting
machines

• Often provides predictive
accuracy that cannot be
beaten

• Lots of flexibility

• Prone to overfitting
• Requires careful

tuning

• Problems where
predictive accuracy is the
most critical metric

Our model • Excellent at capturing
time-based patterns

• Can process entire
sequences of data

• Requires large
amounts of data to
train

• Computationally
intensive

• Anomaly detection in
sequences

5 Conclusion

This research presents an LSTM-based neural network model that identifies anomalous events in
care-independent smart home settings, specifically engineered for fall detection among the elderly.
The model’s efficacy is rooted in its ability to process and learn from balanced time-series data,
achieved through applying SMOTE to the initially unbalanced dataset. Empirical results showcase
the model’s substantial accuracy and enhanced capability to discern between normal and anomalous
events, achieving an overall accuracy of 84%. This study not only reinforces the potential of LSTM
networks in anomaly detection but also underscores the significance of preprocessing in developing
reliable predictive models for real-world applications in elderly care, contributing to safer smart home
environments. In the future, it will collect real-time data and include various datasets to test the
proposed model’s performance.
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