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ABSTRACT

Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task
allocation (DTA) and high-dimensional decision space with single agent, this paper combines the deep reinforce-
ment learning (DRL) theory and an improved Multi-Agent Deep Deterministic Policy Gradient (MADDPG-D2)
algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to
improve the efficiency of DTA. The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm, and considers the introduction of a double noise mechanism to increase the action
exploration space in the early stage of the algorithm, and the introduction of a double experience pool to improve
the data utilization rate; at the same time, in order to accelerate the training speed and efficiency of the agents, and
to solve the cold-start problem of the training, the a priori knowledge technology is applied to the training of the
algorithm. Finally, the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground
and air confrontation. The experimental results show that the agents trained by the MADDPG-D2 algorithm have
higher win rates and average rewards, can utilize the resources more reasonably, and better solve the problem
of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional
decision space. The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain
superiority and rationality in DTA.

KEYWORDS
Deep reinforcement learning; dynamic task allocation; intelligent decision-making; multi-agent system;
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1 Introduction

Dynamic Task Allocation (DTA) refers to the rational assignment of a certain type and number
of platforms on one’s side according to factors such as the allocation purpose, environment situation,
and equipment performance to achieve efficient interception of incoming attack targets [1–3]. At
present, with the continuous development of the Internet of Things, big data, and artificial intelligence
technology, the difficulty of DTA is getting bigger and bigger [4]. How to carry out DTA more
accurately and efficiently has become a task to be solved [5–8]. In recent years, researchers at home
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and abroad have put forward many methods to solve the DTA problem, among which the classical
methods mainly include traditional methods [9,10] and bionic intelligent algorithms [11–14].

The above-mentioned algorithms have made some achievements in each stage, but they are
difficult to adapt to in a complex and changeable dynamic environment because of their lack of
awareness of the environment. As a result, these methods make it difficult to perform efficient DTA
in the absence of a priori knowledge and dynamic environments.

Reinforcement learning (RL) does not need to build an environment model, and the agent carries
out trial and error learning through continuous interaction with the environment until it has good
DTA capability [15,16]. The deep reinforcement learning (DRL) algorithm can realize the end-to-end
learning process from perception to action, and its learning mechanism and method fit the empirical
learning and decision-making mindset of combat commanders, and they have obvious advantages for
solving sequential decision-making problems under game-confrontation conditions [17,18]. Zhang et
al. conducted a target situation assessment through RL, and used the actor-critic (AC) algorithm to
effectively estimate the expected effect of missile attacks under the current situation [19]; Aiming at the
unmanned aerial vehicle (UAV) short-range air combat problem, Yang et al. established a maneuvering
decision model including UAV motion model, one-to-one short-range air combat evaluation model
and Deep Q network (DQN) based maneuver decision model based on DRL theory [20]; Fu et al. put
forward an agent training framework to solve the problem of DTA, aiming at solving the dynamic
decision-making problem of air defense combat in complex environment through the method of RL
learning training [21]; On this basis, Liu et al. improved the training framework, and based on the idea
of optimal algorithm of allocation strategy, proximal policy optimization (PPO) algorithm was used
to train and solve the agent [22].

However, the above research mainly focuses on the single-agent method and simple scenarios.
Although this method has a great global coordination ability, with the increase of combat entities
and the gradual complexity of the environment situation, the state and action space will increase
exponentially, and the decision-making process will face a high-dimensional state-action space. In
this case, if all the entities are simply regarded as agents, it will lead to problems such as problematic
convergence of the model and poor decision-making effect. Therefore, the multi-agent algorithm
based on multi-agent architecture should be considered. Compared with other algorithms, the Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) algorithm can be applied to a variety of task
scenarios, such as competition and cooperation among multi-agents, and at the same time, it can use
the observation information of other agents for centralized training, thus improving the efficiency of
the algorithm, and adopting the mechanism of policy inference and policy collection to enhance the
robustness of the algorithm, and the application scenario is broader [23].

In summary, this paper considers the multi-agent algorithm based on multi-agent architecture to
solve the large-scale weapon-target assignment problem. Based on the theory of DRL, a multi-agent
architecture for intelligent DTA is constructed, which is solved by the Multi-Agent Deep Deterministic
Policy Gradient algorithm with a dual experience replay pool and a dual noise (MADDPG-D2) algo-
rithm. At the same time, the training of agents is accelerated by fusing prior knowledge with experts
to improve the decision-making ability of intelligent DTA in large-scale and complex environments.
Finally, the method is deduced and verified on the ground-to-air confrontation digital simulation
platform, and the experimental results prove the effectiveness of the method used in this paper.

The main contributions of our work are as follows:

1. First, an intelligent DTA framework based on multi-agent reinforcement learning (MARL)
algorithms is proposed, which adopts the training paradigm of “centralized training and
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distributed execution (CTDE)” to better overcome the non-stationarity of the environment
and continuously improve the training efficiency.

2. Second, in order to increase the action exploration space of the MADDPG algorithm and
improve the utilization of data, the MADDPG-D2 algorithm is proposed by considering
the introduction of the dual experience pool mechanism and dual noise mechanism into the
traditional MADDPG algorithm.

3. Finally, to overcome the “cold start” problem of the MADDPG algorithm in the training
process and accelerate the training of the algorithm, a pre-training process is introduced in
the initial stage of the algorithm training, which improves the initial solving capability of the
MADDPG-D2 algorithm.

This paper is organized as follows: Section 2 reviews the Multi-Agent System (MAS) and MAD-
DPG algorithm, and introduces the principle of the MADDPG-D2 algorithm; Section 3 describes
the state space, action space, and reward function in Partially observable Markov decision process
(POMDP), and Section 4 outlines the experimental environment, simulation architecture, hyper-
parameter setting, and network structure. Section 5 evaluates the results of the experiment and
concludes that the proposed model and algorithm are effective when facing large-scale DTA problem,
which provide ideas for solving such problems. Section 6 is the conclusion.

2 Background
2.1 Multi-Agent System

MAS is a system composed of multiple interactive entities in the same environment, which has the
characteristics of modularity, extensibility, parallelism, and strong robustness. It is often used to solve
problems that are difficult to solve with a single agent system.

Figs. 1 and 2 are multi-agent architecture and single-agent architecture, respectively.

Figure 1: Multi-agent architecture

In the process of multi-agent training, the strategy of each agent is changing, so from the
perspective of each agent, the environment becomes very unstable, and the actions of other agents
bring about environmental changes.
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Figure 2: Single-agent architecture

In this paper, each red combat unit is modeled as a decision-making agent. The agent obtains its
current state oi from the current environmental state, outputs actions ai after making decisions, and
forms a joint action with the actions of other agents, which is input into the environment. After the
environment executes the action, it updates its state and feeds back a joint reward to each agent.

2.2 Markov Decision Process
The RL task satisfying the Markov property is called the Markov decision process (MDP). MDP

is a mathematical model of sequential decision-making, which is mainly suitable for systems with
Markov properties to simulate the stochastic strategies and returns of agents. RL generally uses MDP
to model the problem. MDP is represented by five tuples 〈S, A, P, R, γ 〉, where S is the set of states of
the intelligence, A is the set of actions of the intelligence, P is the state transfer function, R is the set
of reward, and γ is the discount factor [23]. At moment t, given a state s and action a, the next state s′

and the reward r can be represented by p:

p (s′, r|s, a) = Pr {st+1 = s′, rt+1 = r|st = s, at = a} (1)

The expected reward for the state-action is:

r (s, a) = E [rt+1|st = s, at = a] =
∑

r∈R
r
∑

s′∈S
p (s′, r|s, a) (2)

State transition probability:

p (s′|s, a) = Pr {st+1 = s′|st = s, at = a} =
∑

r∈R
p (s′, r|s, a) (3)

The expected reward for the state-action-next state:

r (s, a, s′) = E [rt+1|st = s, at = a, st+1 = s′] =
∑

r∈R rp (s′, r|s, a)

p (s′|s, a)
(4)

The ultimate goal of RL is to find an optimal strategy π ∗ to maximize the expected return:

π ∗ = arg maxπE [R|π ] (5)



CMES, 2024, vol.140, no.3 2563

2.3 Partially Observable Markov Decision Process
The MDP model is used to describe a situation in which there is only one agent in the environment,

and it cannot explain the interaction problem of multiple agents well. The important premise of
the MDP model is that agents can completely observe the environment. That is, they can obtain
environmental information completely and accurately. However, in the actual complex environment,
because the environment is full of a lot of noise and interference, each agent can only get a small part
of the state of the environment, so a model closer to the environment is needed, that is, the POMDP,
which can be regarded as the expansion of Markov decision-making process and is still based on the
similar assumption of MDP.

In POMDP, each agent can only make synchronous decisions independently according to the
information it can obtain. It is hoped that a strategy network that can make independent distributed
decisions can be trained for each combat unit by using multi-agent RL technology, and the agent
strategies obtained from these strategy networks can achieve a certain degree of self-cooperation.

POMDP is represented by seven tuples 〈S, A, P, R, O, Z, γ 〉: S is the system state set, that is, the
joint state of multi-agents, S = (s1, s2, · · · , sN); A = (a1, a2, · · · , aN) is the action set of multi-agent; P
is the state transition function, P : S × a1 × · · · × aN × S → [0, 1], according to the current state of the
system and the joint action of the agent, the probability distribution of the next state of the system is
given; R is a reward in return, R = (r1, r2, · · · , rN); O is an observation set of a group of agents on the
environment, in POMDP, the result depends on the potential environmental state; Z is the observation
function, Z : S × A → �(O), which reflects the relationship between the multi-agent system and the
observed value; γ is the discount factor, which describes the influence of future rewards on the reward
function of agents. It reflects the uncertainty of future rewards and ensures that the reward function
is bounded.

As shown in Fig. 3, by introducing the belief state function, the POMDP problem is transformed
into a Markov chain based on the state of belief space to solve, that is, to solve the belief state function
and strategy problem. Belief MDP is usually described as a quadruple

〈
B, A, Pb, rb

〉
, where B = � (S),

represents a series of state spaces; A is the action space; D, Pb : B × A → B, belief transfer function;
rb (b, a) = ∑

s∈S b (s) r (s, a) is the reward function. Therefore, under Belief MDP, the value function is:

Vt+1 (b) = maxa∈A

[
rb (b, a) + γ

∑
b′∈B

Pb (b, a, b′) Vt (b′)
]

(6)

= maxa∈A

[∑
s∈S

b (s) r (s, a) + γ
∑

o∈O
Pr (o|a, b) Vt

(
ba

o

)]

πt+1 (b) = arg maxa∈A

[∑
s∈S

b (s) r (s, a) + γ
∑

o∈O
Pr (o|a, b) Vt

(
ba

o

)]
(7)

Figure 3: POMDP
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3 Algorithm Description
3.1 MADDPG Algorithm

Fig. 4 is a schematic diagram of MADDPG algorithm training based on the actor-critic frame-
work. Each agent has four networks: Actor network, Critical network, Target Actor network, and
Target Critic network. MADDPG algorithm adopts the training mode of “centralized training and
decentralized execution”.

Figure 4: Schematic diagram of MADDPG algorithm

Using the above framework, additional information can be used to assist network training in
the model training stage, but no additional information is used in the model execution stage. During
training, the central controller can obtain the action, state observation, and reward value of each
executive agent, and use n critic networks to evaluate the decision-making quality of n strategic
networks. After the training, the central controller is no longer used to evaluate the quality of the
decision, and only the strategy network of each executive agent produces the decision.

Assuming that there are N agents in the environment, and the joint strategy space of agents is
π = (π (θ1), π (θ2), · · · , π (θN)), where θ = (θ1, θ2, · · · , θN) is the set of strategy parameters, the action
of agent i under observation oi is πi (ai|oi), and the gradient of the agent i is:

∇θi J (θi) = Es∼pμ ,ai∼πi

[∇θi log πi (ai|oi) Qπ

i (x, a1, a2, · · · , aN)
]

(8)

Qπ

i (x, a1, a2, · · · , aN) is the central evaluation function; x is environmental information, x =
(o1, o2, · · · , oN).
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Change the random strategy into deterministic strategy, and μθi (abbreviated as μi) represents the
strategy of the agent i, then Eq. (8) is rewritten as:

∇θi J (μi) = Es,a∼D

[
∇θiμi (ai|oi) Qμ

i (x, a1, a2, · · · , aN) |ai=μi(oi)

]
(9)

The training of the Critic function can be updated by minimizing the loss function:

L (θi) = Ex,a,,r,x′
[(

Qμ

i (x, a1, a2, · · · , aN) − y
)2

]
(10)

y = ri + γ Qi

′ (
xi, a1

′
, a2

′
, · · · , aN

′) |aj
′ =uj

′(oj) (11)

where μ′ = {
μθ1

′ , · · · , μθN
′
}

is the action function of the target network, corresponding to the action

function parameter θi

′
in the target network i, Qi

′
is the evaluation function in the target network i.

In MADDPG algorithm, the execution actions of each agent are known, and even if the strategy
changes, the environment is relatively stable, because:

p (s′|s, a1, a2, · · · , aN, π1, π2, · · · , πN) = p (s′|s, a1, a2, · · · , aN) (12)

= p
(
s′|s, a1, a2, · · · , aN, π ′

1, π
′
2, · · · , π ′

N

)

As long as the actions ai generated by π ′
i and πi are consistent, p (s′|s, a1, a2, · · · , aN) will not change,

and the whole environment is relatively stable.

3.2 MADDPG-D2 Algorithm
3.2.1 Dual Experience Pool Mechanism

The experience playback mechanism can eliminate the correlation between data while ensuring
the full utilization of the data. While the traditional experience playback method cannot efficiently
utilize the experience samples that have positive significance for network training, the priority-
based experience playback method accelerates the learning process of the network by searching
for experience samples with high importance, but the training efficiency of the algorithm is low
because it needs to frequently perform the operations of prioritizing and updating, which increases
the algorithm’s training cost.

Distinguishing from the above methods, the dual experience pool mechanism considers using two
experience playback pools A and B for categorizing and storing experiences of different qualities
according to their different degrees of importance. In the training phase of the network model, only
experience samples are proportionally selected from different experience buffer pools. The sampling
ratio is adjusted upward in the experience buffer pools with a higher degree of importance. In contrast,
a small number of experience samples with a low degree of importance are selected in each batch
in order to ensure the diversity of the samples, and the distribution of sampled experience states is
changed by the adjustable size of the experience pools and the ratio of sampled experiences, which
improves the quality of the training of the network model and accelerates the convergence speed. The
dual experience pool mechanism has the same time complexity as the ordinary experience playback
method and does not increase the space complexity.

How to judge the quality of this group of data, an important criterion is the deviation of temporal
difference (TD) δ, that is:

δ = (y − Qπ (s, a1, a2, · · · , aN))
2 (13)
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δ is greater, which means that the difference between the evaluation value and the actual value
of the target network is greater. For agent training, the higher the quality, the more it is necessary to
increase the sampling frequency, update the values of the target network and the evaluation network,
and accelerate the satisfactory training effect.

For a sample experience, entering the experience replay pools A or B is mainly determined by
its own δ and the average value δ in the replay pool. Firstly, the network model is initialized, and
the initial average value δ in two experience replay pools is set to 0; When an agent interacts with the
environment to generate a piece of empirical sample data, δ of the sample data is calculated, and the
average value δ of all empirical samples in the empirical replay pool is updated at the same time. δ

is compared with the average value δ, and if it is greater than the average value δ, the sample data is
stored in the empirical replay pool A. Otherwise, it is stored in the empirical replay pool B. In this way,
data experiences are categorized according to importance before storage, reducing the operations of
assigning and updating priorities. During sampling, experience groups are drawn proportionally from
different experience playback pools. The dual experience pool mechanism works as shown in Fig. 5.

Figure 5: Dual experience pool mechanism

3.2.2 Dual Noise Mechanism

In the MADDPG algorithm, the actions executed by the agent’s strategy are unique, which may
lead to insufficient exploration of the environment by the agent, and thus additional exploration of the
noise is needed to obtain an experience sample that is more useful to the agent. A common approach
to improve the exploration capability of an agent is to add noise to the action space of the agent. In
the algorithm based on Actor-Critic architecture, the Actor network is used to predict the strategy of
the agent, so to better explore the complete action state space and to improve the exploration ability,
this paper introduces random noise in the Actor network, which changes the decision-making process
of the action into a stochastic process, and then samples the values of the action from this stochastic
process. The Ornstein-Uhlenbeck (OU) process has a good correlation in time sequence, which can
make the agent explore the environment with momentum properties, but this exploration strategy is
not the final action strategy. It is only used in the training process to generate the actions given down
to the environment, so as to obtain the relevant data, which is used to train the intelligent body to
obtain the optimal strategy.
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The differential form of OU random noise Nt is

dNt = θ (μ − Nt) dt + δdBt (14)

where μ is the mean value; θ is the speed at which the noise tends to average; δ is the fluctuation degree
of noise; Bt is the standard Brownian motion.

At the same time, to increase more randomness in the learning process of agents, increase the
coverage of learning, and obtain higher quality training data, random Gaussian white noise with mean
0 and variance σ 2 is added to the action space. Applying Gaussian noise to action exploration can
help agents explore more of the action space and discover new strategies and beneficial behaviors.
In a Gaussian white noise distribution, most of the noise values are concentrated near the mean 0,
while noise values further away from the mean have a lower probability of appearing. The variance
determines the distribution range of the Gaussian noise, the larger the variance of the Gaussian noise,
the wider the distribution range of the noise values, and the larger the exploration range of the agent.

f
(
x|0, σ 2

) = 1

σ
√

2π
e− x2

2σ2 (15)

where the variance σ 2 is used to measure the exploration intensity of the agent, the strategy π (st)

generated by the agent through the strategy network is also correlated with the Gaussian white noise
in state st. A Gaussian noise of 0 ensures that while the optimal action can be executed, actions that
differ from the optimal action also have a certain chance of being executed.

The dual noise working mechanism of OU random noise and Gaussian noise is shown in Fig. 6.

Figure 6: Dual noise mechanism

As an example, the block diagram of the MADDPG-D2 algorithm for the agent i in the
MADDPG-D2 algorithm is shown in Fig. 7.

3.3 Integration of Prior Knowledge
This section mainly constructs the empirical data of domain experts. In this paper, an expert

sample experience pool is constructed, and the domain expert experience data is transformed into
the corresponding state-action sequence and stored in the expert sample experience pool. In the pre-
training stage, the optimal strategy of the agent is the strategy output from the knowledge rule base,
that is, prior knowledge. Based on the network decoupling training framework, the agent extracts a
small number of samples from the expert sample experience pool and passes them into the MADDPG-
D2 algorithm for action selection. Generate training data by interacting with the environment and
store the data in the experience pool for knowledge updates. The experience pool is divided into some
memory spaces, the size of the memory space is set, and the allocated array data is passed in and stored
in turn. When the storage space is larger than the memory space, the previous data is eliminated, and
at the same time, the batch-size data is continuously extracted and transmitted to the learning module
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to update the strategy network, thus reducing the loss function. By using prior knowledge to pre-
train the parameters of the MADDPG-D2 network, a good initial policy for multiple agents can be
provided, which can significantly reduce the exploration and training time, and reduce the probability
of intelligence falling into locally optimal solutions.

Figure 7: Schematic diagram of MADDPG-D2 algorithm for agent i

The prior knowledge used in this paper mainly includes aspects such as existing rule guidelines for
RTA, domain expert knowledge and scenario elements to prioritize the various types of units that may
appear, and eventually form a set of prioritized experiences, pre-training the network, which mainly
consists of the following parts:

(1) Strike incoming targets according to the degree of importance, which must ensure the elimina-
tion of the most important incoming targets, with the highest priority being given to the blue
fighters.

(2) Maximize the performance of the interception systems used to ensure that they are compatible
with the parameters of the incoming target and maximize interdict efficiency.

(3) If the conditions for interception are met, long-range units should first intercept blue’s jamming
aircraft located in the patrol area.

(4) The depth of the kill zone of interception systems should be utilized to implement the maximum
number of interceptions.

(5) If conditions permit, more than two of our units should be utilized to conduct concentrated
interception on the incoming target to guarantee the reliability of the interception and to
increase the probability of destruction of important targets.

(6) Based on the feedback information of each intercepting unit after the execution of the mission,
the allocation strategy should be rationally adjusted and the next round of decision-making
should be prepared.
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(7) Based on their own status, each interception unit determines the sector (altitude) for intercept-
ing the incoming target.

In the above way, the incorporation of prior knowledge and experience replay is achieved to
improve the training effect of the MADDPG-D2 algorithm. The specific process is shown in the
following Fig. 8.

Figure 8: Pre-training process

At this time, the goal of training is changed from finding a strategy with the highest cumulative
reward value to finding a strategy closest to the expert strategy [24]. The essence of this training method
is to find a strategy with the smallest difference in value function between the strategy and the expert
strategy.

min
π

[V (πE) − V (π)] (16)

where V (πE) is the value function of the expert strategy and V (π) is the value function of the strategy
learned by the agent.

To make the agent learn the expert strategy stably, this paper adds the calculation of behavior
clone loss value [25].

LBC =
(Si ,G

(i))∑
i=1

‖π (si|θπ) − ai‖2 (17)

where LBC is the loss of behavior cloning,
(
Si, G(i)

)
is the sample set, π (si|θπ) is the strategy learned

by the agent, θπ is the network parameter of the agent, and ai is the action in the sample set in
the corresponding state si. By calculating LBC, the action difference between the two strategies is
minimized, and the strategy finally learned by the agent is as similar as possible to the expert strategy.

The pseudo-code of the MADDPG-D2 algorithm is shown in Table 1.

However, the improved MADDPG-D2 algorithm also has some defects:

1) Since the MADDPG-D2 algorithm adopts the “centralized training, distributed execution”
mode of operation, each Critic network needs to observe the states and actions of all the agents.
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When the number of agents is very large, the state space is too huge, which makes the solution
difficult.

2) Each agent corresponds to an Actor and a Critic network. When the number of agents is large,
there are a large number of models which require high computational power.

Table 1: MADDPG-D2 algorithm flow

Algorithm 1: MADDPG-D2 for Nagents

Reading the network parameters from pre-training results
for episode=1 to M do

Initialize random processes f and ε for action exploration.
Receive initial state x
for t =1 to max-episode-length do

for each agent i, at moment t, an action is selected based on the current policy and the
exploration noise policy ai

t = μi (oi) + f + ε

Execute the joint action(a1, a2, · · · , aN), get the joint reward(r1, r2, · · · , rN), and the
next new state x′

Calculate δi, update the average value δ in the experience replay pools A and B, make a
comparison and store the sample (x, a1, a2, · · · , aN, r1, r2, · · · , rN, x′) in the experience
replay pools A or B
x ← x′

end for
for agent i=1 to N do

Sample a mini-batch of P samples (x, a1, a2, · · · , aN, r1, r2, · · · , rN, x′) from experience replay
pools A and B in proportion η

Set y = ri + γ Qi

′ (
xi, a1

′ , a2
′ , · · · , aN

′) |aj
′ =uj

′(oj)
Update the Critic network by minimizing the loss L (θi)

L (θi) = Ex,a,,r,x′
[
(Qμ

i (x, a1, a2, · · · , aN) − y)
2]

Update the Actor network by using the sampled policy gradient:

∇θi J (μi) = Es,a∼D

[
∇θiμi (ai|oi) Qμ

i (x, a1, a2, · · · , aN) |ai=μi(oi)

]

end for
Update the Target network parameters for each agent i:

θ ′
i ← τθi + (1 − τ) θ ′

i

end for
end for

4 POMDP Model
4.1 State Space

In the MAS, due to the increase of combat entities, it brings more action and state space. For a
single red agent, there are four state spaces, and the states of all red agents constitute the overall red
state:
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1) Observable state information of the protected object; 2) the state of its own unit, including
resource allocation, sensor, and interceptor state, and the target state information of the attacker within
the interception range of the unit; 3) observable state information of incoming targets; 4) observable
state information of enemy units that can be attacked. The definition of agent state space is shown in
Table 2.

Table 2: Definition of the single agent state space

State name Connotation State name Connotation

NSo Number of the defended object ATCS Information on Red units that
are attacking trackable targets

PSo Location of the defended object GTCS Whether a trackable target is
being tracked

TSo Type name of the defended object RAb Information about the Red unit
that is attacking the targets

BArA Name of the Blue unit that is
attacking defended object

RA−Io Information on Red units that
are attacking interceptable
targets

NTr Number of the sensor NHo Number of target that can be
tracked

PTr Position of the sensor PHo Position of the target that can be
tracked

TTr Type name of the sensor THo Type name of the target that can
be tracked

STr Operating status of the sensor SHo Motion state of trackable targets
BArT Information on the Blue unit that is

attacking the sensor
NIo Number of target that can be

intercepted
NIn Number of the interceptor PIo Position of target that can be

intercepted
PIn Position of the interceptor TIo Type name of target that can be

intercepted
TIn Type name of the interceptor SIo Motion state of targets that can

be intercepted
SIn Operating status of the interceptor Qs−In Number of resources remaining

in the interceptor
BArI Information on the Blue unit that is

attacking the interceptor

4.2 Action Space
For the red single agent, the output of the action by the agent includes 1) the number of the

incoming targets to be tracked; 2) the number of incoming targets to be intercepted; 3) the timing
when the sensor tracks the target; 4) the timing of intercepting the target; 5) the number of resources
used to intercept the target. The definition of action space is shown in Table 3. The action space of all
red agents constitutes the whole redaction space.
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Table 3: Definition of the single agent action space

Action name Connotation

NHon Number of target to be tracked
NIon Number of target to be intercepted
TTr Moment of sensor tracking the target
TIn Moment of interceptor intercepting the target
NSr Number of short-range interception resources used
NLr Number of long-range interception resources used

4.3 Reward Function
The training process of DRL is essentially a process in which the agent interacts with the

environment, gets feedback after the interaction, and adjusts the action according to the feedback
to gradually maximize the reward. In this process, the learning of the action is mainly guided by the
reward function, so it is necessary to reasonably design the reward function, the design of the reward
function will directly affect the training effect of the model and the training efficiency.

In the MADDPG-D2 algorithm, each agent can design its reward function separately. A good
reward function can accelerate the learning speed of agents and make the algorithm converge faster.
The setting of the reward function should not be too sparse, so it is difficult for agents to trigger the
“reward mechanism” and roam for a long time, that is the “plateau problem”. In the above-mentioned
combat scenario, the goal is that all red units complete the task of intercepting the blue attack target
and ensuring their safety, so the task is a cooperative task, and all decision-making agents share a
global reward value.

To better coordinate the reward function and reward the agent at the right time, the task-based
reward mechanism is introduced: after the red side has completed a wave of attacks by the blue side, it
will be given a larger reward. At the same time, after the red side intercepted the important high-value
targets of the blue side, it was given certain rewards.

Where Ci stands for the target type of blue side, including bombers, UAV, cruise missiles and
fighters; ni stands for the number of targets i intercepted by the blue side. The reward function design
is shown in Table 4.

f =

⎧⎪⎪⎨
⎪⎪⎩

K∑
i=1

niCi + 50, Win

K∑
i=1

niCi, Loss
(18)

Table 4: Reward function design

Style Score Event description

Round reward Win 50 Successful defense of key
points

Loss 0 Lose key point

(Continued)
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Table 4 (continued)

Style Score Event description

After the red side
successfully resists the
blue side attack

Interception of bomber 5 Successful interception of a
bomber

Interception of fighter 5 Successful interception of a
fighter

Interception of cruise
missile

2 Successful interception of a
cruise missile

Interception of UAV 1 Successful interception of an
UAV

Launch of long-range
interceptors

−0.06 Consumption of a long-range
interceptor

Launch of short-range
interceptors

−0.05 Consumption of one
short-range interceptor

Attack on the key point −5 One attack on a command
post or airfield

Attack on long-range
radar

−2 One attack on long-range
radar

Attack on short-range
radar

−1 One attack on short-range
radar

5 Simulation Environment and Troop Setting
5.1 Simulation Environment and Parameter Setting

The simulation environment used in this paper is shown in Fig. 9. The training hardware used for
the experiments includes Intel Xeon E5-4655V4 CPU with eight cores, 512 GB RAM, and RTX3060
GPU with 12 GB video memory.

Figure 9: Simulation environment
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Several sets of orthogonal tests are conducted prior to the formal experiment, and the experimen-
tal hyperparameter settings are shown in Table 5.

Table 5: Experimental hyperparameter setting

Hyperparameter Value

Learning rate of Actor network 0.001
Learning rate of Critic network 0.001
Discount factor 0.95
Batch size 1024
Minibatch size 32
Noise OU Noise and Gaussian Noise
Experience replay pool A size 500,000
Experience replay pool B size 500,000
Ratio of sampled experience 0.80
Optimizer-Actor network Adam
Optimizer-Critic network Adam

5.2 Troop Setting
In the simulation experiment, the main objective of the red side is to defend the key points from

being destroyed, i.e., to protect the important facilities of the red side (1 command post and 1 airfield),
and at the same time to destroy as many incoming targets of the blue side as possible while preserving
itself; the main task of the blue side is to attack the airfields and command posts of the red side, and
at the same time to destroy the exposed red side’s defense weapons and positions. The Red and Blue
forces are set up as shown in the Table 6.

Table 6: Troop setting

Style Number

Red Command post 1
Airfield 1
Long-range interception units 10
Short-range interception units 5

Blue Cruise missile 14
UAV 20
Fighter 10
Bomber 4
Electronic jammers 1

5.3 Training Process
Fig. 10 shows the flowchart of training using the MADDPG-D2 algorithm. The flowchart is

divided into three parts: pre-training, sampling and training. In the pre-training stage, the parameters
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of the multi-agent network are pre-trained using the prior knowledge, which can provide a good initial
strategy for the multi-agent body, and at the same time greatly reduce the exploration and training time;
after the pre-training is completed, the multi-agent body interacts with the environment for sampling,
which requires converting the data output from the environment into state information and reward
functions according to the state space, action space and reward function in the POMDP model; the
data output from the environment is converted into state information and reward values, and convert
the actions output from the neural network into combat commands, generating a large number of
data samples; during training, the data samples generated by interaction are used to input into the
MADDPG-D2 algorithm, which updates the network parameters by calculating the error between the
samples and the neural network outputs, continuously optimizes the strategies of the multi-intelligent
bodies, and finally finds the strategy with the highest cumulative reward value.

Figure 10: Training process

6 Experimental Results and Analysis
6.1 Comparison of Agent Architecture

This section compares the average win rate and average reward of the Deep Deterministic Policy
Gradient (DDPG) algorithm under single-agent architecture and the MADDPG-D2 algorithm under
multi-agent architecture, and also comparatively analyzes the performance of the RULE algorithm.

Fig. 11 shows the comparison of the average win rate of agents under the two architectures. The
abscissa is the number of training rounds, the total coordinate is the win rate, and the shaded part is the
error zone. Analysis shows that the initial winning rate of the MADDPG-D2 algorithm trained with
the prior knowledge can reach about 10%, which is higher than that of the untrained DDPG algorithm,
and slightly lower than that of the RULE algorithm, indicating that the agents trained with the prior
knowledge can master certain principles of task allocation and rules of firepower utilization. And the
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difference in the initial winning rate of the MADDPG-D2 algorithm and that of the RULE algorithm
is not very large, indicating that the a priori knowledge is more successfully applied to the pre-training
of the MADDPG-D2 algorithm. By comparison, when the training reaches 50,000 rounds, the win
rate of the DDPG algorithm under single-agent architecture can reach 41.73%, while the win rate
of agents trained by multi-agent architecture can reach 69.15%, which is 46.72% higher than the
former, which shows that it is reasonable to use multi-agent architecture when dealing with large-
scale DTA problem, and the win rate of red agent can be effectively improved by using MADDPG-D2
algorithm. Before the first 20,000 rounds, the win rate of single-agent architecture is higher than that
of multi-agent architecture, but after 20,000 rounds, the win rate of single-agent architecture does not
improve obviously, which may be because after 20,000 rounds, multi-agents cooperate, master the rules
of firepower application and certain tactical tactics, and can better deal with large-scale blue attack
targets, and the corresponding emerging behavior will be carried out in the following chapters.
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Figure 11: The average win rate curve under different architectures. (a) DDPG and MADDPG-D2;
(b) MADDPG-D2 and RULE; (c) RULE and DDPG; (d) MADDPG-D2, RULE and DDPG
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At the same time, it can be found that the RULE algorithm has already specified and solidified the
shooting timing and conditions, so the RULE agent plays more stable, the win rate is stable at about
20%, and there is no big fluctuation, while the MADDPG-D2 algorithm, which integrates the prior
knowledge, can reach a high level, and there is a certain degree of improvement in the win rate, which
shows that the method trained by intelligent algorithm is effective.

Fig. 12 shows the average reward scores of three algorithms when the training rounds are 25,000
and 50,000. When the training round is 25,000, the MADDPG-D2 algorithm can get a bigger reward,
followed by the DDPG algorithm, and the average reward value of the RULE algorithm is the smallest.
The analysis may be because when the training round reaches 25,000, the MADDPG-D2 algorithm
has a higher win rate, and there is a greater probability of winning 50 points at the end of each round.
At the same time, combined with the analysis of countermeasure loss data in the next section, the
MADDPG-D2 algorithm has learned some strategies at this time, which can intercept more high-value
targets such as fighters, so the average reward is higher; after a certain number of rounds of training,
the average reward of the MADDPG-D2 algorithm and the DDPG algorithm has been improved to
a certain extent. When the number of training rounds reaches 50,000, the average reward value of the
MADDPG-D2 algorithm can reach 125.96, with a variance of 6.4, while that of the DDPG algorithm
and the RULE algorithm is 81.97 and 36.43, with a variance of 8.9 and 3.6, respectively. Therefore,
the intelligent algorithm can get a higher reward value, and it is more effective to adopt a multi-agent
architecture and solve it through a multi-agent algorithm when dealing with large-scale DTA problem.
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Figure 12: Average reward under different architectures

According to the above experimental results and theoretical analysis, the advantages and disad-
vantages of the three algorithms are shown in Table 7.
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Table 7: Comparison of algorithmic advantages and disadvantages

Name Advantage Disadvantage

DDPG • More consistent training with a
solid theoretical foundation;

• Easier parameter adjustment

• Difficulty in coping with
large-scale DTA problems;

• Cold-start problems
MADDPG • Better able to cope with large-scale

DTA problems;
• Higher solving accuracy

• Algorithms explore the action
space incompletely;

• Underutilize data experience
MADDPG-
D2

• Better able to cope with large-scale
DTA problems;

• High intensity of exploration of
the action space;

• more efficient utilization of
previous data experience;

• Better solution to the cold-start
problem

• The algorithm has more
parameters, and it is difficult to set
the parameters;

• The hardware of the training
platform requires high
requirements, and the training is
more difficult

RULE • Ability to adapt to multiple scale
scenarios;

• Stable performance, easier to train

• Difficulty in extracting and
codifying rules;

• Small sample of rules makes
knowledge extraction difficult

6.2 Combat Loss and Adversarial Data Analysis
This section analyzes the performance of the DDPG algorithm under single-agent architecture,

the MADDPG-D2 algorithm under multi-agent architecture, and the RULE algorithm in the training
process. This section selects the battle losses of the red and blue sides when the training rounds are
25000 and 50000.

As can be seen from Table 8, after training, the performance of the agents using MADDPG-D2
and DDPG algorithms has been improved to some extent. Horizontally, the number of long-range
radar losses, the number of close-range radar losses, and the number of attacks on key points have all
decreased to a certain extent, indicating that the agents learn some strategies after training, and can
preserve themselves better and reduce the number of attacks on themselves, while the RULE algorithm
agent play more stably, and are almost unaffected by the number of training rounds, it is because the
RULE algorithm is more fixed, the radar start-up time, the allocation time, the number of intercepted
munitions all have standard specifications, and are not affected by training, but its win rate is lower.
In comparison, the performance of the MADDPG-D2 algorithm is better than the DDPG algorithm,
mainly because the MADDPG-D2 algorithm adopts multi-agent architecture, multi-intelligent bodies
cooperate, and the advantages are complementary to each other, and in the face of the large-scale blue
target incoming attacks, the multi-agent architecture is more appropriate. Analyzing the number of
attacks on the key points, it can be seen that the trained agents by intelligent algorithm can effectively
reduce the number of attacks. In the training rounds of 25,000, the number of attacks on the key points
using the MADDPG-D2 algorithm and the DDPG algorithm are 2.643 and 4.924, respectively; while
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in the training rounds of 50,000, the number of attacks are 1.681 and 3.025, the number of attacks
have decreased significantly, indicating that the agents have learned certain defensive strategies. From
the detailed analysis of the subsequent interception, it can be seen that to defend the important place
from being attacked, the red side will even choose to sacrifice a small number of fire units to attract
the blue side’s firepower to achieve the purpose of preserving the important place of the red side.

Table 8: Battle damage situation

Round 25,000 50,000

MADDPG-D2 DDPG RULE MADDPG-D2 DDPG RULE

Number of cruise
missiles intercepted

10.288 9.65 9.553 12.523 10.364 9.639

Number of UAVs
intercepted

9.357 7.905 8.971 17.315 12.611 9.751

Number of fighters
intercepted

5.694 2.601 4.682 7.359 5.496 4.366

Number of cruise
bombers intercepted

1.553 2.634 1.185 0.189 1.264 1.251

Number of
anti-radiation missiles
interdicted

96.027 80.627 48.649 75.926 68.076 52.391

Number of
air-to-surface missiles
intercepted

30.605 29.641 11.526 21.524 17.692 10.338

Number of attacks on
key points

2.643 4.924 5.681 1.681 3.025 5.154

Number of long-range
radar losses

4.652 5.064 4.608 1.842 3.935 5.066

Number of short-range
radar losses

3.947 3.849 3.739 1.528 1.971 3.982

Number of long-range
interceptors consumed

240.385 276.391 145.971 186.977 215.438 150.632

Number of short-range
interceptors consumed

196.256 243.924 221.583 160.537 183.685 218.664

According to the consumption of long-range interceptor, at 25,000 rounds, the loss of the
MADDPG-D2 algorithm is 240.385, and that of the DDPG algorithm is 276.391. After 50,000 rounds
of training, the loss of the MADDPG-D2 algorithm is 186.977, and that of the DDPG algorithm is
215.438, which decreased by 22.22% and 22.05% respectively. Compared with the consumption of
long-range interceptor, the consumption of the MADDPG-D2 algorithm is lower than that of the
DDPG algorithm, which shows that the MADDPG-D2 algorithm can consume fewer interception
resources, reduce the number of attacks, and have a higher interception rate. The remote radar using
the RULE algorithm has more losses, reaching 5.066 when the number of training rounds is 50,000.
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This is mainly because the RULE algorithm intercepts the targets entering the kill zone in sequence,
the detection and killing range of the long-range firepower unit is larger than that of the short-range
firepower unit, and the long-range radar is turned on prematurely, exposing its position and being
destroyed by the blue incoming targets.

6.3 Ablation Experiment
To study the effect of the two mechanisms on the training effect, this paper designs ablation

experiments to compare the difference in effect by adding or subtracting two mechanisms to the
MADDPG algorithm with a total of four different algorithm setups. The experimental settings are
shown in Table 9.

Table 9: Design of experiment

Algorithm Dual noise Dual experience pool

MADDPG-D2 • •
MADDPG+DN • ©
MADDPG+DEP © •
MADDPG © ©
Note: • The mechanism is used in the method; © The mechanism is not used in the method.

The results of the ablation experiment are shown in Fig. 13.

As shown in Fig. 13, the MADDPG algorithm has the lowest win rate of 43.13%. The MADDPG-
D2 algorithm with two optimization mechanisms has the highest win rate of 69.15%, which indicates
that the algorithm’s performance can be effectively improved by adopting the two mechanisms because
the adoption of the dual noise and dual experience pool can achieve the effective use of data and
increase the exploration space, which can quickly improve to a higher win rate in a shorter number
of rounds. When using a dual experience replay pool or dual noise mechanism, respectively, the
performance has a certain improvement compared to the traditional MADDPG algorithm, which is
mainly from a different perspective to achieve the algorithm’s win rate improvement after the training
of the agents in the face of the blue side of the incoming target, they have learned to adopt a certain
strategy and emerged certain tactical warfare. When the number of training rounds is 40,000, the win
rate of the agents trained by the MADDPG-D2 algorithm can reach 46.31%, while the MADDPG
algorithm is only 30.65%, and the overall win rate has been higher than the win rate of the MADDPG
algorithm, which suggests that the MADDPG-D2 algorithm can accelerate the training of agents to
a certain degree, and improve the efficiency of training.

6.4 Agent Behavior Analysis
In the process of training, the agent triggers a certain reward mechanism function, and after

continuous training and strengthening, it gradually learns to effectively deal with the attack of the
blue attack target, and some tactical tactics emerge.
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Figure 13: Comparison of the win rate curve. (a) MADDPG and MADDPG+DN; (b) MADDPG and
MADDPG+DEP; (c) MADDPG-D2 and MADDPG+DEP; (d) MADDPG-D2 and MADDPG;
(e) MADDPG-D2 and MADDPG+DN; (f) MADDPG-D2, MADDPG, MADDPG+DN, and
MADDPG+DEP
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(1) Reasonable distribution, active and efficient interception

As shown in Fig. 14, when the blue incoming target is still at the edge of its shooting range, the
untrained red agents use a lot of ammunition to fire and shoot, which may create good conditions
for the subsequent secondary shooting to some extent, but due to the long distance, the missile’s
interception success rate is low. At the same time, it also gives the blue targets enough maneuvering
escape time, which fails to achieve a good interception effect to a certain extent. Because the red agents
have not been able to judge the importance of attacking targets, they take the lead in intercepting less
important targets and expose themselves prematurely. After the blue attacking targets lured the red
side to fire, the subsequent organizations destroyed the exposed red units, making it difficult for the
red side to deal with multi-wave attacks in the later period.

Figure 14: Before the agent training

As shown in Fig. 15, after training, the agents no longer shoot blindly but learn to intercept the
incoming target reasonably and actively respond to the blue attack. The target can be intercepted one-
to-many and one-to-many. Facing the attack of the first wave of blue cruise missiles, the firepower
units in the defensive wing use more ammunition to intercept, while the firepower units in the strategic
front of the red side use less ammunition to cooperate in intercepting the cruise missiles while avoiding
side attack or pursuit to the greatest extent, improving the success rate of ammunition interception.
Try to keep the interception resources in important defensive positions and near the command post,
to cope with the subsequent multi-wave attacks by the blue side. At the same time, they also learn not
to expose their positions prematurely and to preserve themselves to the maximum extent.

Because a fighter plane and a UAV carry multiple missiles, it takes a lot of interception resources
to intercept these missiles. Therefore, the agent will intercept the blue fighter before it launches the
missile to ensure its safety, which can not only achieve the set goal but also greatly save ammunition
resources.

(2) Preservation of self and active support of friendly neighbors

The long-range firepower unit agent in Fig. 16 is located at the strategic rear, and no blue
attack targets have been observed around. Under the condition of ensuring the absolute safety of the
defending area and sufficient ammunition, it actively responds to other firepower units and cooperates
with the neighboring units in front to intercept a large number of blue attack targets, thus alleviating
the defense pressure of the neighboring units. At the same time, the analysis shows that when the blue
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incoming missiles destroy a red fire unit, other red unit agents will provide fire assistance in time,
effectively intercept the incoming missiles, and eliminate the risk of destroying neighboring units.

Figure 15: After the agent training

Figure 16: After the agent training

(3) Silent ambushes, long- and short-range units working in tandem with each other

As shown in Fig. 17, after training, the agents actively participate in other defense operations while
fully ensuring the absolute safety of their defense direction. In particular, the long-range and short-
range firepower unit agents cooperate alternately, making full use of the advantages of long-range
firepower units and accurate shooting of short-range firepower units, and cooperating to maximize
the performance of firepower and ammunition. As shown in Fig. 17, in the face of a large-scale attack
from the blue side, to prevent the premature exposure of their position, the long-range and short-range
units keep the radars silent at the initial stage of the cruise missile attack, and when entering the ambush
circle, the radars are turned on to intercept the cruise missile in real time and quickly. However, when
the cruise missiles are intercepted for the first time, it is found that it is difficult to destroy them, so the
short-range and long-range firepower units cooperate again and use more ammunition to intercept
them until the cruise missiles are completely intercepted.
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Figure 17: After the agent training

7 Conclusions

Aiming at the problem that single agent model and algorithm cannot solve the uncertainty and
nonlinearity in large-scale DTA problem, this paper proposes the MADDPG-D2 algorithm based on
multi-agent architecture, which increases the action exploration space and improves the data utilization
rate by introducing dual noise and dual experience pool mechanism. At the same time, to speed up the
initial training of agents, a pre-training method with prior knowledge is adopted. Then, based on the
digital environment of ground-to-air confrontation, the real-time confrontation simulation experiment
is carried out. The experimental results show that compared with the DDPG algorithm under single-
agent architecture and the MADDPG algorithm under multi-agent architecture, the agents trained
by the MADDPG-D2 algorithm with prior knowledge have higher win rate and average reward, and
the distribution of ammunition is more reasonable. The algorithm proposed in this paper has certain
advantages.
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