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ABSTRACT

Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-
aries is vital in aircraft design, ocean, and construction engineering. However, current methods such as Lattice
Boltzmann (LBM) and the immersion boundary method based on solid ratio (IMB) have limitations in identifying
custom curved boundaries. Meanwhile, IBM based on velocity correction (IBM-VC) suffers from inaccuracies and
numerical instability. Therefore, this study introduces a high-accuracy curve boundary recognition method (IMB-
CB), which identifies boundary nodes by moving the search box, and corrects the weighting function in LBM by
calculating the solid ratio of the boundary nodes, achieving accurate recognition of custom curve boundaries. In
addition, curve boundary image and dot methods are utilized to verify IMB-CB. The findings revealed that IMB-
CB can accurately identify the boundary, showing an error of less than 1.8% with 500 lattices. Also, the flow in the
custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared
to IBM-VC. Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC, with a 1.45%
drag coefficient error. In addition, the characteristic curve of IMB-CB is very stable, whereas that of IBM-VC is not.
For the moving boundary problem, LBM-IMB-CB with discrete element method (DEM) is capable of accurately
simulating the physical phenomena of multi-moving particle flow in complex curved pipelines. This research
proposes a new curve boundary recognition method, which can significantly promote the stability and accuracy of
fluid-solid interaction simulations and thus has huge applications in engineering.
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IMB-CB Curve boundary recognition method based on IMB
LBM Lattice Boltzmann method
LBE Lattice Boltzmann equation
MRT Multiple relaxation time

1 Introduction

In various fields, including aircraft engineering [1–3], ocean engineering [4–6], construction
engineering [7,8], geological engineering [9,10], and others, coupled computational techniques such
as the LBM and IMB are employed to simulate the impact of two-dimensional complex curved solid
boundaries on the flow field and facilitates the extraction of information about the flow field within the
computational domain, simplifying numerous three-dimensional fluid-structure coupling problems,
which effectively diminishes a substantial amount of computational complexity. Examples of such
problems include wing flow, ship flow, and bridge pier flow, among others.

There are two popular LBM fluid-solid coupling methods: one is based on the IBM [11,12],
defined as IBM-VC in this study, which corrects the velocity of the solid boundary to meet the slip-
free boundary condition. IBM-VC can identify complex curve boundaries through boundary node
velocity interpolation. IBM-VC was gradually developed, including multiphase flow coupling, moving
boundaries, computational efficiency, and others [13–16]. However, IBM-VC is prone to numerical
instability [14,15]. Another alternative method is IMB [17], which introduces a solid node ratio covered
by solid and weighting function in the additional collision term to calculate the solid boundary more
accurately. IMB enables a smooth representation of the solid boundary contour, which many scholars
have proved to be a method with high computational accuracy and stability [18–21]. However, when it
comes to complex curve boundaries, the existing IMB still suffers from a significant problem related
to curve boundaries. The algorithm proposed by Wang et al. [18] is not feasible for achieving custom
curve boundary node detection by calculating the distance between nodes and the center of the circle
or determining the area number of nodes on the circular particle. In addition, few scholars have
investigated the coupling calculation of IMB at curve boundaries and multi-particle flow.

A curve boundary recognition method, IMB-CB, is introduced to promote IMB’s engineering
applicability. This IMB-CB, based on IMB, uses the intersection information matrix between the
search box and the curve to determine the direction of the search box movement. Then, the search
box is moved to identify boundary nodes, and the solid ratio of the boundary nodes is determined to
correct the weighting function in the LBM collision operator, achieving accurate recognition of custom
curve boundaries. In addition, the study involves error analysis of curve boundary recognition, the
influence of grid size on Poiseuille flow, numerical simulation of flow in custom curve boundaries, and
flow patterns around a NACA0012 airfoil with scattered data. The calculated results are systematically
compared to those obtained through IBM-VC to assess the precision and reliability of the algorithm.
Considering the application of IMB-CB in moving boundaries, numerical simulations were conducted
for multi-moving particle flow in curved pipelines.

2 Method
2.1 Basic Theory of IMB-CB

In the Lattice Boltzmann Method, when the system is subjected to body forces F i, and when the
nodes of the lattice elements collide, the LBE [22] is described as follows:

fi (x + ciΔt, t + Δt) − fi (x, t) = Ω (fi) + F i · Δt, (1)
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where x is the spatial coordinates of a lattice element node; t is the time, c is the velocity of the
lattice element node; f (x, c, t) is the velocity distribution function; Ω (fi) is the collision operator
that influences the rate of change of state of lattice element nodes before and after the collision; i is
the direction of discretization of lattice element velocity.

The BGK [23] model has better computational efficiency and is commonly used in lattice
Boltzmann methods compared to the MRT model [24–26]. The BGK collision operator is expressed
as follows:

Ω (fi) = −Δt
τ

[
fi (x, t) − fi

eq
(ρ (x, t) , u (x, t))

]
, (2)

where fi
eq

(ρ (x, t) , u (x, t)) is the function of equilibrium distribution in i direction; τ is the relaxation
time related to fluid viscosity which is defined as υ = Δx2 (τ − 0.5)/(3Δt) and fi

eq
(ρ (x, t), u (x, t)) is

described as follows:

fi
eq

(ρ (x, t), u (x, t)) = ωiρ (x, t)
[

1 + ci · u
c2

s

+ 1
2

(ci · u)
2

c4
s

− 1
2

u2

c2
s

]
, (3)

where ωi is the weight factor in different speed directions; ρ (x, t) is the macroscopic fluid density; u
is the macroscopic fluid velocity; ci is the lattice velocity vector given by ci = ∣∣ci

∣∣ ci,
∣∣ci

∣∣ represents
a lattice velocity scalar; ci is the lattice velocity unit vector; cs is the lattice sound velocity given by
cs = ∣∣ci

∣∣/√3 related to the lattice length h and time step of the grid Δt, given by
∣∣ci

∣∣ = h/Δt.

In IMB, as proposed by Noble et al. [17], a modified LBE is derived by incorporating an
additional collision operator and a weighting function into the pre-existing collision operator. The
LBE augmented with additional collision operators can make it equivalent to LBE with body forces.
This equivalence can be represented as follows [27]:

fi (x + ciΔt, t + Δt) − fi (x, t) = −Δt
τ

[
fi (x, t) − fi

eq
(ρ, u)

] + Bs

Δt

[
f eq

i (ρ, U s) − f eq
i (ρ, u)

] · Δt. (4)

Eq. (4) can be understood as the body forces F i = Bs [f eq
i (ρ, U s) − f eq

i (ρ, u)]/Δt in Eq. (1), where
Bs is the weighting function at the node s regarding the solid ratio of the node, given by

Bs = εs (τ/Δt − 0.5)

(1 − εs) + (τ/Δt − 0.5)
. (5)

The solid ratio εs is expressed by drawing a square with a side length of lattice size h at a node and
calculating the ratio of the area A of the intersection between the square and the interior of the solid
to the area of the square. The solid ratio εs is described by εs = A/h2, when the node is an external
fluid node, εs = 0; when the node is an internal solid node, εs = 1.

The hydrodynamic force and torque exerted on the solid particles, which cover n nodes and are
subjected to the fluid, can be mathematically expressed as follows:

F f = |c| h

[∑
n

(
Bs,n

∑
i

Ωs,ic−i

)]
, (6)

T f = |c| h

[∑
n

(xn − xc) ×
(

Bs,n

∑
i

Ωs,ic−i

)]
. (7)
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where Ωs,i is a collision operator based on the bounce rule for the non-equilibrium part, provided as
follows:

Ωs,i = f eq
i (ρ, U s) − f eq

i (ρ, u) + �t
τ

[
f eq

i (ρ, u) − fi (x, t)
]

, (8)

where U s is the motion velocity vector at particle node s.

In the LBM, the lattice unit nodes are modeled with multi-dimensional and multi-velocity
direction models, such as the commonly-used DnQm model, where Dn is n dimensions and Qm
represents m velocity directions. This study focuses on the algorithm for recognizing two-dimensional
curved boundaries, with particular emphasis on the D2Q9 model selected as the focal point for this
investigation, as illustrated in Fig. 1. The fluid computational domain in this model is discretized into
a grid with a grid edge length of h. Grid unit nodes, with nine velocity directions designated as 0–8,
undergo collision and migration along their respective velocity directions. The velocity vector in the
D2Q9 model is expressed by

ci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0) , i = 0(
cos

[
(i − 1) π

2

]
, sin

[
(i − 1) π

2

])
, i = 1 · · · 4

√
2

(
cos

[
(i − 1) π

2
+ π

4

]
, sin

[
(i − 1) π

2
+ π

4

])
, i = 5 · · · 8

. (9)

Figure 1: D2Q9 model

For the D2Q9 model, the macro fluid density ρ and macro fluid velocity u can be calculated from
the velocity distribution function, given by

ρ =
8∑

i=0

fi, (10)

ρu =
8∑

i=0

fici. (11)

The theoretical knowledge of IBM-VC based on second-order Lagrangian interpolation for
velocity correction can be found in the literature [14]. This study mainly focuses on IMB-CB and
compares the numerical simulation results obtained by IMB-CB to IBM-VC.

As the LBM operates within its unique unit system, simulating real-world physical phenomena
requires converting actual physical quantities into LBM lattice units. This conversion process is known
as establishing dimensionless physical parameters.
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Assuming in a computational domain of L×H, which corresponds to the lattice domain of n∗×m∗

in LBM (represented by the actual physical unit without a ∗ sign and the LBM lattice unit with a ∗

sign), and the actual fluid viscosity is v. Initially, the computational domain is discretized. The unit
length of the lattice is Δx = 1 and the unit time length is Δt = 1, resulting in the lattice velocity
ck = Δx/Δt. If the characteristic length of L is discretized into n lattice units, the actual length depicted
by a single lattice is L/n. The selection of the number of grids is pivotal for the accuracy and efficiency
of numerical simulation. If the number of grids is too small, divergence and inaccuracy may ensue.
In contrast, an excessive number of grids can lead to diminished computational efficiency. Hence,
the length conversion coefficient is obtained as follows: Cle = L/n. In the application of LBM, the
macroscopic Reynolds number of the fluid is equal to the LBM Reynolds number, i.e., Re = uL/v =
u∗n∗/v∗, where u is the average velocity of the flow field. For the BGK model, LBM can simulate
incompressible fluid flow under low Mach number (Ma) conditions and with little density variation,
while high Ma can lead to computational instability. The Ma is defined as Ma = u∗/cs.

Design with Ma as the constraint condition to obtain a stable lattice conversion coefficient.
Set a low Ma to derive the lattice velocity u∗. When simulating high Reynolds number problems,
either increase the number of grids or reduce the kinematic viscosity. Then, the velocity conversion
coefficient is obtained as Cu = Cle/Ct = u/u∗, and the time conversion coefficient is determined as
Ct = Cle/Cu. The viscosity conversion coefficient is obtained from the viscosity unit dimension m2/s
as Cυ = C2

le/Ct. Finally, the lattice viscosity is obtained as υ∗ = υ/Cυ . Again, the relaxation time
in the lattice Boltzmann equation for BGK approximation τ = υ∗cs

2Δt/Δx2 + 0.5 is calculated. The
density conversion coefficient is Cρ = ρ/ρ∗, where the fluid density in the lattice domain is generally
considered ρ∗ = 1.

By adhering to the dimensionless steps outlined for the parameters above, accurate numerical
simulations corresponding to real physical problems can be attained, thus ensuring numerical stability.

2.2 Curve Boundary Recognition Algorithm of IMB-CB
Fig. 2 indicates that the schematic diagram of the curve boundary model encompasses internal

solid nodes, solid boundary nodes, fluid boundary nodes, and external fluid nodes. For the black
boundary curve f (x) with a known definition domain x ∈ [xa, xb], the steps for curve boundary
recognition are as follows:

(1) The initial step involves specifying the solid or liquid types on both sides of the boundary
curve. It is assumed that the nodes in the computational domain above the function f (x) are solids,
while nodes below the function f (x) are liquids. Then, a purple search box is initialized with the upper
adjacent node A, located at the point (xa, f (xa)), in the left corner. This search box is defined by its
upper, right, bottom, and left edges, numbered as 0, 1, 2, and 3, respectively.

(2) Subsequently, the node types at the four corners of the search box are evaluated. If yj > f (xi)

at the corner node
(
xi, yj

)
of the search box, it is marked as a solid boundary node; conversely, if

yj < f (xi) at the corner node
(
xi, yj

)
of the search box, it is identified as a fluid boundary node.

(3) In addition, to determine the movement direction of the search box, the first step is to establish
its initial direction of movement. Firstly, it is necessary to determine whether the curve boundary f (x)

intersects with edges 0, 1, 2, and 3 of the search box and represent this intersection information in
matrix form [γ0, γ1, γ2, γ3]. If an intersection occurs, γs = 1; otherwise, γs = 0, where s = 0, 1, 2, 3.

(4) To transform the intersection information matrix into a movement direction matrix
[η0, η1, η2, η3], where the edge with ηs = 1 represents a specific direction of the search box’s movement,



2538 CMES, 2024, vol.140, no.3

it is essential to identify whether it is the first cycle. If it is, the elements of the intersection information
γs corresponding to the left boundary of the function definition domain are assigned a value of 0. If
it is not the first cycle, γs in the intersection information matrix that corresponds to the edge opposite
to the movement direction ηs of the previous cycle is assigned a value of 0, where s = 2, 3, 0, 1. In
contrast, the value of other edges is assigned γs = ηs (For example, if the direction of the search box’s
movement in the previous step is 0 edge, the intersection information of the opposite two edges will
be assigned as γ2 = 0). Thus, the intersection information matrix [γ0, γ1, γ2, γ3] is transformed into
the movement direction matrix [η0, η1, η2, η3] of the search box.

(5) Finally, the search box should be repositioned based on the direction matrix [η0, η1, η2, η3]
and identify whether the search box reaches the right end of the definition field. If it is, the recognition
of this node is complete. If not, the algorithm returns to step (2).

Figure 2: Schematic diagram of curve boundary recognition method model

For the schematic diagram of the curve boundary recognition method model depicted in Fig. 2, the
leftmost search box corresponds to the first cycle, whose intersection information matrix is [1, 0, 0, 1].
Since the definition domain x ∈ [xa, xb] of the function f (x) spans from left to right in the lattice
domain, the three edges in the search box are assigned a value of 0 in the corresponding positions of
the intersection information matrix, resulting in the direction matrix [1, 0, 0, 0]. As a result, the first
movement direction is upward. After moving the search box one lattice unit based on the direction
matrix, the node coordinates of the search box are updated, and the node type is determined. The
search box is then moved along the new direction matrix [η0, η1, η2, η3] again, and the node type and
intersection information matrix are determined. This cycle process continues until the abscissa of the
node on the right side of the search box exceeds xb. At that point, the curve boundary recognition
algorithm ends.

If the boundary of the given curve is not a continuous function f (x) but a scattered data
(
xj, yj

)
of the curve, linear interpolation can be utilized when calculating on the f (xi) of corner node

(
xi, yj

)
of the search box, given by

f (xi) =
(
yj+1 − yj

) (
xi − xj

)
xj+1 − xj

+ yj, (12)
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where xj ≤ xi ≤ xj+1.

Using search boxes to traverse curve boundaries and ascertain the solid or fluid boundary nodes
can increase the algorithm’s time complexity. This study explores the computational complexity
involved in identifying curve boundaries in IMB-CB and its computational efficiency. The computa-
tional complexity of this curve boundary identification algorithm is linear and is described as follows:

O (n) =
∫ xb

xa

√
1 + f ′(x)

2dx/h, (13)

where f ′(x) is the derivative of the curve function and h is the lattice size.

If the method proposed by Wang et al. [28] in 2017 for identifying nodes of granular fluid
boundaries and solid boundaries, respectively, is improved based on the method in this study to be
a customized curve boundary identification method, the time complexity is expressed as follows:

O (n) = 2
∫ xb

xa

√
1 + f ′(x)

2dx/h. (14)

The computational method in this study will reduce the computational complexity by half
compared to this kind.

After identifying the node types of the curve boundary, it is necessary to use εs = A/h2 to calculate
the solid ratio of these nodes. When the node type is an external fluid node, A = 0, and when the node
type is an internal solid node, A = 1. The calculation of solid ratio at solid boundary nodes and fluid
boundary nodes involves dividing the intersection area between the node area box (with a side length
of h) and the interior of the solid by the area of the node area box, as depicted in Fig. 2. Assuming
that nodes in the computational domain below the function f (x) are solids, while nodes above the
function f (x) are fluid. The edges of the node area box are denoted by 0, 1, 2, and 3, corresponding
to the edges of the search box, and the intersection information matrix [γ0, γ1, γ2, γ3] of the node
area is also obtained. The intersection points of a, b, c, and d intersect the curve boundary and the
node area box. Due to various information matrices and calculation methods associated with different
calculation cases, the potential cases are categorized into four distinct cases, as depicted in Fig. 3. These
cases represent the different calculation methods applied to the solid area of the boundary nodes.
Among them, the symbols assigned to the nodes bear the same significance as those in Fig. 2. The
cases, intersection information matrix, and area calculation method are summarized in Table 1, which
presents the different calculation methods for the solid area of curve boundary nodes. The three-point
Gaussian Legendre formula is utilized in this algorithm to integrate the curve boundary function.

Figure 3: Cases of calculation methods for the solid content area of curve boundary
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Table 1: Calculation method for nodes solid content area of curve boundary

Case Matrix Area calculation

1 All of (γ0, γ1, γ2, γ3) = 0 A = 0 or A = 1
2 γ0 = 0 with 2 of (γ1, γ2, γ3) = 1 A = ∫ b

a
f (x) dx

3 γ0 = 1 with 1 of (γ1, γ2, γ3) = 1 A = ∫ b

a
f (x) dx + h (xi + 0.5h − b)

4 3 of (γ0, γ1, γ2, γ3) = 1 A = 0 or A = 1

In Fig. 3a case 1, if the intersection matrix consists entirely of 0, and if the node is situated within
the solid region, A = 1; if the node lies within the liquid region, A = 0. In Fig. 3b case 2, if γ0 = 0,
and two among (γ1, γ2, γ3) are equal to 1, the area is determined using the integration to compute
the surface area. In Fig. 3c case 3, if γ0 = 1, and one among (γ1, γ2, γ3) is equal to 1, the sum of the
trapezoidal area of the curved edge and the area of the divided small rectangle are calculated using the
integration. The intersection area between the node area box and the curve boundary will be obtained.
If three among (γ0, γ1, γ2, γ3) are equal to 1, and if the node is situated within the solid region, A = 1;
if the node lies within the liquid region, A = 0. After calculating the intersection area between solid
boundary nodes and fluid boundary nodes, the solid ratio is computed using εs = A/h2. If a node
in the computational domain is solid above the function and liquid below the function, and the area
enclosed by the solid is obtained by subtracting the intersection area from the node area, then the solid
ratio is described as follows: εs = (

h2 − A
)
/h2.

In order to improve the calculation accuracy of the area A of a curved trapezoid, the Gauss-
Legendre formula can be used, given by

A =
∫ b

a

f (x) dx ≈ b − a
2

N∑
i=1

wif
(

a + b − a
2

(1 + ξi)

)
(15)

where f (x) is the curve boundary function; a and b are the lower and upper integral limits, respectively;
ξi is the Gaussian point abscissa; N is the order; wi is the weight factors with i = 1, 2, · · · , N.

Table 2 presents the parameters of three area algorithms. By summing up the node areas covered
by all solid particles and analyzing the error in their original areas, the resulting error can be expressed
as follows:

error =
∣∣∣∣∣∣
Ssolid − ∑

n

A

Ssolid

∣∣∣∣∣∣ × 100% (16)

where Ssolid is the actual area of solid particles; Ssolid = πr2; r is the radius of the particle.

Table 2: The parameters of three area algorithms

Computing formulas n or N ck or wi xk or ξi

First-order
Newton-Cotes formula

1 c0 = 1
2

, c1 = 1
2

x0 = a, x1 = b

(Continued)



CMES, 2024, vol.140, no.3 2541

Table 2 (continued)

Computing formulas n or N ck or wi xk or ξi

Two-point
Gauss-Legende formula

2 w1 = 1, w2 = 1 ξ1 = − 1√
3

, ξ2 = 1√
3

Three-point
Gauss-Legende formula

3 w1 = 5
9

, w2 = 8
9

, w3 = 5
9

ξ1 = −
√

15
5

, ξ2 = 0, ξ3 =
√

15
5

A solid particle with coordinates (0.1, 0.1 m) and radius r = 0.05 m is placed within a calculation
domain with a length of L = 0.2 m and a height of H = 0.2 m. The solid ratio error obtained by the
three area computing formulas for the particle is calculated using the IMB method at different lattice
sizes. Fig. 4 depicts the relationship between the solid ratio error and the number of particle diameter
grids. It illustrates that when using the first-order Newton-Cotes formula (1-N-C) for calculation, the
maximum error is 0.69% when the number of particle diameter lattices is 10. When employing the two-
point Gauss-Legendre formula (2-G-L), the maximum error is 0.075%. Similarly, when utilizing the
three-point Gauss-Legendre formula (3-G-L), the maximum error is 0.05%. The solid ratio error values
for these three calculation methods gradually decrease as the number of particle diameter lattices
increases. The first-order Newton-Cotes formula (1-N-C) generally exhibits higher error values than
the other two calculation methods, whereas the three-point Gauss-Legendre formula (3-G-L) yields
the smallest error value. Hence, this study selects the three-point Gauss-Legendre formula (3-G-L) as
the preferred calculation method for solid ratio.

Figure 4: Curve of solid ratio error and number dn of particle diameter lattices

3 Numerical Simulation Results
3.1 Recognition of Custom Curve Boundary

In order to validate the feasibility and accuracy of the curve boundary recognition method
and the solid ratio algorithm, an assumption is made regarding the presence of a curve boundary
defined by a function f (x) = 0.5cos (2x) + 0.8 within a computational domain characterized by a
length of L = 5 m and a height of H = 1.5 m. Under this scenario, nodes positioned above the
function are considered solid, while those located below the function are deemed fluid within the
computational domain. This study investigates the influence of lattice size h on curved boundary
recognition by utilizing varying lattice sizes. Specifically, three different values for the number of
lattices, denoted as Xn, in the X-direction, are considered: 50, 100, and 500, respectively. The length
conversion coefficients are Cle = L/Xn = 0.1 m, Cle = 0.05 m, and Cle = 0.01 m, respectively.
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As proposed in this study, the curve boundary recognition algorithm is employed to compute solid
ratios within the computational domain. The resulting data is then graphically depicted in Fig. 5,
where Fig. 5a corresponds to Xn = 50, Fig. 5b corresponds to Xn = 100, and Fig. 5c corresponds to
Xn = 500.

Figure 5: Solid ratio cloud map of curve boundary under different lattice numbers

Fig. 5 indicates that the upper segment of the boundary curve exhibits a solid state, with a
corresponding solid ratio of εs = 1. In contrast, the lower segment of the boundary curve is
characterized by a liquid state with a solid ratio of εs = 0. As the number of lattices increases, the
recognition accuracy of curve boundaries becomes more pronounced. Further examination of the
enlarged boundary image in Fig. 5 reveals a high recognition accuracy of the curve boundary. In
addition, the transition of the solid ratio value at the curve boundary from fluid to solid demonstrates
a relatively uniform gradient pattern, substantiating the feasibility and accuracy of the curve boundary
recognition method and solid ratio algorithm proposed in this study.

In order to further investigate the discrepancy between the identified curve boundary and the
analytical solution of the curve equation, the curve information of the image is extracted through
image processing of the solid ratio cloud map of the curve boundary at various grid resolutions, and
the error is computed in comparison to the analytical solution. The specific procedures encompass the
following:

Initially, Gaussian blur denoising is applied to the solid ratio cloud map, as derived from Fig. 5.
The Sobel convolution kernel is utilized to compute the image’s gradient, and gradient amplitude and
direction are determined based on the horizontal and vertical gradient components. Non-maximum
suppression is subsequently employed on the gradient amplitude image. Following this, two thresholds
are defined to categorize pixels into strong edges, weak edges, or non-edges. Using the connectivity of
strong edge pixels, the ultimate edge line is constructed to yield a binary image of edge detection, as
depicted in Fig. 5, where pixel values of 0 represent black, while 1 represents white.

Coordinate information is extracted from the white pixels in Fig. 6. Error bars are established
at both ends by calculating the mean X-coordinate

(
xi, yMean

i

)
from the maximum

(
xi, yMax

i

)
and

minimum coordinates
(
xi, yMin

i

)
of the white pixels sharing the same X-coordinate. These error bars

are subsequently compared with the analytical solution in the same xi, resulting in the acquisition of
several curve boundary recognition points and a comparison diagram of the analytical solution under
various lattice resolutions, as depicted in Fig. 6. The error between the mean coordinate

(
xi, yMean

i

)
and
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the analytical solution yA
i is computed using Eq. (17), yielding the error between the curve boundary

identification points and the analytical solution for different grid resolutions.

error = yMean
i − yA

i

yA
i

× 100%. (17)

Figure 6: Binary image of solid ratio cloud map under different lattice numbers

Fig. 7 indicates that the curve boundary identification points closely align with the analytical
solution. In addition, as the number of lattices increases, the range of error bars diminishes. When
the number of lattices reaches Xn = 50, the error approximates −5.7%∼+6.2%, signifying a dispe-
rsion; at Xn = 100 lattices, the error decreases to approximately −2.8%∼+2.4%, representing a
relatively modest level of dispersion; and at Xn = 500 lattices, the error further reduces to close to
−1.8% ∼+0.8%, indicating the least degree of dispersion. These results are compelling evidence that
the error in curve boundary recognition proposed in this article is exceedingly small. In addition, the
reduction in error as the number of lattices increases underscores the algorithm’s remarkable accuracy
in identifying custom curves.

Figure 7: Comparison of curve boundary identification points and analytical solutions under different
grid numbers

A point method was employed to evaluate the accuracy of calculating the solid ratio on grid points
[27]. As illustrated in Fig. 8, for a grid with coordinates (300, 128) at Xn = 500, a red box is drawn
on the node to compute the solid ratio, which is then divided into nd × nd grids. Each small grid
corresponds to a point in the point method, with the solid amount represented by the point being
1/nd. Hence, the solid ratio of the node calculated using the point method is denoted as follows:

εd = Nd

n2
d

Δx. (18)
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Figure 8: Dot method for solid ratio

where εd is the solid ratio of nodes calculated by the applied point method; Nd is the total number of
points in a grid; Δx signifies the edge length of the solid ratio element box.

In the grid of (300, 128) depicted in Fig. 8, considering nd = 10 and Δx = 1, εd = 50/100 = 0.5
utilizing the point method. In contrast, the solid ratio of (300128) calculated through IMB-CB was
denoted as ε = 0.492285, indicating that the algorithm proposed in this study offers higher accuracy
and precision.

3.2 Poiseuille Flow within Custom Curve Boundaries under Different Lattice Sizes
Different lattice sizes were established based on the curved boundary outlined in Section 3.1

to investigate the algorithm’s adaptability to various grid sizes. Hence, the Poisson blade flow was
introduced, and numerical simulation results were juxtaposed with the analytical solution. Set the same
computational domain and boundary conditions as in Section 3.1. The fluid density is initialized as
ρ = 1000 kg/m3 and the fluid viscosity as υ = 10−3 m2/s. The left end of the domain is designated as
the fluid inlet, while the right end serves as the outlet. A bounce rule of no-slip boundary condition is
applied to the lower wall.

The entrance adopts Poiseuille flow, given by

u (0, y, t) = 4Umy (H − y) /H2, (19)

where u (0, y, t) is the horizontal velocity at the coordinate point (0, y) at time t; y is the vertical
coordinate point, y ∈ [0, H]; Um is the average velocity of the entrance Poiseuille flow.

The average velocity of the fluid is determined as follows:

U = 2
3

u (0, H/2, t). (20)

Then, the Zou-He velocity boundary condition is employed to set the velocity at the left entrance.
The average velocity of the Poiseuille flow is set to Um = 0.3 m/s at the left inlet of the rectangular
channel. Set Ma = 0.02887, then u∗ = 0.05. When Xn = 50, the dimensional conversion coefficients
between physical real units and LBM are: Cle = 0.1 m, Cu = 6 m/s, Ct = 0.0167 s, Cυ = 0.6 m2/s,
Cρ = 1000 kg/m3, and then the computational domain in LBM is n × m = 50 × 15, υ∗ = 0.00167,
τ = 0.505. When Xn = 100, the dimensional conversion coefficients between physical real units and
LBM are: Cle = 0.05 m, Cu = 6 m/s, Ct = 0.00833 s, Cυ = 0.3 m2/s, Cρ = 1000 kg/m3, and then
the computational domain in LBM is n × m = 100 × 30, υ∗ = 0.00333, τ = 0.51. When Xn = 500,
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the dimensional conversion coefficients between physical real units and LBM are: Cle = 0.01 m, Cu =
6 m/s, Ct = 0.00167 s, Cυ = 0.06 m2/s, Cρ = 1000 kg/m3, and then the computational domain in LBM
is n × m = 500 × 150, υ∗ = 0.0167, τ = 0.55. The calculated results are depicted in Fig. 9, illustrating
the fluid velocity at the Y-direction nodes under various grid configurations. Fig. 9a displays the inlet
velocity and Poiseuille flow analytical solution at X = 0, while Fig. 9b illustrates the velocity at X =
0.4 m at the onset of simulation 0.16667 s.

Figure 9: Y-direction node fluid velocity under different lattices

Fig. 9 indicates that when the inlet is positioned at X = 0, the outcome of Xn = 500 closely aligns
with the analytical solution of the Poiseuille flow. In contrast, the results obtained from Xn = 50 and
Xn = 100 exhibit errors, with Xn = 50 displaying the largest error, although it still accurately represents
the Poiseuille flow. During the numerical simulation at 0.16667 s, significant changes were observed
in the velocity at X = 0.4 m due to the influence of the curved boundary. The impact of different
lattice sizes varied, attributed to the notable errors encountered when simulating LBM using coarse
lattices. The curved boundary lies within the range of Y = 1.0 − 1.2 m. Despite the close velocity
outcomes across different lattice sizes in this section, IMB-CB demonstrates close and high accuracy
in identifying curved boundaries at Xn = 50 and Xn = 100. However, it is evident that employing too
few lattices affects LBM. Thus, it remains imperative to select appropriate lattice sizes to ensure the
reliability of numerical simulations.

3.3 Numerical Simulation of Flow in Custom Curve Boundary
The accuracy of the curve boundary recognition method based on IMB-CB is verified through

the simulation of flow in custom curve boundary, compared to IBM-VC. Set the same computational
domain and boundary conditions as in Section 3.2, when Xn = 500.

A numerical simulation is performed to obtain the curve boundary simulation results shown in
Fig. 10 using IMB-CB in this study. Figs. 10a and 10b respectively display the velocity cloud map and
streamline diagram of the curved boundary. These simulation results correspond to the time t = 12.5 s.
It indicates that as the Poiseuille flow enters from the left end and passes through the narrow opening
formed by the curved boundary, the fluid velocity experiences a significant increase, which aligns
with the actual scenario. After traversing the narrow opening, the fluid enters a larger fluid domain,
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where the flow velocity decelerates and forms four vortices. This behavior resembles the phenomenon
observed in a rectangular cavity driven by a top cover. As the fluid flows back into the slit, its velocity
increases once again before eventually exiting through the outlet. Based on the phenomena above, it
can be inferred that the LBM-IMB-CB is accurate and well-suited for numerical simulations involving
complex curve boundaries and fluid-particle systems.

Figure 10: Simulation results at curve boundary IMB-CB

In IBM-VC, the same parameters as IMB-CB are set for numerical simulation, where Xn = 500.
Fig. 11 depicts the results at t = 12.5 s obtained by employing the IBM-VC. It indicates that the
simulation results are largely consistent with those obtained through IMB-CB in Fig. 10. Further
comparison is conducted by examining the drag and lift coefficients (Cd and Cl) calculated using the
IBM-VC. These coefficients offer valuable insights into the fluid forces and flow behavior associated
with the flow around a cylinder within the context of fluid-structure coupling, given by⎧⎪⎪⎨
⎪⎪⎩

Cd = 2Fd

ρU 2
mLc

Cl = 2Fl

ρU 2
mLc

(21)

where Fd and Fl denote the fluid resistance and lift, respectively; ρ is the density of the fluid; D is the
diameter of the cylinder; Lc is the characteristic length.

(a) Velocity cloud map of curve boundary     (b) Streamline diagram of curved boundary

Figure 11: Simulation results at curve boundary of IBM-VC

Fig. 12 illustrates a comparison graph of the Cd and Cl along the curve boundary. The results
before 6.3 s are categorized as unstable flow areas, while those after 6.3 s are classified as stable. Within
the stable flow region, IMB-CB yields an average Cd of 5.518 and an average Cl of 2.514. In contrast,
IBM-VC produces an average Cd of 5.836 and an average Cl of 2.106. An analysis of the curve reveals
that the average Cd and Cl at the curve boundary, computed using the two different methods, exhibit a
high similarity. However, IMB-CB demonstrates superior numerical stability in the red dashed box of



CMES, 2024, vol.140, no.3 2547

Fig. 12 compared to IBM-VC. Based on the above analysis, the IMB-CB accurately identifies custom
curve boundaries while maintaining robust numerical stability.

Figure 12: Comparison curve of drag and lift coefficient at the curve boundary

3.4 Numerical Simulation of NACA0012 Airfoil Flow
This study conducts a flow validation using common NACA0012 airfoil data points at a Reynolds

number (Re) of 500 to further validate the applicability of IMB-CB for scattered curve data. Since the
Reynolds number in the fluid is determined as follows:

Re = ULc

υ
, (22)

where υ is the fluid viscosity.

The Original data points of NACA0012 airfoil are shown in Fig. 13, in which the characteristic
length is the wing’s chord length, as Lc = 1.0 m. The results are then compared with those of IBM-VC
and those from previous research by Imamura et al. [29] using a generalized form of interpolation-
supplemented LBM (GILBM). The computational domain is set to be L = 3 m in length, H = 1.0 m
in height and the lattice length h = 0.005 m. The fluid density is initialized as ρ = 1000 kg/m3 and the
fluid viscosity as υ = 10−3 m2/s. The maximum velocity of the Poiseuille flow is set to Um = 0.5 m/s
at the left inlet of the rectangular channel, resulting in a Reynolds number of Re = 500 for the airfoil.
The airfoil data points are shifted 0.5 m to the right and up, respectively, and the airfoil’s attack angle
is set to 0, orienting the airfoil horizontally to the left of the middle of the computational domain. If
Ma = 0.02887, then u∗ = 0.05, and the dimensional conversion coefficient between physical real units
and LBM is: Cle = 0.005 m, Cu = 10 m/s, Ct = 0.0005 s, Cυ = 0.05 m2/s, Cρ = 1000 kg/m3, and the
computational domain in LBM is n × m = 600 × 200, υ∗ = 0.02, τ = 0.56.

Utilizing the algorithm outlined in this study, curve boundary identification is executed on the
scattered airfoil data of NACA0012, leading to the generation of a solid ratio cloud map, as depicted in
Fig. 14. The resultant numerical simulation outcomes are subsequently juxtaposed with those derived
from IBM-VC and compared with Cd and Cl findings reported by Imamura et al. [29]. Among them,
the parameters taken by IBM-VC are the same as those of IMB-CB. The calculation results of velocity,
vorticity, and streamline at 3.75 s, as displayed in Fig. 15, and the comparison results Cd featured in
Fig. 16, are extracted for analysis. The average values of Cl and Cd from 2.0 to 3.75 s are displayed
in Table 3. Table 3 also shows the results calculated by Imamura et al. using commercial software
PowerFLOW and CFL3D.
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Figure 13: Original data points of NACA0012 airfoil

Figure 14: Solid ratio cloud map of NACA0012 airfoil

(a) Calculation result using IMB-CB (b) Calculation result using IBM-VC

Figure 15: Calculation results of NACA0012 airfoil flow
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Figure 16: Comparison chart of drag coefficient around NACA0012 airfoil

Table 3: The average values of lift coefficient and drag coefficient from 2.0 to 3.75 s

Methods Lift coefficient Drag coefficient Error value of Cl Error of Cd

IMB-CB 1.6538 × 10−13 0.1750 0.6538 × 10−13 1.45%
IBM-VC 2.8298 × 10−3 0.1637 2.8298 × 10−3 −5.101%
Imamura’s GILBM 1 × 10−13 0.1725
PowerFLOW −2.11 × 10−3 0.1807
CFL3D 0.538 × 10−5 0.1741

Fig. 15 indicates that the Poiseuille flow, originating from the left end of the computational
domain, symmetrically bypasses the NACA0012 airfoil, and the wake progressively elongates with
time. A comparative assessment of the results obtained via the two methods reveals slight disparities
in maximum velocity and vorticity values, while the remainder exhibit high similarity.

Turning attention to the drag coefficient outcomes displayed in Fig. 16, the numerical simulation
experienced an unstable flow state during the initial 2.0 s but gradually transitioned into a stable flow
state after 2.0 s, following the Poiseuille flow. The IMB-CB and IBM-VC methods employed in this
study exhibit fluctuations around the average drag coefficient of 0.1725, a value reported in Imamura
et al.’s study [29]. Nevertheless, upon closer examination of the enlarged graph covering the interval
from 2.0 to 3.75 s in Fig. 16, IBM-VC manifests more pronounced numerical fluctuations, whereas
the calculation results of IMB-CB demonstrate enhanced stability. The average calculation result of
IMB-CB from 2.0 to 3.75 s stands at 0.1750, bearing an error of 1.45%, while the average calculation
result of IBM-VC is 0.1637, accompanied by an error of −5.101%. The IMB-CB method delivers more
precise results than IBM-VC. Due to the airfoil’s symmetry and a 0-degree angle of attack, the average
lift coefficient closely aligns with 0. Upon inspecting the average lift coefficient values in Table 2, the
average value of the IMB-CB method’s calculation results in this study, ranging from 2.0 to 3.75 s,
closely approximates 1.6538×10−13, with an error value of 0.6538×10−13 when compared to Imamura
et al.’s study [29]. In contrast, the calculation results of IBM-VC exhibit an average value of 2.8298 ×
10−3 and an error value of 2.8298 × 10−3.

In summary, the IMB-CB proves proficient in accurately delineating curve boundaries for
continuous functions and scattered data, yielding stable numerical calculation results of high precision.
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3.5 Multi-Particle Flow in the Custom Complex Curved Pipeline
In order to verify the applicability of IMB-CB in moving boundaries, the discrete element method

(DEM) is introduced in this study for calculating the motion of multiple particles within the LBM-
IMB-CB framework, aiming to numerically simulate and assess the reliability of IMB-CB [30].

The coupling method flowchart of LBM-DEM-IMB is shown in Fig. 17. First, the fluid domain is
discretized into a lattice domain by LBM, and the fluid and particle information are initialized. IMB
recognizes custom complex curved boundaries and calculates the weighting function of solid ratio.
Then, IMB recognizes particle boundaries and calculates the weighting function of the solid ratio.
In addition, collision and migration of LBM distribution functions and update the grid domain’s
velocity, density, and vorticity. In addition, the particle fluid force is calculated by IMB. The force
of the particles, such as collision forces, gravity, buoyancy, torque, and others, is then calculated.
The equations of motion of particles are calculated, and the coordinates of particles are updated
accordingly. Judge whether the maximum DEM iteration step is reached. If not, return to continue
calculating the particle force and equations of motion. However, if the maximum DEM iteration step is
reached, the process proceeds to the next LBM iteration step. Similarly, evaluate whether the maximum
LBM iteration step is reached. If not, the calculation proceeds to the IMB step for particle boundary
determination. However, if the maximum LBM iteration step is reached, the calculation results are
outputted, and the process concludes.

Figure 17: LBM-DEM-IMB-CB method flowchart
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The discrete element soft sphere particle contact model in the DEM is equated with the discrete
element spring damping dynamic model. When collisions between particles occur, the constitutive
model is utilized to solve the contact force. Subsequently, the motion laws of the particles are
determined by solving the Lagrange equations, which are given by

m
d2x
dt2

= Fn + F s + F f + mg, (23)

J
d2θ

dt2
= Tc + T f , (24)

where m and J are the mass and the moment of inertia of particles, respectively; x and θ are the
displacement and the angular displacement of the particles, respectively; Fn, F s, and Tc are the
normal contact force, tangential contact force, and torque acting on particles or between particles
and boundaries; F f and T f are the hydrodynamic force and torque of fluid on particles.

The normal and tangential contact forces between particles are determined by [31,32]

Fn,i,j = (
knUn,i,j + cnẋn,i,j,t

)
ni,j, (25)

F s,i,j = −
[∑

t

(
ks�Us,i,j,t + cs�ẋs,i,j,t

)]
si,j, (26)

Fmax
s,i,j = μ

∣∣Fn,i,j

∣∣ si,j, (27)

where Fn,i,j and F s,i,j are the normal contact force and tangential contact force between the No. i particle
and the No. j particle, respectively; kn and ks are the normal and tangential contact stiffness between
two particles, respectively; cn and cs are the normal damping between two particles, respectively; Un,i,j

and ẋn,i,j,t are the normal contact distance and velocity between the No. i particle and the No. j particle;
�Us,i,j,t and �ẋs,i,j,t are the tangential displacement increment and velocity increment of the t time step,
given by �Us,i,j,t = Us,i,j,t − Us,i,j,t−1. ni,j is the unit vector of the line between the two particle centroids
and si,j is the unit vector of the vertical line connecting the center of mass of two particles; Fmax

s,i,j is
the maximum frictional force between particles and the tangential force is considered the maximum
frictional force when the magnitude of F s,i,j exceeds Fmax

s,i,j ; μ is the friction coefficient between particles.

The torque received Tc,i of the No. i particle is described as follows:

Tc,i = rp,iF s,i,j

(
ni,j × si,j

)
, (28)

where rp,i is the radius of the No. i particle.

rp,i = Lv

δ (Nx + 1)
, (29)

where rp,i is the particle radius; Lv is the size of the pipe; δ is the particle size coefficient; Nx is the
number of particles in the X-direction in the rectangular cavity.

As particle size in complex fluid particle systems often varies, this study generates a more practical
and suitable particle size for engineering applications. In order to account for the different effects
of particles with varying sizes on fluid flow and particle motion patterns, a random particle radius
increment rr,i corrected by a random particle size coefficient β was generated based on the Mersenne
Twister algorithm [33], resulting in the acquisition of a random particle size rpr,i for the discrete element
system.

rpr,i = rp,i + rr,i (30)
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where rr,i is the No. i particle radius increment; rr,i ∈ [−βrp,i, βrp,i

]
; β are random particle size

coefficient.

The suitability of the algorithm for a range of customized curve boundaries and moving bound-
aries is ensured by incorporating more intricate curve boundaries and particles. The curve boundaries
are constructed within the computational domain, which has a length of L = 6.0 m and a width of
H = 2.2 m, using functions fb1(x) = 0.5cos (1.5x) + 1.6 and fb2(x) = 0.5cos (1.5x) + 0.6. The fluid
within the domain has a density of ρf = 1000 kg/m3, a viscosity of υ = 10−3 m2/s, and is subject
to gravitational acceleration g. Circular particles with a uniform density of ρp = 1002 kg/m3 are
uniformly distributed, and each column of particles is offset downwards by a certain amount. The total
number of particles are N = 50, and the particle radius rp ≈ 6.667×10−2 m are determined based on the
settings of Nx = 10, Ny = 5, δ = 2.5, and β = 0.2, using Eqs. (29) and (30). A particle with a density
of ρp = 1002 kg/m3 is placed at the left end of the computational domain to initiate the simulation.
The entrance between the two curve boundaries on the left is set as a Poiseuille flow with a maximum
velocity of Um = 0.6 m/s, while the right end serves as a free outlet. Set Ma = 0.11547, then u∗ = 0.2,
and the dimensional conversion coefficient between physical real units and LBM as: Cle = 0.015 m,
Cu = 3 m/s, Ct = 0.005 s, Cυ = 0.045 m2/s, Cρ = 1000 kg/m3, and then the computational domain in
LBM is n × m = 400 × 146, υ∗ = 0.02222, τ = 0.56667. The solid ratio cloud diagram with multiple
particles and curved boundaries is shown in Fig. 18.

Figure 18: The solid ratio cloud diagram with multiple particles and curved boundaries

The numerical simulation yields results for t1 = 0.445 s, t2 = 2.525 s, t3 = 3.8 s, t4 = 5.94 s, t5 =
8.88 s, and t6 = 12.65 s, which are then selected for analysis. The results of the numerical simulations
are presented in Fig. 19, respectively, while Fig. 20 illustrates the comprehensive characteristics of the
particles, which are given as follows:

X∑ (t) =
N∑

i=1

Xi (t) /N, Y∑ (t) =
N∑

i=1

Yi (t) /N, U∑ (t) =
N∑

i=1

Ui (t) /N, V∑ (t) =
N∑

i=1

Vi (t) /N, (31)

where X∑ (t), Y∑ (t), U∑ (t), and V∑ (t) are the comprehensive displacement and velocity of particles in
the horizontal and vertical directions, respectively; Xi (t), Yi (t), Ui (t), and Vi (t) are the displacement
and velocity of the No. i particle in the horizontal and vertical directions at the time t; N is the total
number of particles.
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(a) Velocity cloud map (b) Vorticity cloud map (c) Stream line diagram 

Figure 19: Numerical simulation results of multiple same particles flow in the custom complex curved
pipeline

Fig. 19 indicates that along with the motion characteristic curves of multiple particles depicted in
Fig. 20, at time t1, the accumulation and rightward movement of particles from their initial positions
are primarily attributed to the influence of the Poiseuille flow in the inlet. The velocities in the
rightward and downward directions gradually increase during this stage. Hence, at time t2, particles
experience the force exerted by the curved boundary, resulting in contact with the inner pit of the curve
boundary. At this point, the particles reach their maximum horizontal velocity while their vertical
velocity gradually increases from its minimum value. The comprehensive vertical displacement of the
particles reaches its lowest point at time t3. Under the combined influence of fluid forces and the
curve boundaries, the particles initiate an upward movement, causing the vertical velocity to gradually
accelerate. As time progresses to t4, the particles gradually move upward and to the right due to the
effect of the curve boundary. However, a fraction of particles starts to accumulate within the inner pit.
At time t5, the vertical displacement of the particles reaches its maximum value, with most particles
crossing the convex slope of the curve boundary. However, some particles remain within the inner pit,
and their horizontal velocity gradually decreases. By the time t6 arrives, certain particles have already
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flowed out of the curved pipeline, and the vertical displacement of the particles continues to decrease.
Hence, several particles reside in the inner pits located on the curve boundary. Fig. 19a indicates that
the flow velocity within the middle region of the curve pipeline is high, owing to the characteristics
of the Poiseuille flow and the impact of the curve boundary. In contrast, the flow velocity near
the boundary is comparatively low. In addition, frictional force between the boundary and particles
results in the retention of certain particles in proximity to the curve boundary. A comprehensive
understanding can be derived from the vorticity maps illustrated in Fig. 19b, along with the streamline
diagrams presented in Fig. 19c. Reverse vortices form within the inner pits of the curve boundary,
leading to a counter-directional flow of particles and subsequently influencing particle transport.

(a) Displacement of particles                (b) Velocity of particles 

Figure 20: Motion characteristic curve results of multiple particles flow in the custom complex curved
pipeline

Based on the observations above, the IMB-CB is suitable for accurate coupling calculations of
many moving and complex curve boundaries.

4 Conclusion

This study introduces IMB-CB, a high-accuracy method for recognizing custom curved bound-
aries, addressing the limitations of existing IMB methods based on solid ratios. IMB-CB identifies
custom curved boundaries and employs image processing techniques and dot method to assess
recognition errors. Then, the influence of grid size on the Poiseuille flow within the curved boundary
was analyzed. Subsequent numerical simulations are conducted for flow analysis around these curved
boundaries and the NACA0012 airfoil, with results compared to IBM-VC simulations using second-
order Lagrangian velocity interpolation. Finally, IMB-CB is applied to the moving boundary to
simulate multiple moving particles in a curved pipeline. The key findings are as follows:

(1) IMB-CB, proposed in this study, achieves minimal recognition errors for curved boundaries
compared to analytical solutions. The recognition error decreases as the number of lattices increases,
reaching only −1.8% to +0.8% with 500 lattices. This indicates that the method is highly accurate.
Compared to the point method, IMB-CB demonstrates higher accuracy in calculating solid ratios.

(2) IMB-CB exhibits a strong fluid-structure coupling effect under different grid sizes. However,
simulating LBM still necessitates the selection of an appropriate grid size. By analyzing the simulation
results of flow within the custom curve using IMB-CB and IBM-VC, it can be seen that IMB-CB has
more numerical stability than the IBM-VC method.
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(3) IMB-CB and IBM-VC produce similar numerical simulations for flow around the NACA0012
airfoil. Both methods accurately capture curved boundary effects, which is consistent with previous
research. IMB-CB’s lift coefficient has an error of 0.6538×10−13 compared to prior results, while IBM-
VC’s error is 2.8298 × 10−3. The drag coefficient error for IMB-CB is 1.45%, while for IBM-VC, it is
−5.101%. IMB-CB’s results prove to be more stable and accurate than IBM-VC. This indicates that
the method has high numerical stability.

(4) The particle flow in curved pipelines exhibits correct physical phenomena, including a small
number of particles remaining in pits, indicating that the LBM-DEM-IMB-CB is suitable for accurate
coupling calculations of a large number of moving boundaries and complex curve boundaries.

5 Prospect

(1) The conclusions drawn in this study underscore the accuracy of the proposed IMB-CB, which
effectively calculates the effects of curved boundaries on flow fields or discrete element particles. IMB-
CB finds applicability in various engineering domains such as aviation engineering for aircraft airfoil
design, ship engineering for ship streamline design, and construction engineering for force analysis of
bridge piers in water flow. In addition, for multi-particle flow in curved pipelines, LBM-DEM-IMB-
CB proves suitable for material transportation and blockage analysis, encompassing substances such
as pumped concrete, seabed ore, biomass particles, and red blood cells. In short, the IMB-CB and
conclusions posited in this article offer broad applicability.

(2) However, the algorithm presented in this study has shortcomings. In high Reynolds number
flows with complex curved boundaries, the formation of cavities and bubbles can introduce nonlinear
behavior, potentially impacting the accuracy of numerical simulations. The algorithm does not account
for the influence of cavities and bubbles on boundary identification and flow. Future research
directions can involve integrating bubble dynamics equations proposed by Zhang et al. [34] to simulate
the generation and evolution of bubbles or incorporating LBM pseudopotential models (such as
the Shan-Doolen model) [35] to simulate gas-liquid-solid three-phase coupling in IMB-CB. This will
enable the effects of cavities and bubbles to be investigated using the algorithm presented in this study.
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