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ABSTRACT

At present, super-resolution algorithms are employed to tackle the challenge of low image resolution, but it is
difficult to extract differentiated feature details based on various inputs, resulting in poor generalization ability.
Given this situation, this study first analyzes the features of some feature extraction modules of the current super-
resolution algorithm and then proposes an adaptive feature fusion block (AFB) for feature extraction. This module
mainly comprises dynamic convolution, attention mechanism, and pixel-based gating mechanism. Combined with
dynamic convolution with scale information, the network can extract more differentiated feature information. The
introduction of a channel spatial attention mechanism combined with multi-feature fusion further enables the
network to retain more important feature information. Dynamic convolution and pixel-based gating mechanisms
enhance the module’s adaptability. Finally, a comparative experiment of a super-resolution algorithm based on the
AFB module is designed to substantiate the efficiency of the AFB module. The results revealed that the network
combined with the AFB module has stronger generalization ability and expression ability.
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1 Introduction

Due to the maturation of artificial intelligence, super-resolution (SR) technology based on deep
learning has achieved remarkable progress. It has significantly contributed to the advancement of
various fields, including public safety [1,2], medical imaging [3], target detection [4], satellite remote
sensing [5–7], and new media [8]. Single Image Super Resolution (SISR) algorithm can reconstruct
high-resolution images from lower ones, which can recover more image details and bring better visual
effects [9–12]. Dong et al. introduced a Super-Resolution Convolutional Neural Network (SRCNN)
[13] as the first super-resolution convolutional neural network. The network’s basic structure includes
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feature extraction, nonlinear mapping, and image reconstruction. It is also an end-to-end solution in
which low-resolution images are directly outputted to super-resolution images without pre-processing
related operations, and its effect is much better than that of traditional algorithms. So far, deep
convolutional neural network-based SR algorithm has embarked on a period of rapid advancement.

Feature extraction and image reconstruction constitute two main implementation steps of the SR
algorithm, and it is essential to design an effective feature extraction module, which directly determines
the reconstruction effect of the SR algorithm [14]. Due to the development of the SR algorithm, many
classical feature extraction modules have been proposed, such as ResBlock in Enhanced Deep Super-
Resolution (EDSR), Residual Dense Block (RDB) in Residual Dense Network (RDN) and Residual
Channel Attention Block (RCAB) in Residual Channel Attention Network (RCAN), Multi-scale
Dense Cross Block (MDCB) in Multi-scale Dense Cross Network (MDCN), Attention in Attention
Block (AAB) in Attention in Attention Network (AAN), double-layer nested residual block (DRB) in
Multi-level feature fusion network (MFFN), and others. Several common feature extraction methods
are shown in Fig. 1, which greatly enhance the reconstruction capability of the SR algorithm.

The EDSR network [15] uses the stacking of the ResBlock structure to extract the feature map,
and although the removal of the batch normalization layer results in a performance enhancement, the
width of the network becomes wider through increasing the channels of features. Although it helps to
retain more features, the number of parameters strikingly increases. In RDN [16], the RDB structure
is designed with residuals, and dense connections can extract richer feature information, but each
stage in the RDB must fuse the previous features, which also increases parameters. In RCAN [17], the
RCAB structure is designed to extract feature information by combining residuals and attention. In
addition to the previously mentioned lack of pixel-based attention capability, there is a certain degree
of information loss due to dimensionality reduction when generating the channel-based weight values.
In MDCN [18], MDCB with different scale convolutions are designed for feature extraction to retain
feature information to the maximum extent. MDCB extracts feature information using 3 × 3 and
5 × 5 convolutions, and then cross-fusion is utilized to obtain the final features, which retains more
information and increases parameters.

The above analysis shows that the existing SR algorithms’ feature extraction structure mainly
evolves through increasing channel count and convolution size and stacking more sub-modules to
obtain more feature information, increasing the network’s parameter count and computing com-
plexity. In addition, these SR algorithms’ feature extraction structures are static and cannot extract
more differentiated information based on various inputs. Hence, further research is required to design
lightweight and efficient feature extraction modules. Lightweight AI algorithms have been an active
subject of research, and considering the real-life application of SR algorithms, lightweight SISR
algorithms have been a commonly explored research pathway within the field of SR. Some lightweight
networks have been proposed to improve the network speed while maintaining good accuracy, such
as SqueezeNet [19], which achieves complete dimensionality reduction by 1 × 1 convolution and then
extracts features by 1 × 1 and 3 × 3 convolutions before fusion to achieve the purpose of reducing
the number of parameters. Inception [20] reduces dimensionality by 1 × 1 convolution while using
multiple small-sized convolutions. The Xception [21] and MobileNet [22] series use deep separable
convolution to significantly lessen the parameters and achieve good results. Hence, group convolution
and depth-separable convolution are widely employed to achieve lightweight networks, and 1 × 1
convolutions are commonly employed in lightweight deep learning models to achieve expanded and
reduced dimensionality.

Attention mechanisms can also help networks focus on helpful information for tasks and better
utilize the correlation of input data. Therefore, it reduces the number of parameters while maintaining
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model performance, making the network more lightweight and efficient. AAN [23] combines the
attention mechanism to design the AAN structure for feature extraction, and each extracted feature
must be multiplied by a weight value, resulting in all channels using one weight for each pixel, which
does not allow pixel-based attention capability. MFFN [24] proposed DRB with autocorrelation
weight units (ACW) for image feature information extraction. The lightweight model can enhance
image stripes effectively.

Figure 1: Common SR algorithm feature extraction modules (a) ResBlock for EDSR, (b) RDB for
RDN, (c) RCAB for RCAN, (d) MDCB for MDCN, (e) AAB for AAN, and (f) DRB for MFFN
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Based on the above research, lightweight SR algorithms such as CARN [25], AAN [23], and other
lightweight SR networks have been continuously proposed. Although some of the above schemes can
significantly reduce the network parameter count to improve the speed, in many cases, they still bring
about a loss of accuracy. Excessive pursuit of network lightweight can also cause a decrease in the
network’s learning ability, so how to design a reasonable network structure should also be considered
based on actual needs.

This study first analyzes the feature extraction structures of different SR algorithms to design
a more lightweight and adaptive feature extraction structure for SR algorithms. Inspired by the
ideas related to dynamic convolution and attention mechanism, a lightweight adaptive feature fusion
module AFB is proposed that achieves the differential extraction of feature information using dynamic
convolution with scale information and combines the channel space of multi-feature fusion. The
attention mechanism keeps significant feature information, and the pixel-based gating mechanism
further enhances the module adaptivity, enabling the network to have stronger generalization and
expression capabilities.

2 Method
2.1 Design of Lightweight Adaptive Feature Fusion Module

In most deep learning tasks, the feature extraction method directly determines the model’s
performance. The feature extraction module, as the main component of the network, should be
able to extract as much semantic information as possible while keeping it lightweight. At present,
deep learning-based SISR algorithms use static convolutional kernels to extract feature information
while seldom using the scale information of SR. This results in different input image information
going through the same convolutional kernels to extract feature information, making it homogeneous.
However, this method makes the reconstructed SR images inaccurate enough. A lightweight adaptive
feature fusion module AFB (Adaptively-fusion Feature Block) for feature extraction was proposed
to overcome these issues. In addition to combining dynamic convolution and attention mechanisms
for the adaptive extraction of feature information and lightweight features, the AFB module can be
used for fixed-scale SR tasks and arbitrary-scale SR. Fig. 2 shows the structure of AFB. GM (Gate
Mechanism) is a pixel-based gating mechanism structure, DC (Dynamic Convolution) is a dynamic
convolution structure combining scale information, and AB (Attention Branch) is an attention
structure for multi-feature fusion.

Figure 2: The structure of AFB (adaptively fusion feature block)
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As an efficient feature extraction module, AFB can be easily used as a sub-structure in any network
that requires feature extraction by stacking modules. The input features are employed as the input of
GM, DC, and AB structures after 1 × 1 convolution and the GM structure outputs two h × w weight
matrices after a sigmoid function. In the feature map, h is the height, and w is the width. The results of
the multiplication of the DC and AB structures and the corresponding two weight matrices are added,
and then the final adaptive feature map can be attained. Finally, it comes into the next stage after 1 × 1
convolution fusion. The execution flow is as follows. Fin in Eq. (1) represents the input feature map of
AFB and Fout is the output feature map of it. The GM structure outputs two weight matrices, and the
expressions are shown in Eq. (2).

Fout = HAFB (Fin) (1)

Mask1,2 = σ (HGM (Hconv1 (Fin))) (2)

where Mask1,2 is the two weight matrices of the output of the GM structure, both with the size of
h × w. σ is the sigmoid activation function, Hconv1 indicates 1 × 1 convolution, and Fin is the current
input feature. The detailed expression of the whole AFB module is shown in Eqs. (3) and (4).

Fmid = Mask1 ∗ HDC (Hconv1 (Fin)) + Mask2 ∗ HAB (Hconv1 (Fin)) (3)

Fres = Hconv1 (σ (Fmid)) + Fin (4)

where σ is the activation function, which is not necessarily sigmoid and can be chosen flexibly
according to different needs, denotes the adaptive feature map, and Fres is the output feature map.
Through the processing of AFB, the network can extract richer feature information, and the SR task
helps the network to reconstruct more accurate high-resolution images. Fig. 2 depicts the structure of
the AFB module, GM, DC, and AB, and each substructure is explained in detail below.

2.1.1 Dynamic Convolution Structure Combined with Scale Information

Dynamic convolution was first proposed by the Microsoft AI Cognitive Services team [26]. Static
convolutions do convolution for different input images using the same convolution kernel, which
lacks targeted feature extraction. Dynamic convolution combines multiple static convolutions and
determines the parameters of dynamic convolution based on different input image information to
improve expression capability. In this paper, the scale information is added to the original dynamic
convolution for feature information extraction of multi-task scenes, and the improved dynamic
convolution DC (Dynamic Convolution) structure in this study is as follows.

Fig. 3 indicates that x is first pooled by global averaging, and then a one-dimensional vector of
length c (the channels count of the feature map) is obtained. After the obtained 1D vector of length c
plus the scale information (which contains the length h and width w of the feature map. This is mainly
aimed at SR tasks that require scale information to complete upsampling at any multiple. If used for
fixed multiple SR or other feature extraction tasks, scale information can be removed) to generate a
1D vector of length c+2 after two full-connected layers and an activation function Rectified Linear
Unit(ReLU) between them, as shown in Fig. 4.

The number of full-connection layer neurons can be adjusted appropriately to optimize compu-
tational efficiency. h and w are mainly designed for the SR task that requires scale information to
complete the upsampling, and these two parameters can be removed for other tasks. Adding the scale
information and going through the two full-connection layers and ReLU, a 1D vector with n data
(number of static convolutions) eventually yields, and Eq. (5) is the basic expression.
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Fnext = H(a1∗conv1+a2∗conv2+...+an∗convn)

(
Fpre

)
(5)

where Fpre is the extracted feature information from the preceding layer, Fnext is the feature map after
dynamic convolution, H(a1∗conv1+a2∗conv2+...+an∗convn) is the dynamic convolution, a1 ∗ conv1 + a2 ∗ conv2 +
. . . + an ∗ convn means multiple static convolution multiplied by the accumulation of corresponding
coefficients, and the result is the convolution kernel parameter of dynamic convolution, a1 + a2 +
· · · + an = 1. A better balance between parameters and performance can be achieved by setting the
static convolution count n = 3 in the network. Dynamic convolution itself is designed for lightweight
networks, which improves performance by increasing the number of channels or network depth,
which significantly increases computational complexity. In inference, dynamic convolution performed
through a linear combination of multiple static convolutions significantly reduces the computational
complexity compared to increasing network depth and channel quantity.

Figure 3: The improved dynamic convolution structure

Figure 4: Full-connection layer

2.1.2 Channel Spatial Attention Structure Based on Multi-Feature Fusion

Dynamic convolution can enhance the dynamics and adaptiveness of AFB module feature
extraction in order to allow the AFB module to extract richer feature information. This study also
introduces the attention mechanism in the AFB module, AB (Attention Branch) multi-feature fusion
attention branch structure helps the AFB module extract high-frequency information from the feature
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map [19] while reducing or ignoring unimportant information. Fig. 5 shows the structure of the
Attention Branch.

Figure 5: Attention branch

The input features are first extracted by the above 3 × 3 convolution and 1 × 1 convolution of
the feature map) and used as input for the following channel space attention module. Finally, the two
results are multiplied and then fused by 3 × 3 convolutions, and the final channel space attention
feature map extracted by the AB module is obtained. The essential expression is shown as follows:

FAB = Hconv3

(
Hconv1 (σ (Hconv3 (Fin))) ∗ Hchannel−spatial (Fin)

)
(6)

where Hchannel−spatial is the channel space attention, as shown in Fig. 5. When the input is c × h × w, c is
the channels’ number of the feature map, h represents the height, and w is the width. After the 3 × 3
convolution and 1 × 1 convolution, the feature map is still obtained in the size of c × h × w, but there
can be some unimportant information in the feature map obtained by this convolution that must be
filtered. Hence, it is necessary to combine the channel attention to extract the essential information
from the feature map. The following part of Fig. 6 depicts the channel space attention mechanism.
Based on the input size, the size of the channel space attention weight is c × h × w, for example, c =
3, h = w = 3, and the two can be multiplied as shown in Eq. (6).

Figure 6: Schematic diagram of channel spatial attention. (a) Represents the feature map; (b) represent
weight
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After obtaining attention to feature maps through multi-feature fusion, more helpful information
is preserved through 3 × 3 convolutional fusion. The AB structure and DC dynamic convolution
structure extract the feature information of the previous layer, respectively, and then combine it with
the GM structure to obtain the final AFB module feature map, as illustrated in Fig. 6.

2.1.3 Structure of the Pixel-Based Gating Mechanism

The addition of dynamic convolution makes the AFB module dynamic. A pixel-based gate
mechanism structure GM (Gate Mechanism) is also proposed to enhance the self-adaptability of the
AFB module. The GM structure generates two h × w weight matrices based on the feature information
of the previous layer, where h is the height and w is the width of the feature map, which are assigned
to the AB and DC structure extracted feature information, and is equivalent to the GM structure
redistributing the importance of the feature information of AB and DC structures. Therefore, the
combination of dynamic convolution and the GM structure makes the AFB module highly adaptive. It
can adaptively extract the required feature information according to the input variability. The structure
of GM can be understood in Fig. 7.

Figure 7: Gate mechanism

The GM implementation is shown in Fig. 7. The input features are convolved by two 3 × 3 and
two activation functions to obtain two h × w × c weight filters mask, where c = 1, h is the height
and w is the width, and the Sigmoid function scales the value of the mask to the interval of (0, 1), as
expressed by the following equation:

Mask1,2 = σs (Hconv3 (σr (Hconv3 (Fin)))) (7)

where σr is the ReLU, σs is the sigmoid, and Mask1,2 is the matrix weights of the output, which can
also be described as two weight filters. The GM structure determines which features per pixel of the
output of the AB and DC structures are helpful at a particular stage and which are useless or less
important. Re-enforcement by extracting important feature information helps to improve the network
representation.

2.1.4 Analysis of Structural Features of Adaptive Feature Fusion Module

Through the previous research and analysis, the AFB module mainly consists of a dynamic
convolutional structure with scale information, channel space attention structure with multi-feature
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fusion, and pixel-based gating mechanism structure, and the combination of these structures makes it
lightweight, adaptive feature extraction and multi-task oriented. The lightweight design helps to reduce
the model computation and inference speed so that the model can be deployed in practical engineering.
The adaptive feature enables the model to have stronger generalization ability, consequently improving
the robustness of the model.

Lightweight structure design: The AFB module is proposed based on the research and analysis of
various feature extraction modules of the SR algorithm. The original intention of this design is that the
network combined with the AFB module can effectively reduce the parameter number of the model
while guaranteeing performance comparable to the current best algorithm. The number of covariates
for its convolution is mainly calculated to reflect the advantages of the AFB module. Table 1 shows
the specific comparison.

Table 1: Comparison of parameters between AFB module and other feature extraction modules of SR
algorithm

Feature extraction modules Parameter quantity

RDB (RDN) 1.36 M
ResBlock (EDSR) 1.18 M
MDCB (MDCN) 1.02 M

By combining the AFB module, the performance of this algorithm is competitive or even better
than the other algorithms mentioned in Table 2, which explains the lightweight design of the AFB
module compared to other SR modules.

Table 2: Multi-task feature extraction of AFB module

h �= w Arbitrary multiple SR algorithm

h �= w Fixed multiple SR algorithm

AFB module Target detection
Image classification
Semantic segmentation

Multi-task-oriented feature: The AFB module can be applied to any network that requires feature
extraction. When the scale scaling information h �= wis set in the AFB module, the AFB module can
be used for any scale of the SR algorithm. When h �= w, it can be applied to fixed times of the SR
algorithm, when the scale information is removed, it can be used for feature information extraction of
vision tasks, as shown in Table 2.

Adaptive feature extraction: Except for the two traits mentioned earlier, the biggest advantage
of the AFB module is the adaptive feature extraction capability. The dynamic convolution with scale
information can extract differentiated information based on different input features, and the pixel-
based gating mechanism GM module adaptively combines the feature information generated by the
AB and DC structures through the two weight matrices generated, as shown in Fig. 2.
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2.2 Validation Model Design Based on AFB Module
The AFB module of adaptive feature fusion can be oriented to multi-task adaptive extraction

of feature information, and it can be used as a separate module integrated into other networks
requiring feature extraction. The multi-feature fusion of channel space attention structure AB,
dynamic convolution structure DC, and pixel-based gating mechanism structure GM can extract
a richer feature map. A lightweight network AFBNet based on the AFB module is designed to
evaluate its effectiveness. AFBNet is improved from Fast Super-Resolution Convolutional Neural
Network(FSRCNN) [27,28], and the effectiveness of the AFB module is further demonstrated by
comparing AFBNet and FSRCNN networks. FSRCNN achieves upsampling using deconvolution
operations at the end of the network instead of interpolation upsampling at the front end, effectively
reducing network computational complexity. At the same time, the newly proposed deconvolution
structure has become the most commonly used upsampling method in super-resolution algorithms.
This subsection first analyzes the characteristics of different upsampling methods, different loss
functions of fixed multiplicity oversampling algorithms, and different degradation model principles
and then designs the lightweight AFBNet network structure based on these.

2.2.1 Research and Analysis of Fixed Multiplier Upsampling Method

The fixed multiplier oversampling algorithm indicates that the designed oversampling algorithm
can only achieve a certain fixed multiplier upsampling, and the current common fixed multiplier-based
upsampling methods are interpolation upsampling inverse convolution, and subpixel convolution
upsampling. The following is the analysis of the characteristics of each of the inverse convolution
upsampling and subpixel convolution upsampling methods.

Inverse convolution upsampling: In FSRCNN, the upsampling module adopts the inverse convo-
lution for the first time. Here, the inverse convolution operation ConvTranspose2d in the Pytorch
deep learning framework is employed to illustrate, like the conventional convolution, the inverse
convolution also includes the basic elements such as convolution kernel (kernel_size), stride, and
padding. The definition of the convolution kernel size in the inverse convolution is the same as that of
the conventional convolution, and the padding formula of the inverse convolution is as follows:

real_padding = kernel_size − 1 − padding (8)

Real_padding in Eq. (8) is the number of zero padding for deconvolution. When set padding = 0,
it is the regular convolution. Meanwhile, if stride = 1, the size is reduced after convolution kernel_size-
1. When the convolution result needs to be restored to its original size, padding = kernel_size-1
must be set. This is equivalent to the padding kernel_size-1 of regular convolution, and the size after
convolution is the same as before, i.e., real_ padding = 0. The step size of deconvolution is no longer the
meaning of step size in regular convolution but more like the meaning of step size in zero convolution.
The step size of deconvolution is no longer the meaning of the step size of regular convolution but
more like the hole rate of hole convolution. In the deconvolution, the original concept of step is at
this time constant equal to 1, while the step in this study controls the gap between pixel points. For
example, if stride = 1, the gap between pixel points is 0; when stride = 2, the gap is 1. These gaps are
filled with zero, so the feature map size can be calculated given the step size, as shown in Eq. (9).

output = (input − 1) ∗ stride + 1 (9)

Based on the above description of convolution kernel, step size, and padding in deconvolution,
given the input feature size i, deconvolution kernel size k × k, step size s, and padding p, the output
size can be obtained.
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o = {((i − 1) ∗ s + 1) + (k − 1 − p) ∗ 2 − k}
1

+ 1 + outpadding (10)

o = (i − 1) ∗ s − 2 ∗ p + k + outpadding (11)

Eq. (11) can be compared to the conventional convolutional (Eq. (12)), where p is multiplied by
two because the padding is generally not just single-sided padding but either top and bottom or left
and right.

o = (i + 2 ∗ p − k)

s
+ 1 (12)

Eq. (11) also has out padding, but the padding is only to fix the size of the output feature map
size, and not zero padding of the feature map after deconvolution out padding.

Fig. 8 shows the deconvolution calculation for k = 3, s = 2, and padding = 1. Based on the
previous introduction, the deconvolution will complete the upsampling by padding zero, which will
somewhat affect the reconstruction effect.

Figure 8: Schematic diagram of deconvolution

Subpixel convolution upsampling: Subpixel convolution, depicted in Fig. 9, achieves upsampling by
increasing the number of channels of features to achieve pixel rearrangement. For example, for a 32-
channel feature map, if it needs to be upsampled twice, the subsequent convolution needs to generate
a 32 × 2 × 2 = 128-channel feature map, and then rearrange the pixels of every four channels into one
channel to finally generate a 32-channel feature map of twice the original size.

Figure 9: Schematic diagram of subpixel convolution

When upsampling is done twice, four channels are combined into one channel. Sub-pixel convo-
lution is performed by combining individual pixels of a multi-channel feature map onto a new feature
map unit pixel, and the original multiple feature map individual pixels can be considered as sub-pixels
of the new feature map pixel.
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2.2.2 Analysis of the Loss Function of the Super Division Algorithm

In SR algorithms, the customization of the loss function is crucial to complete the feedback
propagation, calculate the gradient by determining the loss, and finally update the network parameters
[29]. Several common loss functions of pixel-based SR algorithms are L1 loss function, L2 loss
function, and Charbonnier loss [30], and the following is an analysis of the respective characteristics
of pixel-based loss functions.

L2 loss function: L2 loss is also called mean-square error (MSE) loss, which is widely used in SR
tasks, and the primary expression is as follows:

L2

(
Î , I

)
= 1

hwc

∑
i,j,k

(
Îi,j,k − Ii,j,k

)2

(13)

where hwc is the height, width, and channel number, Î is SR, I is HR (Ground truth), and i, j, k is a
pixel value.

L1 loss function: The L1 loss function, also called mean absolute error (MAE), is theoretically
based on L1 with less computational effort compared to L2 loss, while the reconstruction effect of
L1-based loss is generally better than L2-based loss, and its essential expression is as follows:

L1

(
Î , I

)
= 1

hwc

∑
i,j,k

∣∣∣Îi,j,k − Ii,j,k

∣∣∣ (14)

Charbonnier loss function: It is proposed in LapSRN [31], based on L1 and L2 losses, considering
only empirical risk minimization, which is prone to overfitting. LapSRN enhances the model’s
generalization ability by incorporating a regularization term in the objective function, and the basic
expression is as follows:

Lcha

(
Î , I

)
= 1

hwc

∑
i,j,k

√(
Îi,j,k − Ii,j,k

)2

+ ε2 (15)

The loss functions mentioned above are the most commonly used pixel-based ones, which measure
the loss by assessing the discrepancy between corresponding pixel values.

2.2.3 Study and Analysis of Different Simulation Degradation Models of the SR Algorithm

The image quality degradation process is very complex and generally results from a combination
of different degradation causes. Image degradation may occur in hardware imaging systems, such as
blurring from camera shake during image transmission or the poor environment in which the image
was captured, which can also affect the image’s quality.

In deep learning-based SR algorithms, since it is challenging to get Low Resolution-High
Resolution (LR-HR) image pairs in natural scenes, this study simulates the natural degradation process
of existing HD images by combining several common degradation models to form LR-HR image pairs
for supervised super-segmentation task training. The common methods for simulating degradation by
SR algorithms are interpolation downsampling, blurring, noise, and JPEG compression.

Downsampling: Due to the high cost of obtaining image pairs of natural scenes, some degradation
models often simulate the degradation process in natural scenes, and interpolation downsampling is
the most commonly used degradation model in SR, including nearest neighbor, bilinear, and bicubic
interpolation downsampling. Bicubic interpolation downsampling is the most frequently used method



CMES, 2024, vol.140, no.3 2327

among them, and bicubic interpolation, also known as cubic convolutional interpolation [31,32], uses
16-pixel points around the sampling point P (P point is the location where the target pixel location is
mapped to the original map) to perform bicubic interpolation, which is better than nearest neighbor
interpolation and bilinear interpolation, but also increases the computational effort. The coefficients
of each pixel point and the commonly used basis function formula are as follows:

y (x) =
⎧⎨
⎩

(a + 2) |x|3 − (a + 3) |x|2 + 1, |x| ≤ 1
a |x|3 − 5a |x|2 + 8a |x| − 4a, 1 < |x| < 2
0, otherwise

(16)

Based on Eq. 16, the following equation is derived when a = −1.

y (x) =
⎧⎨
⎩

|x|3 − 2 |x|2 + 1, |x| ≤ 1
4 − |x|3 + 5 |x|2 − 8 |x| , 1 < |x| < 2
0, otherwise

(17)

The graph of the basis function according to Eq. (17) is shown below.

Fig. 10 shows the basis function for bicubic interpolation when a = −1. Once the value of
parameter a is determined, the obtained basis function can be utilized to generate the weight values
of 16 pixels around point P. Then, the multiplied product of pixel value and weight corresponding to
each pixel point is summed to obtain the pixel value of the target image’s corresponding point, and the
pixels’ location adjacent to point P is shown in Fig. 11. Black dots represent pixel position coordinate
information.

Figure 10: Specific graph of bicubic interpolation basis function when a = −1

Point P of Fig. 11 is the position of the corresponding point in the target image mapped to the
initial image with the following mapping equation:

xsrc = xdst

scale
(18)

ysrc = ydst

scale
(19)
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Figure 11: Pixel position adjacent to point P

The target image point P (xdst, ydst) is mapped to the location P (xsrc, ysrc) of the original image
according to the scaling multiple scale. The pixel value of P (xdst, ydst) can be obtained using Eq. (20).

P (xdst, ydst) =
3∑

i=0

3∑
j=0

aij ∗ y (xi − xsrc) ∗ y
(
yj − ysrc

)
(20)

where aij is the pixel value of each pixel in the neighborhood, and y (xi − xsrc)∗y
(
yj − ysrc

)
is the weight

at that point. It should be noted that the weighted pixel values can be outside the range of 0–255, so it
is also necessary to finally limit the value of P (xdst, ydst) to the 0–255 interval.

Blur: Gaussian blur is the most commonly used blur degradation model [33]. Image blurring can
also be called image smoothing, and common blurs are mean blur, median blur, and others. A simple
understanding of Gaussian blur is to calculate a weight matrix for a pixel in its neighborhood and
multiply it by the value of the corresponding pixel in that neighborhood to obtain the blurred value of
the pixel. The two-dimensional Gaussian function obtains the weight matrix, and the neighborhood
size must be specified. The one-dimensional Gaussian function is as follows:

f (x) = 1

σ
√

2π
e− (x−μ)2

2σ2 (21)

where μ is the mean of x, σ is the standard deviation of x. Since the mean calculation considers the
center point as the origin, μ = 0, it can be obtained using Eq. 22.

f (x) = 1

σ
√

2π
e− x2

2σ2 (22)

The expression of the 2D Gaussian function can be obtained from the 1D Gaussian function.

f (x, y) = 1
2πσ 2

e− x2+y2

2σ2 (23)

where x, y are the coordinate values relative to the origin, and the weight matrix of the neighborhood
can be calculated using Eq. (23) combined with the relative coordinate values of the neighborhood
pixels, as shown in Fig. 12.

Noise: Gaussian noise is also a commonly used noise model. Gaussian noise uses Gaussian
distribution to get the noise value summed to the original image, which can generate noise. In addition
to Gaussian noise, it can add other noises, such as Pretzel noise, Rayleigh noise, and Uniform noise.
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Figure 12: Relative coordinate values of pixels in the neighborhood

JPEG compression: JPEG compression is a loss compression method commonly used in digital
images. The general method is first to convert the color space of the original image (such as to YCbCr
space and others), then divide the image into small blocks of 8 × 8 for DCT transformation, and then
perform quantization operations on the transformation coefficients, and others [34].

2.2.4 Network Structure Design of Verification Model Based on AFB Module

To validate the effectiveness of the AFB module, a lightweight network AFBNet based on the
AFB module is designed for comparison experiments with the improved FSRCNN network. The
architecture of the AFBNet network is shown below.

Fig. 13 indicates that the AFBNet network first goes through a 5 × 5 convolution for an input
image. The 5 × 5 convolution has a larger view field and can extract more information, and the d-
channel feature map can be obtained by the 5 × 5 convolution; here, d = 56, the following (Eq. (24))
is the expression:

Fd0 = σ (Hconv5∗5 (Fin)) (24)

Fin in Eq. (24) indicates the input feature map, size c × h × w, usually channel c = 3, H and W are
the width and height of the image, Fout is the feature map of d × h × w obtained after 5 × 5 convolution
operation and activation function, channel d = 56, σ is the Parametric Rectified Linear Unit (PReLU)
[35] activation function. The feature map of channel d is obtained after 5 × 5 convolutions. In order to
obtain faster inference speed, the channel must be dimensionalized. As introduced in the previous
section, dimensionality reduction or dimensionality expansion is generally achieved using 1 × 1
convolution. Channel d is obtained after 1 × 1 convolution, and then the feature map of channel s
is obtained, where s is much smaller than d. The expression is as follows:

Fs0 = σ (Hconv1∗1 (Fd0)) (25)

The obtained s-dimensional feature map is then passed through the AFB module to complete
the feature mapping, where the number of AFB modules is set to m. After multiple AFB modules,
the network can extract more useful feature information to reconstruct a clearer SR image with the
following expressions:

Fs1 = σ (HAFB (Fs0)) (26)
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Figure 13: The architecture of AFBNet

After completing the feature mapping, the s-dimensional feature map is expanded to d-dimensions
using a 1 × 1 convolution.

Fd1 = σ (Hconv1∗1 (Fs1)) (27)

Expanding the dimensionality of the feature map can obtain richer feature information, then
upsampling the d-dimensional feature map and fusing it by 3 × 3 convolutions. The final output feature
map is derived with the following basic expressions.

Fout = Hconv3∗3

((
Hupsample (Fd1)

))
(28)

Fout in Eq. (28) is the output feature map, size C × H × W, generally C = 3, Hupsample for the
upsampling operation, and the obtained feature map Fout can be displayed through post-processing.
Through previous research and analysis of upsampling methods and different loss functions, the
AFBNet and FSRCNN networks have used sub-pixel upsampling methods. The model was trained
using the L1 loss function and simulated degraded image LR using bicubic interpolation.

3 Result
3.1 Datasets

The super-resolution algorithm dataset is mainly divided into three categories: the sets for training,
validation, and testing. This study mainly used the DIV2K [20] dataset for training. It is the most
widely utilized dataset for training super-resolution algorithms. Tests are conducted using the Set5 [36],
Set14 [37], Urban100 [38], BSDS100 [39], and Manga109 [40] datasets for test comparison. Set5 and
Set14 are the primary test datasets for super-resolution algorithms. In the early stages of developing
deep learning-based super-resolution algorithms, these two test datasets are mainly employed to
compare the reconstruction effects. Urban100, BSDS100, and Manga109 are also commonly used
datasets. Table 3 displays the detailed information of these datasets.
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Table 3: Datasets

Datasets Usage Train/pieces Validation Test Type

DIV2K Train, validation, test 800 100 100 PNG
Set5 Test – – 5 BMP
Set14 Test – – 14 BMP
Urban100 Test – – 100 PNG
BSDS100 Test – – 100 JPG
Manga109 Test – – 109 PNG

3.2 Dataset Process
Although a considerable number of training datasets are provided, the size of each image is

relatively large and cannot be employed directly to train deep learning models in general. The
difference between the input size required for training and the size of the original samples is significant,
and direct use reduces the utilization of the original data information so that the trained model does
not perform well. Hence, some processing of the datasets is required, as shown in Fig. 14.

Figure 14: Training image clipping scheme. (a) The original data sample; (b) The small orange box is
the training sample obtained by actual random clipping

Considering the DIV2K dataset as an example, it contains 800 high-definition images for training,
100 test images, and 100 validation images. If the train images are directly fed into the network for
training, it will waste data resources and poor performance of the trained network. Some measures
are considered to achieve better usage of all the information in each image: First, each image is cropped
into a smaller size; for example, an image of 1920 × 1920 pixels is cropped into 16 images (480 × 480),
through this operation can increase the training data set. If the 800 pieces of DIV2K training images are
cropped into small images of 480 × 480 pixels, 32096 pieces of training images can be obtained. During
the actual training, the network input images are smaller than those of 480 (480 pixels). Therefore,
when the actual training is done, a randomly cropped fixed size on the 480 × 480 pixels image is used
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as the network input, such as 50 × 50 pixels and others. Introducing random cropping is equivalent
to further expanding the dataset. Noise and blurring are usually introduced in the dataset to make the
model more robust.

The training data process is shown in Fig. 15. In addition to cropping the original dataset to enrich
the training set, getting a suitable LR-HR image pair is also essential. If the corresponding position
information of HR and LR deviates too much, the model’s training and final performance will be
significantly affected. For example, when training a 2-fold oversampling model, the HR image must be
downsampled twice to get the LR, and the downsampling is generally done by bicubic interpolation
downsampling. The width and height of HR should be even, and when it is odd, the SR obtained
by downsampling and then upsampling will not be consistent with the original HR size. For the
reconstruction of 4-fold oversampling, it should be noted whether the HR image is downsampled
twice in succession by 2-fold or once by 4-fold. The experiment shows that two successive 2-fold
downsampling will significantly affect the model’s performance because more information is ignored.
Therefore, it can be concluded from the above that for an arbitrary number of times of oversampling,
the pairs of images in each Batch_size should be set to the same size and the same downsampling times,
and the downsampling of each HR image should be done once, instead of taking multiple consecutive
downsampling.

Figure 15: Schematic diagram of training data processing for four times super score. (a) Depicts
continuous downsampling, (b) represents one downsampling; Better results can be achieved using
method (b)

The above illustrates how to process the data set required for training to ensure the maximum
utilization of the data, and it is also worthwhile to pay attention to how the processed data is loaded
into the network for training. In general, the images can be loaded directly from the training data
storage path for training, but the training process will take more time to load the data, and there may
be insufficient memory, so the processed training data can be converted into h5py files first. h5py files
have the characteristics of fast reading speed, high compression rate, and large data storage so that
they can read more data than memory. In Python, the h5py format dataset is relatively simple to use,
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and it mainly consists of two containers: dataset (dataset) and group (group). The creation of h5py
files consists of four main steps.

1) Create the h5py object.

2) Create different groups for the h5py object and name them.

3) Store the read data in each created group and set the corresponding index for easy reading.

4) Close the h5py file.

The steps to read the h5py file are as follows:

1) Open the h5py file.

2) Select different groups to get the corresponding data according to the index.

3) Close the h5py file.

These are the steps of reading and writing h5py files. Through the above description, the processing
of training datasets in this study can be roughly grouped into the following processes, as shown in
Fig. 16.

Figure 16: The processing flowchart of training data

Training parameters description and configuration: The training parameters also affect the final
performance. The training parameters configuration mainly describes several vital parameters: opti-
mizer selection, batch size, and learning rate size. When the learning rate is set and the gradient is
found, the model parameters can be updated based on the optimizer to obtain the optimal solution.
Today’s commonly used optimizers are SGD, Adam optimizer, RMSprop, AdaMax, and Nadam. This
experiment mainly uses the Adam optimizer. Adam is an adaptive learning rate optimization algorithm
called Adaptive Moment Estimation [41]. It will calculate the adaptive learning rate for each parameter
to ensure the learning and updating of all parameters differentially, which is beneficial to speed up the
network training. The specific formula is as follows:

mt = β1mt−1 + (1 − β1) gt (29)
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ut = β2ut−1 + (1 − β2) g2
t (30)

where gt is the current gradient, ut is the average of the historical squared gradients of exponential
decay, and mt is the average of the historical gradients of exponential decay, similar to the momentum
of the gradient descent method. When ut and mt are initialized as 0 vectors, the authors of Adam found
that they are both biased towards 0, especially when the initialization and decay rates are low, such as
when β1 and β2 tend to 1. The following bias correction offsets the bias.

m̂t = mt

1 − β t
1

(31)

ût = ut

1 − β t
2

(32)

Based on Eqs. (31) and (32), the updated rules of Adam are as follows:

θt+1 = θt − η√
ût + ε

m̂t (33)

where β1 can be set to 0.9, β2 can be set to 0.999, ε = 10e − 8. Based on practical experience, Adam
performs better than other adaptive algorithms. Generally, a large Batch_size helps to move in the
direction of a more accurate gradient. However, it is not easy to jump out when encountering saddle
points, while a small Batch_size is more volatile and lacks stability, but at the same time, helps to jump
out of the minimal value, so it is necessary to adjust Batch_size continuously based on the actual
situation to ensure proper convergence. The learning rate changes synchronously with Batch_size.
When Batch_size increases, the learning rate also increases by a corresponding multiple.

The basic experimental parameters setting: The input size of the training image is 50 × 50, the
learning rate is 5e-4, and is halved every 50 iterations, Batch_size = 16, the iterations’ number epoch
= 200, the optimizer selects adam, the loss function is L1 loss, the training data set is DIV2K, the
test sets are Set5, Set14, Urban100, BSDS100 and Manga109, with upsampling multipliers of 2x and
4x. For each input image, the data is enhanced by utilizing a 90°rotation, horizontal and vertical flip,
and the test images are still transformed into YCbCr color space and tested on their Y channels. The
graphics card configuration in the experiment was RTX3090, and the training lasted about 20 h.

3.3 Evaluation Metrics for Super-Resolution Algorithms
Peak signal-to-noise ratio (PSNR): PSNR is the most commonly used evaluation method in the

SISR algorithm, mainly obtained by calculating the mean square error (MSE) between SR and HR
to determine the final result. It can be calculated using Eqs. (34) and (35).

MSE = 1
HW

H−1∑
i=0

W−1∑
j=0

(IHR (i, j) − ISR (i, j))2 (34)

PSNR = 10 ∗ log10

(
MAX 2

MSE

)
(35)

where H and W are the height and width of the image, (i, j) are each pixel point. MAX is the maximum
pixel value in the image, such as MAX = 255 in a grayscale image. Eq. (35) indicates that the calculation
of PSNR is highly correlated with MSE, so the super-resolution model trained on the loss function
of MSE has more advantages in PSNR calculation. In addition, the results obtained from PSNR
calculation cannot fully reflect the quality of image reconstruction. PSNR computation only targets
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a single pixel in two images, and the obtained results also show pixel differences between independent
pixels. Therefore, the correlation between pixels in the image is not considered.

Structural similarity ratio (SSIM): SSIM is also commonly employed to evaluate the similarity
between two images. Considering that in super-resolution tasks, the quality of SR reconstruction must
be evaluated by comparing the overall similarity between SR and HR images, SSIM multidimensional
calculation is naturally a good choice. In SSIM calculations, the differences in structure, luminance,
and contrast between two images should be calculated.

SSIM (x, y) = (
l (x, y)

α · c (x, y)
β · s (x, y)

γ
)

(36)

α > 0, β > 0, γ > 0, x represents SR, y represents HR.

l (x, y) = 2μxμy + c1

μ2
x + μ2

y + c1

(37)

c (x, y) = 2σxy + c2

σ 2
x + σ 2

y + c2

(38)

s (x, y) = σxy + c3

σxσy + c3

(39)

where l (x, y) is luminance comparison, c (x, y) is contrast comparison, s (x, y) is structural compari-
son, μx, μy is the mean value of x, y, σx, σy is the standard deviation of x, y, σxy is the covariance of x, y,
c1, c2, c3 are constants to avoid situations where the denominator is zero. SSIM has symmetry: SSIM
(X, Y) = SSIM (Y, X). SSIM is in the interval [0, 1], and a larger value indicates better reconstruction
quality. The calculation of SSIM consists of three parts. Compared to PSNR, which only considers the
difference between individual pixels, SSIM better considers the intrinsic correlation between pixels. It
is more reasonable to comprehensively evaluate the similarity between the two images by combining
the brightness, contrast, and structure of the two images.

3.4 AFB-Based Validation Model Ablation Experiment
Based on the previous study, the content of this subsection mainly verifies the role and advantages

played by each substructure of the AFB module through ablation experiments. In the AFB module,
the DC, AB, and GM structures greatly enhance the module’s adaptive feature extraction capability.
This section designs a comparison experiment between the AFB module feature extraction scheme
using the DC structure and the AFB module feature extraction scheme based on ordinary convolution
to confirm the advantages of the DC structure in the network. The experiments keep the same
configuration as the previous basic configuration except for the changes to the specified structure. The
experiments in this subsection only verify the advantages of each sub-structure of the AFB module.

Analysis of DC structure with scale information: In order to validate the advantage of the AFB
module for feature extraction, this section designs a lightweight AFBNet network based on the AFB
module and FSRCNN network, and the effectiveness of the structure is verified by comparing the test
results of whether DC is added to the AFBNet network or not. The experiments are conducted under
a 4-fold fixed multiplicity superfraction task with 200 epochs of iterations and a test dataset of Set5.

The test indicated that the AFBNet network incorporating the DC structure improves its PSNR
value by about 0.1 dB, which also verifies the effectiveness of the DC structure in AFBNet, as shown
in Fig. 17. The DC structure is mainly employed to extract the differentiated feature information, as
depicted in Fig. 18.
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Figure 17: AFBNet training results under four times super score. (a) and (b) are AFBNet network
training losses and PSNR values; (c) and (d) are the loss and PSNR values of the AFBNet network
without adding dynamic convolution DC

The heat map implementation shown in Fig. 18 must first get the feature maps of the input image
through the fourth AFB module of the AFBNet network and then collect the feature maps of all
channels to have the final heat map. Fig. 18 indicates that the general style of the heat map of the feature
information extracted by AFBNet without DC structure is similar, whether the information in one or
different images is not differentiated enough. The heat map produced by the network with dynamic
convolution (DC) structure shows more apparent variations, especially when flowers are displayed in
column (d). It effectively captures distinctions in color and features among the flowers. In contrast, the
heat map generated by AFBNet without the DC structure exhibits less variation and fails to distinctly
represent differences in color and features across the flowers. Through the above experiments, the DC
structure can effectively enhance the generalization and expression ability of the network and realize
the differentiated extraction of feature information for different input image information.

The AB structure can extract high-frequency information in the image using the channel space
attention mechanism, which further enhances the expression ability of the network. The effectiveness
of the structure is verified here by comparing the test results of the AFB module with the AB structure
incorporated and the AFB module with the AB structure replaced by a common 3 × 3 convolution.
The experiments are still conducted under a 4-fold fixed multiplicity superfraction task with 200
epochs of iterations and a test dataset of Set5.



CMES, 2024, vol.140, no.3 2337

Figure 18: Thermodynamic diagram comparison of feature information extracted by AFBNet. (a), (b),
(c), and (d) columns are thermodynamic diagram comparisons of feature information of the AFBNet
network with and without DC structure. The 1st row is the original picture display; The 2nd row is the
thermodynamic diagram of the output feature maps of the 4th AFB module without DC structure;
The 3rd row is the thermodynamic diagram of the output feature maps of the 4th AFB module with
DC structure

The above experiments mainly verified the role of the AB structure in network performance
improvement, and more high-frequency information about image features that the AB structure
can obtain is still demonstrated by the heat map. Fig. 19 exhibits that adding AB structure with
multiple feature fusion significantly improves the performance of the AFBNet network with a PSNR
improvement of 0.12 dB. The AB structure highlights the important high-frequency information in
the features compared to the ordinary convolution, while the multiple fusion of features also ensures
the richness of feature information.

Figure 19: (Continued)
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Figure 19: AFBNet training results under four times super score. (a) and (b) are AFBNet network
training losses and PSNR values; (c) and (d) are the training loss and PSNR value of AFBNet network
without AB structure

Fig. 20 shows that the inclusion of AB structure enables the network to extract more high-
frequency information, which is conducive to the reconstruction of a higher-definition image. Column
(d) of the figure shows that the high-frequency information of the thermodynamic feature map
extracted by the AFBNet network without the addition of the AB structure is not rich enough, and the
overall display of the image is not sharp enough. Meanwhile, the thermodynamic feature map of the
feature information extracted by the AFBNet network, along with the addition of the AB structure,
has more precise details and distinct edges. The above experiments prove that the AB structure can
extract high-frequency information.

Analysis of the pixel-based gating mechanism structure GM: The GM structure automatically
generates two weight matrices by inputting feature information. Considering that the feature details
extracted by the AB and DC structures do not necessarily have the same importance. The GM structure
adaptively assigns weights to each pixel of the feature map for each channel using the two weight
matrices to make the network structure more adaptive. The validity of the structure is demonstrated
by comparing the test results of the AFB module with and without including the GM structure. The
experiments are still performed under a 4-fold fixed multiplicity superfraction task with 200 epoch
iterations and a test dataset of Set5.

Fig. 21 shows the experimental training results. Adding the GM structure improves the PSNR
value of the network by 0.13 dB, depicting the effectiveness of the pixel-based gating mechanism
module GM. The following mainly illustrates the adaptive feature extraction capability of the GM
module.

Fig. 22 indicates that the characteristics of the feature maps obtained by directly adding the AB
structure and DC structure are not obvious enough, and the overall information of the image is not
expressive enough. The results obtained using the GM module to combine the feature information of
AB and DC are more accurate, reflecting the adaptive characteristics of the GM module.

Table 4 shows that the AFB module mainly consists of three structures, AB, DC, and GM, each of
which is an integral part. The advantages of the AB structure are illustrated by testing the changes in
PSNR and SSIM values with or without the AB structure under different test datasets. The advantages
of DC structure are illustrated by testing the changes of PSNR and SSIM with or without DC structure
under different test datasets. In addition, the advantages of GM structure are demonstrated by testing
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the changes of PSNR and SSIM with or without GM structure under different test datasets. The
experimental data show that each of the structures of the proposed AFB module is effective, and the
combination of these structures can lead to further improvement in the expressiveness of the network.

Figure 20: Thermodynamic diagram comparison of feature information extracted by AFBNet net-
work. (a)–(d) columns compare feature information extraction of AFBNet networks with and without
AB structures. First, input the original image of the network as a comparison. The 2nd row is the
thermodynamic feature map extracted by the 4th AFB module when the AB structure is not added.
The 3rd row is the thermodynamic feature map extracted by the 4th AFB module when AB structure
is not added

Figure 21: (Continued)
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Figure 21: AFBNet training results under four times super score. (a) and (b) are AFBNet network
training losses and PSNR values; (c) and (d) are the training loss and PSNR value of the AFBNet
network without adding GM structure

Figure 22: Comparison of thermal maps of feature information extracted by AFBNet network, (a)–(c)
are the three columns of thermal maps of the AB structure, DC structure, and the combined feature
map extracted by the AFBNet network, respectively. The plus sign indicates the feature map obtained
by adding the two directly; the symbol

⊙
represents the feature map obtained by combining AB and

DC through the GM structure
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Table 4: Results of PSNR and SSIM evaluation of different datasets for structural validation under
4-fold oversubscription of the validation model based on AFB module

Module Set5 Set14 Urban100 Manga109 B100

AFBNet 31.31/0.881 28.16/0.771 25.01/0.748 29.24/0.892 28.04/0.752
AFBNet (NO_AB) 31.19/0.878 28.09/0.769 24.89/0.743 28.99/0.888 27.98/0.750
AFBNet (NO_DC) 31.23/0.879 28.16/0.771 24.99/0.747 29.22/0.891 28.03/0.751
AFBNet (NO_GM) 31.18/0.878 28.08/0.769 24.90/0.744 29.05/0.889 27.97/0.750

3.5 Comprehensive Experimental Comparison and Analysis
Based on the previous basic configuration, the upsampling multiplier of the AFBNet network

and the modified FSRCNN network is set to 2, and the test set is Set5. The test sample is edge-
cropped to 2 pixels on all four sides for 200 training sessions, the HR image is downsampled for
bicubic interpolation, and the LR image is obtained by downsampling two times at once. Then, the
training sample of the input network is derived by random cropping, and the training visualization
results are as follows:

Fig. 23b shows the AFBNet network based on the AFB module, which fluctuates more at the
beginning of training. It also indicates that the AFB module must learn more but is stable after a
learning period. Fig. 23d exhibits that FSRCNN is easier to learn due to its uncomplicated design, and
the whole training process is smoother. Fig. 23c demonstrates that the loss decreases significantly every
50 times, which is because the learning rate is set to halve every 50 times, while the loss decreases no
longer significantly after 150 times, which also reflects that the training tends to saturate. By analyzing
the FSRCNN and AFBNet networks, it can be observed that incorporating the AFB module can
significantly improve the network’s expression ability. Table 5 shows the specific test data.

Figure 23: (Continued)
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Figure 23: Training results of FSRCNN and AFBNet under 2-fold overscoring. (a) and (b) show the
training loss and PSNR values of the AFBNet network; (c) and (d) show the training loss and PSNR
values of the improved FSRCNN network

Table 5: Comparison of PSNR and SSIM values of FSRCNN and AFBNet for different test sets under
2x and 4x overscore results

Scale module Set5 Set14 Urban100 Manga109 B100

2 Bicubic 33.66/0.929 30.24/0.868 26.88/0.840 30.80/0.934 29.56/0.843
FSRCNN 36.91/0.956 32.76/0.910 29.58/0.898 36.63/0.973 33.18/0.918
AFBNet 37.36/0.958 33.09/0.914 30.43/0.910 37.52/0.976 33.45/0.921

4 Bicubic 28.42/0.810 26.00/0.703 23.14/0.658 24.89/0.787 25.96/0.667
FSRCNN 30.65/0.868 27.77/0.762 24.50/0.727 28.11/0.871 27.76/0.744
AFBNet 31.31/0.881 28.16/0.771 25.01/0.748 29.24/0.892 28.04/0.752

Fig. 24 depicts the training results of the FSRCNN and AFBNet networks under the div2k
training dataset with 4-fold overscoring and the test dataset using Set5. Fig. 24 shows that the peak
signal-to-noise ratio of the AFBNet network incorporating the AFB module is also substantially
improved compared to the improved FSRCNN. The PSNR and SSIM values of FSRCNN and
AFBNet networks under different test sets are tested based on the 2- and 4-fold SR models obtained
from the training.

Table 5 indicates that comparing the PSNR and SSIM values of the improved FSRCNN and
AFBNet networks under different test sets and incorporating the AFB module can help the network
extract more helpful information for SR reconstruction. Although the AFB module slightly increases
the number of parameters, it improves the model’s performance more, and this experiment further
demonstrates the effectiveness of the AFB module.
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Figure 24: Training results of FSRCNN and AFBNet under 4-fold overshoot. (a) and (b) show the
training loss and PSNR values of the AFBNet network; (c) and (d) indicate the training loss and
PSNR values of the improved FSRCNN network

4 Discussion

In order to explore a more lightweight SR algorithm feature extraction structure, this study
analyzes some current classical SR algorithm feature extraction structures, combines the ideas of
attention mechanism and dynamic convolution, and designs a new lightweight adaptive feature fusion
module AFB. It consists of a dynamic convolution structure DC with scale information, channel space
attention structure AB with multi-feature fusion, and pixel-based gating mechanism structure GM,
mainly used for extracting network feature information. Compared to previous SR algorithm feature
extraction structures with arbitrary multiples, the AFB module has advantages such as dynamicity
and lightweight. For the experiments in this research, the AFB module can extract more differentiated
feature information based on various input information, which is beneficial for reconstructing more
accurate SR images. Since the scale information is also critical input information in the SR algorithm
of arbitrary multiples, it is introduced in the design of the DC structure to make it more dynamic.
This study introduces the GM structure to generate two distinct weight matrices, providing adaptive
weight information to each pixel across different channels. This enhancement further improves the
expressiveness and adaptability of the AFB module, acknowledging that feature information extracted
by AB and DC structures cannot always carry the same significance. The proposed AFB module can
also be inserted as a separate structure into any network that requires feature extraction. In addition,
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combining the AFB module allows the network to become more lightweight while extracting richer
feature information.

5 Conclusion

This study proposes an adaptive fusion method for feature extraction, which combines dynamic
convolution with scale information and the attention mechanism of multi-feature fusion to make the
network more adaptive while reducing the network parameters’ number and facilitating the network to
extract more helpful feature details. Meanwhile, the method can be oriented to numerous deep learning
tasks and easily embedded as a substructure in any network requiring feature extraction. The outcomes
of the different test sets showed that the proposed AFB module enables the constructed network
models to have stronger generalization and expression capabilities. Consequently, experimenting with
integrating the AFB module and state-of-the-art network models in upcoming studies can result in
enhanced outcomes. However, there are still many areas worth further research and exploration. For
example, the final performance of the super-resolution algorithm is also related to the simulated
degradation model. The super-resolution degradation model in this research is still based on bicubic
interpolation. In order to obtain more realistic reconstruction results, it is necessary to study the
degradation mechanism of images in natural environments and then design a more reasonable
and scientific degradation model to obtain the required data for training. Further research on the
degradation mechanism will help improve the robustness of the model, making the super-resolution
algorithm more accurate and reconstructing more realistic images.
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