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ABSTRACT

Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit
mines from the point of stability and economy. This study develops the novel Gromov-Hausdorff distance for rock
quality (GHDQR) methodology for rock mass quality rating based on multi-criteria grey metric space. It usually
presents the quality of surrounding rock by classes (metric spaces) with specified properties and adequate interval-
grey numbers. Measuring the distance between surrounding rock sample characteristics and existing classes
represents the core of this study. The Gromov-Hausdorff distance is an especially useful discriminant function,
i.e., a classifier to calculate these distances, and assess the quality of the surrounding rock. The efficiency of the
developed methodology is analyzed using the Mean Absolute Percentage Error (MAPE) technique. Seven existing
methods, such as the Gaussian cloud method, Discriminant method, Mutation series method, Artificial neural
network (ANN), Support vector machine (SVM), Grey wolf optimizer and Support vector classification method
(GWO-SVC) and Rock mass rating method (RMR) are used for comparison with the proposed GHDQR method.
The share of the highly accurate category of 85.71% clearly indicates compliance with actual values obtained by
the compared methods. The results of comparisons showed that the model enables objective, efficient, and reliable
assessment of rock mass quality.
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GWO–SVC Grey Wolf Optimizer and Support Vector Classification method
RMR Rock Mass Rating method
MAPE Mean Absolute Percentage Error

1 Introduction

Underground and open-pit mines are complex undertakings, mainly underground mines, for
stability and economy. In addition to mining, many engineering projects are closely related to rock
stability, such as tunneling, hydropower engineering, traffic engineering, and others. For all these
endeavors, the stability assessment of surrounding rock is vital in designing and constructing such
engineering objects.

The significance of the assessment of rock mass quality is supported by the fact that there
are different approaches to solving this problem. Many scholars implemented various methods and
approaches for rock mass classification and rock mass analysis, such as fuzzy sets theory [1–4],
fuzzy RMR method [5,6], RMR method [7], Gaussian cloud model [8], modified RMR method
[9], fuzzy inference system [10,11], multi-criteria decision–making (MCDM) methods [12–15], Least
squares support vector machine [16], Support vector machine [17], Deep learning approach [18,19],
Artificial neural networks [20], Deep neural network [21], Support vector regression [22], Stacking
ensemble learning [23], Convolutional neural networks [24,25], Machine learning [26], Cloud model
[27], Discrete element method [28] and others. Also, several authors analyzed and investigated rock
fracture and crack conditions that highly influenced rock mass classification [29–32].

A comprehensive literature review indicated that no studies have investigated the Hausdorff
distance for rock mass classification. In addition, the integrated Gromov-Hausdorff distance was
applied as a discriminant function (classifier) of rock mass quality. Accordingly, the GHDQR method
seeks to fill a gap in the literature review by representing an authentic, innovative, and efficient
mechanism for rock mass quality optimization.

The innovative aspects and significance of this study can be summarized as follows:

a) A new methodology for rock mass classification based on the Gromov-Hausdorf distance is
presented.

b) The GHDQR method is developed under the MCDM and interval environment.

c) This method offers a relatively simple and easy procedure for calculating the rock mass quality.

d) A computational process is minimally time-consuming,

e) The GHDQR method is more stable and effective than other rock mass classification
approaches.

This study proposes a methodology based on the discriminant function with uncertainty.
Firstly, the algorithm transforms interval values of selected evaluation indices into crisp values by
calculating the Hausdorff distance between rock samples and indices. This indicates the capability of
treating the data uncertainties, where the interval numbers quantify uncertainties. The normalization
of data creates a nondimensional environment. The developed methodology includes the influence
(weight) of each evaluation index. Weights are defined by the Standard deviation method. Weighted-
normalized data are further processed. The algorithm creates an artificial class of rock mass and
partitions each space of real and artificial class into min and max subspaces. For min and max
subspaces separately, the Gromov-Hausdorff function on metric spaces defines the distance between
each real and artificial class. Finally, the algorithm calculates the aggregated intensities of distances of
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min and max subspaces for each real class and sorts them in descending order. The maximum value of
aggregated intensity defines the class of the rock mass sample. The method’s efficiency is validated by
comparing it to seven existing methods. The results showed that the model enables objective, efficient,
and reliable assessment of rock mass quality.

The structure of this study is as follows. Section 1 presents the background of the conducted
research. Section 2 indicates the developed methodology in detail. Section 3 contains comparisons
of the GHDQR method to seven existing methods, sensitivity analysis, and a discussion of the results
for efficiency estimation of the developed model. Section 4 provides conclusions and further direction
of research.

2 Methodology of Assessment

This study uses the Gromov-Hausdorff distance to match rock samples and a defined set of classes
for a finite set of evaluation indexes. Samples and classes present the metric spaces, and the algorithm
calculates the matching intensity between them. The calculated intensity between the rock sample and
each class presents a discriminant value employed to determine the class to which the sample belongs.
The developed classifier selects the maximum intensity value and assigns the class to the rock sample.
Experts can define a finite set of evaluation indices based on available information about the rock
sampled and form the evaluation matrix. In the following part, the mathematical formulation of the
developed methodology is presented in twelve successive steps.

Step 1: Define the vector of characteristics of the rock mass sample.

The rock sample is obtained by core-drilling operations, and it is characterized by the following
vector Y :

Y = (
y1 y2 . . . yn

)
(1)

where:

n is the total number of characteristics of rock mass.

Each element of the vector Y presents one characteristic of the sampled rock, which is defined by
the adequate test.

Step 2: Creation of interval rock mass evaluation matrix.

The interval rock mass evaluation matrix is created according to the information obtained from
different tests that were conducted on the rock mass sample, and the characteristics are presented by
the vector Y . Several matrix columns equal n.

The stability of the surrounding rock is defined by classes, where each class signifies a closed region
that contains a description of the rock. Each class property is influenced by the finite set of rock mass
evaluation indices, which form a closed region. Accordingly, it is more appropriate to consider indices
as interval numbers when determining the class of surrounding rock. Hence, the index is treated as an
interval number.

Definition 1: The number â is an interval or grey number which is defined in real line R and
expressed as â = [

al, au
]
, where al and au are the lower and upper bound of an interval number. If

al = au, then â is a real number [33].
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The relationship between classes and rock mass evaluation indexes can be presented in the
following interval matrix form:

X̂ = [[
xl

ij, xu
ij

]]j=1,2,...,n

i=1,2,...,m
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 . . . Ij

target max ∨ min max ∨ min . . . max ∨ min

C1

[
xl

11, xu
11

] [
xl

12, xu
12

]
. . .

[
xl

1j, xu
1j

]
C2

[
xl

21, xu
21

] [
xl

22, xu
22

]
. . .

[
xl

2j, xu
2j

]
...

...
...

. . . . . .

Ci

[
xl

i1, xu
i1

] [
xl

i2, xu
i2

]
. . .

[
xl

mn, xu
mn

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where elements of the matrix are as follows:

X is the interval matrix of classes,

C = [C1, C2, . . . , Cm] is a finite set of classes,

I = [I1, I2, . . . , In] is a finite set of evaluation indexes,[
xl

ij, xu
ij

]
is the interval value of the i-th class for the j-th evaluation index,

i is the total number of classes,

j is the total number of evaluation indices,

target is the desired extreme value of the evaluation index.

Analyzing the matrix X̂ indicates that each matrix row presents a class vector.

Step 3: Transformation of an interval matrix to crisp one.

The crisp rock mass evaluation matrix is obtained by calculating the Hausdorff distance between
each element of the i-th class vector and each vector Y . The Hausdorff distance is the maximum
distance of a set to the nearest point in the other set [34].

Definition 2: Let A = [a1, a2, . . . , ak] and B = [
b1, b2, . . . , bq

]
be two finite sets, the Hausdorff

distance H (A, B) is defined as follows:

H (A, B) = max {h (A, B), h (B, A)} (3)

where:

h (A, B) = max︸︷︷︸
a∈A

min︸︷︷︸
b∈B

d (a, b) (4)

where:

a, b are elements of sets A and B, respectively,

d (a, b) is any metric between these elements,

h (A, B), h (B, A)–the directed Hausdorff distances.

The function h (A, B) is ranking each element of set A using its distance to the nearest element of
set B, and then the highest ranked element presents the distance value between A and B.

Let â = [
al, au

]
and b̂ = [

bl, bu
]

be two interval-grey numbers, then Hausdorff distance between
them is defined by the following equation:

H
(

â, b̂
)

= max
{∣∣al − bl

∣∣ , |au − bu|} (5)



CMES, 2024, vol.140, no.3 2639

The Hausdorff distance between each element of the i-th class vector and each element of the
vector Y is calculated using Eq. (5) as follows:

Hi

(
Ĉi, Y

)
= Zi = (

zi1 zi2 . . . zij

)
, ∀i ∈ [1, m], j = 1, 2, . . . , n (6)

where⎛
⎜⎜⎜⎜⎝

zi1 = max
{∣∣xl

i1 − y1

∣∣ ,
∣∣xu

i1 − y1

∣∣}
zi2 = max

{∣∣xl
i2 − y2

∣∣ ,
∣∣xu

i2 − y2

∣∣}
...

zij = max
{∣∣xl

ij − yj

∣∣ ,
∣∣xu

ij − yj

∣∣}

⎞
⎟⎟⎟⎟⎠

T

, ∀i ∈ [1, m], j = 1, 2, . . . , n (7)

The calculation’s outcome of the Hausdorf distance is the following matrix with crisp elements:

Z = [
zij

]j=1,2,...,n

i=1,2,...,m
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 . . . Ij

target min min . . . min

C1 z11 z12 . . . z1j

C2 z21 z22 . . . z2j

...
...

...
. . . . . .

Ci zi1 zi2 . . . zmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Step 4: Creation of min and max targets.

Since all desired values are uniformly distributed, i.e., all indices tend to get min target, one of
the indices must be transformed into the opposite target value. Hence, there must exist min and max
targets. It is a precondition to the GHDQR method working correctly. The calculation of reciprocal
values of a selected index does it. Index I1 is selected to be transformed, and its reciprocal values are
1
zi1

, ∀i = 1, 2, . . . , m. The rest of the elements of the matrix Z remain the same. The new transformed

matrix is:

Z = [
zij

]j=1,2,...,n

i=1,2,...,m
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 . . . Ij

target max min . . . min

C1 z11 = 1
z11

z12 . . . z1j

C2 z21 = 1
z21

z22 . . . z2j

...
...

...
. . . . . .

Ci zi1 = 1
zi1

zi2 . . . zmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Step 5: Normalization of index data.

Because the dimensions of the index values are not consistent, the data in the matrix Z must be
transformed into dimensionless values. The following way of normalization is used for transformation.
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For max target value of the index, the normalization is:

rij (max) = max
(
zij

)− zij

max
(
zij

)− min
(
zij

) , ∀i ∈ [1, m], j = 1, 2, . . . , n (10)

For min target value of the index, the normalization is:

rij (min) = zij − min
(
zij

)
max

(
zij

)− min
(
zij

) , ∀i ∈ [1, m], j = 1, 2, . . . , n (11)

The output of normalization is a normalized matrix of the following form:

R = [
rij

]j=1,2,...,n

i=1,2,...,m
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 . . . Ij

target max min . . . min

C1 r11 r12 . . . r1j

C2 r21 r22 . . . r2j

...
...

...
. . . . . .

Ci ri1 ri2 . . . rmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Step 6: Influence of rock mass evaluation index.

The standard deviation method is employed to determine the influence of the rock mass evaluation
index on the classification process. This method belongs to the group of objective methods, and it
excludes the subjectivity of the experts. The following equation is utilized to determine the influence
of the index:

W = [
w1 w2 . . . wj

] =
[

σ1∑n

j=1 σj

σ2∑n

j=1 σj

. . .
σj∑n

j=1 σj

]
(13)

where

σj is the standard deviation of the normalized Hausdorff distance of the j-th index.

The influence of the index can be called the index’s weight by applying decision-making
terminology.

Step 7: Weighing the normalized matrix.

Each element of a matrix R is weighted by the corresponding weight. The outcome of the weighting
process is a weighted normalized matrix as follows:

Q = [
qij

]j=1,2,...,n

i=1,2,...,m
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 . . . Ij

target max min . . . min

C1 q11 q12 . . . q1j

C2 q21 q22 . . . q2j

...
...

...
. . . . . .

Ci qi1 qi2 . . . qmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Element qij of a matrix Q is calculated by:

qij = wjrij, ∀i ∈ [1, 2, . . . , m], ∀j ∈ [1, 2, . . . , n] (15)
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Step 8: Artificial class creation.

In this step, an artificial class is created, composed of the max values of each class index. Elements
of an artificial class are as follows:

K = (
k1 k2 . . . kj

)
, ∀j ∈ [1, 2, . . . , n] (16)

where:

kj = max
(
qij |1 ≤ j ≤ n

)
, ∀i ∈ [1, m] (17)

The artificial class creation process presents the creation of an optimal class space of Hausdorff
distances based on extracting the best value from the existing distance values for each index’s desired
target.

Step 9: Creation of min and max subspaces of an artificial class space.

This step implies dividing an artificial class space into two subspaces. An artificial class space is
the union of min and max subspaces:

K = K(min) ∪ K(max) (18)

Let γ and β = 1 be the total number of indices targeted to min and max desired values, respectively.
Accordingly, an artificial class space can be presented as a union of min subspace and max subspace:

K = [
k1, k2, . . . , kγ

] ∪ [
kβ

]
, ∀i ∈ [1, m], γ + β = j (19)

Step 10: Creation of min and max subspaces of each class space.

Each class in the original matrix X̂ , and therefore, each class in the matrix Q, is treated as a space.
Let γ and β = 1 be the total number of indices targeted to min and max desired values, respectively.
Accordingly, each class space can be presented as a union of min subspace and max subspace:

Ci = Ci(min) ∪ Ci(max), ∀i ∈ [1, m], γ + β = j (20)

Ci = [
qi1, qi2, . . . , qiγ

] ∪ [
qiβ

]
, ∀i ∈ [1, m], γ + β = j (21)

Step 11: Calculation the “intensity” of subspaces.

Intensities of min and max subspaces of an artificial class are calculated as follows:

K(min) =
√

k2
1 + k2

2 + . . . + k2
γ

(22)

K(max) = kβ (23)

The same approach is applied for the min and max subspaces of each class:

Ci(min) =
√

q2
i1 + q2

i2 + . . . + q2
iγ , ∀i ∈ [1, m] (24)

Ci (max) = qiβ , ∀i ∈ [1, m] (25)

Step 12: Rock mass quality classifier.

A classifier was developed based on the Gromov-Hausdorff distance between two metric spaces
to assess to which class a rock mass sample belongs. For basic properties of the Gromov-Hausdorff
distance, see [35–37].
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Let a and b be two non-negative numbers, and a, b ∈ �≥0, then absolute p–difference between
them is defined by the following expression:

�p : = |ap − bp| 1
p , p ∈ [1, ∞) (26)

The main idea of the rock mass quality classifier is to use the Gromov-Hausdorff distance between
an artificial class space and i-th class space to find out the class of the rock sample. Based on the
decomposition process, there are two spaces, K = [K(min), K(max)] and Ci = [Ci(min), Ci(max)],
where each space contains min and max subspace. All relations between K and Ci can be presented as
a graph G(V , E), where V is a set of vertices, and E is a set of edges. Within this study, a set of vertices
equals a set of subspaces, while a set of edges equals the relations between subspaces (Fig. 1).

Figure 1: Relations between an artificial class space and i-th class space

No crossing edges are allowed in the graph. It implies the existence of only one-to-one relationships
between K and Ci spaces. In order to meet this condition, the original graph is partitioned into two
subgraphs, G(min) and G(max), as depicted in Fig. 2.

Figure 2: Disjoint subgraphs of an original graph

Let K (min) and Ci (min) be a minimum class subspace of an artificial class and minimum
subspace of the i-th class space, respectively, then the absolute p–difference between these subspaces
equals:

�i,p(min, min) : = ∣∣Kp (min) − Cp
i (min)

∣∣ 1
p , ∀i ∈ [1, m] (27)

Analogically, this study defines absolute p–difference for max subspaces:

�i,p (max, max) : = ∣∣Kp (max) − Cp
i (max)

∣∣ 1
p , ∀i ∈ [1, m] (28)
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For rock mass quality assessment, the value of p is p ≥ 2. This study adopts p = 2. The intensity
of the integrated absolute p–difference is defined as follows:

�i,2 =
√

�i,2
2
(min, min) + �i,2

2
(max, max)

=
√∣∣K2 (min) − C2

i (min)
∣∣+ ∣∣K2 (max) − C2

i (max)
∣∣, ∀i ∈ [1, m] (29)

Finally, the discriminant function (classifier) is defined as follows:

C = max
{
�i,2

} = max
{√∣∣K2 (min) − C2

i (min)
∣∣+ ∣∣K2 (max) − C2

i (max)
∣∣} , i = 1, 2, . . . , m (30)

A class with the highest value of
{
�i,2

}
, i = 1, 2, . . . , m is a class of a sample Y .

The methodology for determining the rock mass class of surrounding rock is shown in the
following graphical way (Fig. 3).

Figure 3: Graphical presentation of the rock mass quality assessment

The developed algorithm for the same purpose is depicted in Fig. 4.

3 Numerical Example

This section uses three numerical examples from different studies to validate the developed
method. Classes obtained by the GHDQR method are compared to classes obtained by other methods.

3.1 Example One
The underground engineering of the Guangzhou Pumped Storage Power Station is considered

an engineering example to evaluate the efficiency of the developed methodology. The stability of
the surrounding rock is affected by many parameters. In this comparison, the research applies the
following parameters, i.e., rock mass evaluation indices [8]:

a) the rock quality index RQD (%),

b) uniaxial saturated compressive strength Rw (MPa),

c) integrity coefficient Kv,

d) structural plane strength coefficient Kf ,
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e) groundwater seepage quantity W
(

l
min ·10 m

)
.

Figure 4: Flowchart for the rock mass quality assessment based on the Gromov-Hausdorff distance
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The stability of surrounding rock is divided into the following five classes based on the previously
selected rock mass evaluation indices (Table 1) [8].

Table 1: Values of selected rock mass indexes

Class number RQD (%) Rw (MPa) Kv Kf W
(

l
min ·10 m

)

1 90–100 120–200 0.75–1 0.8–1 0–5
2 75–90 60–120 0.45–0.75 0.6–0.8 5–10
3 50–75 30–60 0.3–0.45 0.4–0.6 10–25
4 25–50 15–30 0.2–0.3 0.2–0.4 25–125
5 0–25 0–15 0–0.2 0–0.2 125–300

The properties of each class are presented in Table 2 [38].

Table 2: Properties of classes

Class number Description Average stand-up time Cohesion of rock
mass (kPa)

Friction angle
of rock mass (o)

1 Very good rock 20 years for 15 m span 400< 45<

2 Good rock 1 year for 10 m span 300–400 35–45
3 Fair rock 1 week for 5 m span 200–300 25–35
4 Poor rock 10 h for 2.5 m span 100–200 15–25
5 Very poor rock 30 min for 1 m span <100 <15

Interval matrix X̂, which presents the relationship between five classes and a set of five rock mass
evaluation indices, is described as follows:

X̂ = [[
xl

ij, xu
ij

]]j=1,2,...,5

i=1,2,...,5
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 I3 I4 I5

target max max max max min

C1 [90, 100] [120, 200] [0.75, 1] [0.8, 1] [0, 5]

C2 [75, 90] [60, 120] [0.45, 0.75] [0.6, 0.8] [5, 10]

C3 [50, 75] [30, 60] [0.3, 0.45] [0.4, 0.6] [10, 25]

C4 [25, 50] [15, 30] [0.2, 0.3] [0.2, 0.4] [25, 125]

C5 [0, 25] [0, 30] [0, 0.2] [0, 0.2] [125, 300]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

Sample vector, with values of RQD, Rw, Kv, Kf , and W is:

Y = (
71.8 90.1 0.57 0.45 0

)
(32)
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For the RQD index, the Hausdorff distance between matrix element
[
xl

11, xu
11

]
and vector element

y1 equals:

H ([90, 100], [71.8, 71.8]) = max {|90 − 71.8| , |100 − 71.8|} = 28.2 (33)

Analogically, the following matrix Z of the Hausdorff distances is obtained:

Z = [
zij

]j=1,2,...,5

i=1,2,...,5
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 I3 I4 I5

target min min min min min

C1 28.20 109.90 0.43 0.55 5.00

C2 18.20 30.10 0.18 0.35 10.00

C3 21.80 60.10 0.27 0.15 25.00

C4 46.80 75.10 0.37 0.25 125.00

C5 71.79 90.09 0.56 0.44 300.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

Since all indexes I1, I2, I3, I4, and I5 tend to achieve min value as the best one, it is necessary to
create min and max targets. This study selects the index I1 to be transformed into max target. The
reciprocal value of the element z11 is as follows:

z11 = 1
28.20

= 0.03546 (35)

Values of the elements z12, z13, z14, and z15 are calculated analogically, and the new transformed
matrix Z is as follows:

Z = [
zij

]j=1,2,...,5

i=1,2,...,5
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 I3 I4 I5

target max min min min min

C1 0.03546 109.90 0.43 0.55 5.00

C2 0.05495 30.10 0.18 0.35 10.00

C3 0.04587 60.10 0.27 0.15 25.00

C4 0.02137 75.10 0.37 0.25 125.00

C5 0.01393 90.09 0.56 0.44 300.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

Values of the remaining indices for classes hold the same values as in the matrix Z. This research
continues with creating a dimensionless matrix R by the normalization process. For max target value
of the RQD index, the normalization of the element z11 is as follows:

r11 (max) = 0.05495 − 0.03546
0.05495 − 0.01393

= 0.47504 (37)

For min target value of the RQD index, the normalization of the element z15 is:

r15 (min) = 5 − 5
300 − 5

= 0 (38)
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Accordingly, the normalized matrix R is produced with the following values of its elements:

R = [
rij

]j=1,2,...,5

i=1,2,...,5
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 I3 I4 I5

target max min min min min

C1 0.47504 1.00000 0.65789 1.00000 0.00000

C2 0.00000 0.00000 0.00000 0.50000 0.01695

C3 0.22122 0.37594 0.23684 0.00000 0.06780

C4 0.81865 0.56391 0.50000 0.25000 0.40678

C5 1.00000 0.75175 1.00000 0.72500 1.00000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

The influence (weight) of each index is calculated using the standard deviation method. The vector
of the standard deviation is as follows:

σ = [
0.41226 0.37931 0.38470 0.39147 0.42586

]
(40)

Weights w1 of index I1 equals:

w1 = 0.41226
0.41226 + 0.37931 + 0.38470 + 0.39147 + 0.42586

(41)

Analogically, the weights of indices I2, I3, I4, I5, and their values are calculated as follows:

W = [
0.20679 0.19027 0.19297 0.19636 0.21361

]
(42)

Weighted normalized element q11 is calculated as the product of the weight of the index I1 and
normalized value of the RQD for class 1:

q11 = 0.20679 · 0.47504 = 0.09823 (43)

In the same way, the rest of the weighted normalized elements are calculated, and the outcome of
the calculation is presented by matrix Q:

Q = [
qij

]j=1,2,...,5

i=1,2,...,5
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C, I I1 I2 I3 I4 I5

target max min min min min

C1 0.09823 0.19027 0.12695 0.19636 0.00000

C2 0.00000 0.00000 0.00000 0.09818 0.00362

C3 0.04575 0.07153 0.04570 0.00000 0.01448

C4 0.16929 0.10729 0.09648 0.04909 0.08689

C5 0.20679 0.14303 0.19297 0.14236 0.21361

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

The artificial value of index I1 is extracted using Eq. (17) as follows:

k1 = max
(
0.09823 0.00000 0.04575 0.16929 0.20679

) = 0.2067 (45)

The artificial class space is yielded by applying the same equation to the rest of the indices as
follows:

K = (
0.20679 0.19027 0.19297 0.19636 0.21361

)
(46)
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It is necessary to define elements of these subspaces while respecting the prerequisite of existing
min and max subspaces of each class space. Artificial class space K presents the union of the subspace
K (min) and subspace K (max):

K = K (min) ∪ K (max) = [k2, k3, k4, k5] ∪ [k1] (47)

K = K (min) ∪ K (max) = [0.19027, 0.19297, 0.19636, 0.21361] ∪ [0.20679] (48)

Class space C1 presents the union of the subspace C1 (min) and subspace C1 (max):

C1 = C1 (min) ∪ C1 (max) = [q12, q13, q14, q15] ∪ [q11] (49)

C1 = [0.19027, 0.12695, 0.19636, 0.00000] ∪ [0.09823] (50)

Following the calculation of the intensity of subspaces K(min) and K(max), the results are
presented as follows:

K (min) = √
0.190272 + 0.126952 + 0.196362 + 0.213612 = 0.39702 (51)

K (max) = 0.20679 (52)

Intensities of C1 (min) and C1 (max) are as follows:

C1 (min) = √
0.190272 + 0.126952 + 0.196362 + 0.000002 = 0.30146 (53)

C1 (max) = 0.09823 (54)

The same way is applied to get subspaces of classes C2, C3, C4, C5, and their intensities. Table 3
shows the intensities of subspaces.

Table 3: Intensities of subspaces

Class Ci(min), i = 1, 2, . . . , 5 Ci(max), i = 1, 2, . . . , 5

1 0.30146 0.09823
2 0.09825 0.00000
3 0.08611 0.04575
4 0.17545 0.16929
5 0.35156 0.20679

The absolute p–difference between subspaces K (min) and C1 (min) for class 1, equals:

�1,2(min, min) : = ∣∣K2 (min) − C2
1(min)

∣∣ 1
2 = ∣∣0.397022 − 0.301462

∣∣ 1
2 = 0.25836 (55)

The absolute p–difference between subspaces G (max), C1 (max), for class 1, equals:

�1,2 (max, max) : = ∣∣K2 (max) − C2
1 (max)

∣∣ 1
2 = ∣∣0.206792 − 0.098232

∣∣ 1
2 = 0.18197 (56)

The intensity of the integrated absolute p–difference for class 1 is as follows:

�1,2 = √
0.258362 + 0.181972 = 0.31601 (57)



CMES, 2024, vol.140, no.3 2649

Intensities of the absolute p–differences for all classes are listed in Table 4.

Table 4: Intensities of the absolute p–differences of classes

Class The absolute p–difference

1 �1,2 = 0.31601
2 �2,2 = 0.43673
3 �3,2 = 0.43690
4 �4,2 = 0.37543
5 �5,2 = 0.18448

The value of the discriminant function (classifier) of the rock sample is determined using Eq. (30)
as follows:

C = max {0.31601, 0.43673, 0.43690, 0.37543, 0.18448} = 0.43690 (58)

Since �3,2 = 0.43690 is the maximum value, which indicates that the rock sample belongs to Class
3, with properties defined in Table 2.

A developed rock mass classifier was applied to thirty rock samples, and the classification results
are presented in Table 5 and Fig. 5.

Table 5: Classification of rock samples for Example 1

Sample RQD (%) Rw (MPa) Kv Kf W
(

l
min ·10 m

)
GCM∗ class GHDQR

class

1 71.8 90.1 0.57 0.45 0 2 3
2 51 40.2 0.38 0.55 10 3 3
3 52 25 0.22 0.52 12 3–4 3
4 68 90 0.38 0.38 21 3 3
5 28 40 0.32 0.3 18.5 3–4 4
6 51 45 0.15 0.3 5 3 3
7 76 95 0.7 0.55 12 2 2
8 87 95 0.7 0.5 9.8 2 2
9 76 90 0.57 0.5 11 2–3 2
10 50 35 0.3 0.35 20 3–4 3
11 68 90 0.57 0.35 18.5 2–3 3
12 82 95 0.7 0.35 0 2 2
13 75 87.3 0.3 0.63 0 2 2
14 30.2 8.4 0.18 0.18 50 5 4
15 100 200 1 1 0 1 1
16 97.5 180 0.94 0.95 1.3 1 1
17 95 160 0.88 0.95 2.5 1 1
18 92.5 140 0.81 0.85 3.8 1 1

(Continued)
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Table 5 (continued)

Sample RQD (%) Rw (MPa) Kv Kf W
(

l
min ·10 m

)
GCM∗ class GHDQR

class

19 86.3 105 0.68 0.75 6.3 2 2
20 82.5 90 0.6 0.7 7.5 2 2
21 78.8 75 0.53 0.65 8.8 2 2
22 68.8 52.5 0.41 0.55 13.8 3 3
23 62.5 45 0.38 0.5 17.5 3 3
24 56.3 37.5 0.34 0.45 21.3 3 3
25 43.8 26.3 0.28 0.35 50.6 4 4
26 37.5 22.5 0.25 0.3 75 4 4
27 31.3 18.8 0.23 0.25 100 4 4
28 18.8 11.3 0.15 0.15 169 5 5
29 12.5 7.5 0.1 0.1 213 5 5
30 6.3 0.8 0.05 0.05 256 5 5

Note: ∗GCM–Gaussian cloud model.

Figure 5: Comparison results between the obtained and actual values

In two cases, the GHDQR model missed actual values. It happened in Samples 1 and 14. The
model assigned one class lower on Sample 1 and one class higher on Sample 4. MAPE was employed
to analyze the efficiency of the GHDQR method. The following equation defines it:

MAPE =
N∑

i=1

∣∣∣∣Ca − CGHDQR

Ca

∣∣∣∣× 100% (59)
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where:

Ca is the actual class of rock mass

CGHDQR is class obtained by developed methodology

N is the total number of rock samples

In this comparison, MAPE equals:

MAPE = 0.7
30

× 100% = 2.33% (60)

3.2 Example Two
This subsection will not present detailed calculus, as in the previous one, but only the obtained

results and comparison indicators. This comparison is conducted using data obtained from the
literature [27]. Classification indices for rock mass quality grades are previously listed in Table 1. A
developed rock mass classifier is applied to seventeen rock samples, and the classification results are
depicted in Table 6 and Fig. 6. The literature [27] used the following four methods for classification:
Discriminant, Mutation series, ANN, and SVM.

Table 6: Classification of rock samples for Example 2

Section (m) Degree of
weathering
alteration

Sample Evaluation factors GHDQR Discriminant
method

Other methods of
discrimination

RQDRw Kv Kf W Mutation
series method

ANN SVM

0 + 000–0
+ 067

Medium-week
weathered fault
alteration zone

Sample 1 26.0 36.0 0.22 0.35 5.0 4 4 4 4 4
Sample 2 50.0 40.2 0.50 0.50 10.0 3 3 3 3 3
Sample 3 52.0 25.0 0.20 0.50 5.0 3 4 3 3 3

0 + 067–0
+ 130

Weak weathering Sample 4 71.0 90.0 0.35 0.30 18.0 3 3 3 3 3
Sample 5 75.0 95.0 0.70 0.50 0.0 2 2 2 2 2

0 + 130–0
+ 198

Micro-weathering Sample 6 77.5 90.0 0.57 0.45 10.0 2 2 2 2 2
Sample 7 50.0 70.0 0.50 0.25 5.0 3 3 3 3 3
Sample 8 50.9 34.0 0.32 0.35 21.0 3 3 3 3 3

0 + 198–0
+ 297

Fault alteration
zone

Sample 9 31.5 20.0 0.23 0.25 46.0 4 4 4 4 4
Sample 10 50.6 26.0 0.26 0.35 20.0 3 3 3 3 3
Sample 11 75.5 90.0 0.45 0.52 8.0 2 2 2 2 2

0 + 297–0
+ 406

Micro-weathering Sample 12 85.5 94.0 0.65 0.55 0.0 2 2 2 2 2
Sample 13 80.0 95.0 0.50 0.45 0.0 2 2 2 2 2

0 + 406–0
+ 426

Fault alteration
zone

Sample 14 35.0 70.5 0.35 0.30 10.0 4 3 3 4 3
Sample 15 50.0 90.0 0.5 0.25 5.0 3 3 3 3 3

0 + 426–0
+ 500

Micro-weathering Sample 16 85.0 93.0 0.60 0.50 0.0 2 2 2 2 2
Sample 17 78.5 92.0 0.55 0.50 6.0 2 2 2 2 2
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Figure 6: (Continued)
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Figure 6: Comparison results between the obtained and actual values: (a) Discrimination method, (b)
Mutation method, (c) ANN, (d) SVM

The efficiency of the GHDQR method for the Discrimination, Mutation, ANN, and SVM is listed
in Table 7.

GHDRQ-Discrimination method: in two cases, the GHDQR model missed actual values. It
occurred in Samples 3 and 14. The model assigned one class higher on Sample 3 and one lower on
Sample 14. The MAPE is 3.43%.
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Table 7: The MAPE for Example 2

MAPE

Method model Discrimination method Mutation method ANN SVM
GHDQR 3.43% 1.96% 0% 1.96%

GHDRQ-Mutation method: in one case, the GHDQR model missed actual values. It occurred on
Sample 14. The model assigned one class lower than the actual one. The MAPE is 1.96%.

GHDRQ-ANN method: there are no missed values. The MAPE is 0%.

GHDRQ-ANN method: The same result was obtained as the GHDQR-Mutation method.

The average value of the MAPE for these four comparisons is 1.84%.

Fig. 6 and Table 7 indicate that the GHDQR methodology is compared to four rock mass
classification methods: Discrimination, Mutation, ANN, and SVM. The results clearly show that the
relationship between the methods compared to the proposed method is very high. It is also proven
by the average value of the MAPE with 1.84%. It indicates highly accurate compatibility between
results obtained by the proposed method and results obtained by the abovementioned methods. The
developed method aligns with the compared methods and can be applied to classify different rock
samples.

3.3 Example Three
This comparison adopted data from the literature [17]. The selected rock mass indices are:

f) Uniaxial saturated compressive strength Rw (MPa),

g) Rock quality index RQD (%),

h) Integrity coefficient Kv,

i) Groundwater seepage quantity W
(

l
min ·10 m

)
.

Table 1 shows the indices values. The developed GHDQR classifier was applied to nine rock
samples, and the classification results are listed in Table 8 and Fig. 7.

Table 8: Classification of rock samples for Example 3

Sample Type of rock Rw

(MPa)
RQD
(%)

Kv W
(

l
min ·10 m

)
GHDQR GWO-SVC∗ RMR∗∗

1 Quartzite of
hanging wall

96.86 52 0.45 25 2 3 3

2 Quartzite of
hanging wall

151.63 64 0.65 1 2 2 2

3 Quartzite of
footwall

172.61 67 0.65 1 2 2 2

(Continued)
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Table 8 (continued)

Sample Type of rock Rw

(MPa)
RQD
(%)

Kv W
(

l
min ·10 m

)
GHDQR GWO-SVC∗ RMR∗∗

4 Flint-bearing
banded dolomite

56.49 68 0.65 20 3 3 3

5 Slate of ore body 127.92 72 0.65 2 2 2 3
6 Quartzite of

hanging wall
98.23 74 0.65 10 2 2 3

7 Quartzite of
footwall

81.06 80 0.65 0 2 2 2

8 Conglomerate of
footwall

104.71 76 0.65 1 2 2 2

9 Base granite 162.36 65 0.65 0 2 2 2

Note: ∗GWO–SVC–Grey wolf optimizer and Support vector classification method. ∗∗ RMR–Rock mass rating method.
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1 2 3 4 5 6 7 8 9

C
la

ss

Sample

GHDQR GWO-SVC RMR

Figure 7: Comparison results between the GHDQR, GWO-SVC and RMR methods

The MAPE between methods, which have been mutually compared, is presented in Table 9.
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Table 9: The MAPE for Example 3

MAPE

Method Model GWO-SVC RMR

GHDQR 3.70% 11.11%

The average value of the MAPE for the GHDQR method is 7.41%.

3.4 Sensitivity Analysis
The following part presents the sensitivity analysis of the proposed methodology. As part of the

sensitivity analysis, the variation of the parameter p within the expression (26) is analyzed. The initial
results shown in the examples are defined for the values of the parameter p = 2. Since the parameter
p can have values from the interval p ∈ [1, ∞) in the following section, the influence of other values
p ∈ [1, ∞) on the model results is analyzed.

Since the value of the parameter p is defined based on subjective assessments, in the following part,
the dependence of the results on the value of the specified parameter (for example one) is considered.
To examine the influence of the parameter p, thirty scenarios are generated. In the first scenario, the
value of p = 2 is adopted, while in each subsequent scenario, the value of p is increased by one. Fig. 8
depicts the values of �p generated for parameter values 2 ≤ p ≤ 30.

Figure 8: (Continued)
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Figure 8: (Continued)
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Figure 8: Rock mass quality classifier values for 2 ≤ p ≤ 30: (a) class 1, (b) class 2, (c) class 3, (d) class
4, (e) class 5, (f) summarized class 1–5

Fig. 8a through 8f indicate that the parameter p affects the variation of �p, and thus the results. By
analyzing the presented results, increasing the parameter p impacts the approximation of the value �p.
The choice of the value of the parameter p > 5 makes it difficult to choose the dominant Class clearly;
hence, it is recommended to adopt a value in the interval 2 ≤ p ≤ 5 to define the initial solution.
Fig. 8f shows that Class 3 represents the dominant solution in example one.

The graphical interpretation of the results of the change of the parameter 2 ≤ p ≤ 30 is depicted in
Fig. 8. The variations in the parameter p caused a change in the value of the rock mass quality classifier
and selection of the dominant Class. For easier monitoring of changes in the dominant Class during
the simulation, the results are listed in Table 10. Table 10 presents the rock mass quality in example
one during the considered thirty scenarios (2 ≤ p ≤ 30).
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Table 10: Rock mass quality in Example 1 for 2 ≤ p ≤ 30

p value Priority

1st 2nd 3rd 4th 5th

p = 2 Class 3 Class 2 Class 4 Class 1 Class 5
p = 3 Class 3 Class 2 Class 4 Class 1 Class 5
p = 4 Class 3 Class 2 Class 4 Class 1 Class 5
p = 5 Class 3 Class 2 Class 4 Class 1 Class 5
p = 6 Class 3 Class 2 Class 4 Class 1 Class 5
p = 7 Class 3 Class 2 Class 4 Class 1 Class 5
p = 8 Class 3 Class 2 Class 4 Class 1 Class 5
p = 9 Class 3 Class 2 Class 4 Class 1 Class 5
p = 10 Class 3 Class 2 Class 4 Class 1 Class 5
p = 11 Class 3 Class 2 Class 4 Class 1 Class 5
p = 12 Class 3 Class 2 Class 4 Class 1 Class 5
p = 13 Class 3 Class 2 Class 4 Class 1 Class 5
p = 14 Class 3 Class 2 Class 4 Class 1 Class 5
p = 15 Class 3 Class 2 Class 4 Class 1 Class 5
p = 16 Class 3 Class 2 Class 4 Class 1 Class 5
p = 17 Class 3 Class 2 Class 1 Class 4 Class 5
p = 18 Class 3 Class 2 Class 1 Class 4 Class 5
p = 19 Class 3 Class 2 Class 1 Class 4 Class 5
p = 20 Class 3 Class 2 Class 1 Class 4 Class 5
p = 21 Class 3 Class 2 Class 1 Class 4 Class 5
p = 22 Class 3 Class 2 Class 1 Class 4 Class 5
p = 23 Class 3 Class 2 Class 1 Class 4 Class 5
p = 24 Class 3, Class 2 – Class 1 Class 4 Class 5
p = 25 Class 3, Class 2 – Class 1 Class 4 Class 5
p = 26 Class 3, Class 2 – Class 1 Class 4 Class 5
p = 27 Class 3, Class 2 – Class 1 Class 4 Class 5
p = 28 Class 3, Class 2 – Class 1 Class 4 Class 5
p = 29 Class 3, Class 2 – Class 1 Class 4 Class 5
p = 30 Class 3, Class 2 – Class 1 Class 4 Class 5

Table 10 shows that for all values of the parameter p, Class 3 illustrates the dominant solution from
the considered set. Since the statistical correlation of the results across the scenarios is high, it can be
concluded that the initial solution was confirmed. A similar analysis was performed for examples two
and three, which is omitted in this paper.
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3.5 Summary Discussion on Comparison and Model
In Section 3, the Gromov-Hausdorff distance for quality of rock method was compared to the

following seven methods:

1. Gaussian cloud method,

2. Discriminant method,

3. Mutation series method,

4. ANN,

5. SVM,

6. GWO-SVC,

7. RMR.

Comparisons were conducted for the following five-rock mass evaluation indices:

j) Rock quality index RQD (%),

k) Uniaxial saturated compressive strength Rw (MPa),

l) Integrity coefficient Kv,

m) Structural plane strength coefficient Kf ,

n) Groundwater seepage quantity W
(

l
min ·10 m

)
.

Table 11 details the interpretation of typical MAPE values [39].

Table 11: Interpretation of typical MAPE values [39]

MAPE (%) Linguistic description

<10 Highly accurate
(10–20] Good
(20–50] Reasonable
>50 Inaccurate

The MAPE scale in Table 11 can be treated as a rigorous approach, as there are only four
categories. Each category is defined by adequate numerical value and associated linguistic description.
Based on the obtained numerical values of comparisons, the MAPE of the GHDQR method is
illustrated in Table 12.

Table 12: The MAPE of the GHDQR methodology

Developed method Actual method MAPE Numerical
value

MAPE Linguistic
description

Number of
samples

GHDQR Gaussian cloud method 2.33% Highly accurate 30
GHDQR Discriminant method 3.43% Highly accurate 17
GHDQR Mutation series method 1.96% Highly accurate 17

(Continued)
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Table 12 (continued)

Developed method Actual method MAPE Numerical
value

MAPE Linguistic
description

Number of
samples

GHDQR ANN 0% Highly accurate 17
GHDQR SVM 1.96% Highly accurate 17
GHDQR GWO-SVC 3.70% Highly accurate 9
GHDQR RMR 11.11% Good 9

The comparisons demonstrated that the classification results of the model are consistent with the
actual classes obtained by the mentioned methods. The share of the highly accurate category is 85.71%,
while the share of the good category is 14.29%. It indicates that the GHDQR methodology is feasible
for surrounding rock quality classification.

Compared to other rock mass classification methods, the GHDQR method is a transparent tool
for asses the quality of the rock sample. GHDQR methodology consists of a total of twelve steps.
Each step is described in detail by the mathematical formulas and graphically illustrated through
the flowchart of the model. Also, the exhaustive step-by-step presentation of numerical examples
shows a high level of explainability and interpretability. The proposed methodology is simple and
easy to understand. Although this methodology consists of twelve steps, it does not require high
computational time. The algorithm is not limited to the input data size, which indicates the developed
model’s great stability and reliability. Considering all these positive aspects, the proposed GHDQR
methodology presents a powerful tool for analyzing the rock mass and rock sample classification.

The performances of the GHDQR method are listed as follows: data type is quantitative, MAPE
is highly accurate, transparency is good, the complexity of the method is less, consumption time is low,
and mathematical calculus required is low. The GHDQR method for assessing rock mass quality is a
reliable tool that is easy to understand and implement.

4 Conclusion

This study develops an innovative approach for rock mass quality rating in a multi-criteria grey
environment named GHDQR. It proposes a new discriminant function (classifier) based on the
Gromov-Hausdorff metric space distance for assessing rock mass quality. These metric spaces are
the rock mass evaluation matrix and rock sample vector. The algorithm can deal with uncertainties
of input data, as interval-grey numbers express the elements of the matrix. The performance of the
proposed methodology is verified by comprehensive comparative analysis through the three numerical
examples, showing its strength and stability. Several advantages can be observed from the obtained
results:

o) A developed classifier objectively defines the class of rock samples, with no experts interfering
in the classification process.

p) The GHDQR method is simple and easy to understand, minimal mathematical calculation is
required, and transparency is good.

q) Compared to seven actual methods, the developed model produces high-accuracy results and
aligns with all mentioned methods.
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r) The GHDQR can be a valuable and reliable rock mass classification tool from all these positive
aspects.

The study has several limitations that can be analyzed in the future. One of the limitations of the
proposed methodology can be reflected in the fact that a case study with actual data is not presented
but only through a comparative analysis. Mining engineers must understand this developed model
and compare the results obtained with our original values. Another limitation can be observed in the
number of parameters evaluating the rock mass. Only five-rock mass evaluation indices are considered
in the proposed model, which should be improved for more parameters such as discontinuity and
groundwater conditions.

Future research will focus on developing a model capable of processing more rock samples
and hydraulic radius simultaneously to assess the conditions for bulk underground mining methods,
such as block caving, sublevel caving, and longwall mining. Another direction of future research
will include actual data, i.e., a case study where the results will verify the proposed methodology’s
practical implication and efficiency. Also, the specific numerical example should be extended to
include the number of parameters evaluating the rock mass in future research. From the point of
view of mathematical calculation, future research can include other techniques for calculating the
distance metrics such as Euclidean distance, Chebyshev distance, Manhattan distance, and others. By
performing a detailed comparative analysis of these methods, the most suitable distance methodology
can be selected as the best one. Also, by combining these approaches, hybrid methods for rock mass
classification can be created.
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