
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.050349

ARTICLE

A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks
against Malicious Data Injection Attacks in Edge Computing Environments

Borja Bordel Sánchez1,*, Ramón Alcarria2 and Tomás Robles1

1Department of Computer Systems, Universidad Politécnica de Madrid, Madrid, 28031, Spain
2Department of Geospatial Engineering, Universidad Politécnica de Madrid, Madrid, 28031, Spain

*Corresponding Author: Borja Bordel Sánchez. Email: borja.bordel@upm.es

Received: 03 February 2024 Accepted: 25 June 2024 Published: 20 August 2024

ABSTRACT

Future 6G communications are envisioned to enable a large catalogue of pioneering applications. These will range
from networked Cyber-Physical Systems to edge computing devices, establishing real-time feedback control loops
critical for managing Industry 5.0 deployments, digital agriculture systems, and essential infrastructures. The
provision of extensive machine-type communications through 6G will render many of these innovative systems
autonomous and unsupervised. While full automation will enhance industrial efficiency significantly, it concur-
rently introduces new cyber risks and vulnerabilities. In particular, unattended systems are highly susceptible to
trust issues: malicious nodes and false information can be easily introduced into control loops. Additionally, Denial-
of-Service attacks can be executed by inundating the network with valueless noise. Current anomaly detection
schemes require the entire transformation of the control software to integrate new steps and can only mitigate
anomalies that conform to predefined mathematical models. Solutions based on an exhaustive data collection to
detect anomalies are precise but extremely slow. Standard models, with their limited understanding of mobile
networks, can achieve precision rates no higher than 75%. Therefore, more general and transversal protection
mechanisms are needed to detect malicious behaviors transparently. This paper introduces a probabilistic trust
model and control algorithm designed to address this gap. The model determines the probability of any node to be
trustworthy. Communication channels are pruned for those nodes whose probability is below a given threshold.
The trust control algorithm comprises three primary phases, which feed the model with three different probabilities,
which are weighted and combined. Initially, anomalous nodes are identified using Gaussian mixture models and
clustering technologies. Next, traffic patterns are studied using digital Bessel functions and the functional scalar
product. Finally, the information coherence and content are analyzed. The noise content and abnormal information
sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters. An experimental
validation based on simulation tools and environments was carried out. Results show the proposed solution can
successfully detect up to 92% of malicious data injection attacks.
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1 Introduction

Future 6G networks [1] are characterized by the provision of new communication services with
extreme Quality-of-Service [2]. While 4G networks limited mobility to 350 km per hour (approxi-
mately), and 5G networks raised this limit to 500 km per hour, 6G technologies are expected to enable
paradigms such as extreme mobility [3], where mobile devices can reach speeds of up to 1000 km per
hour. In addition, extremely ultra-reliable low-latency communications (eURRLC) are enabled where
network latencies are below 100 ms. This is a robust reduction compared to 5G networks (expected
latencies below one millisecond) and 4G networks (latencies in the range of hundreds of milliseconds).
Finally, ultra-massive machine-type communications (umMTC) [4], where base stations must serve up
to 10 million devices per square kilometer, are also envisioned in 6G networks. While the maximum
density in 5G was one million devices per square kilometer, this parameter was not even defined in 4G
networks.

Through this renewed service catalog, a large collection of innovative applications will be enabled.
By combining 6G mobile services, Artificial Intelligence [5], Cyber-Physical Systems [6] and edge
computing devices [7], the fifth industrial revolution [8] will be accelerated. Real-time feedback control
loops will be defined to efficiently manage everything from industrial production systems and digital
agriculture to critical infrastructure such as energy or military equipment [9]. This massive automation
will significantly increase global efficiency by almost completely eliminating inefficiencies caused
by human intervention. Social and economic benefits, such as intense product personalization or
increased well-being in the workplace, are clear positive outcomes of this new revolution [10]. However,
automated network edge computing devices also have negative aspects, and this type of distributed
architecture opens the door to new cyber risks and vulnerabilities [11].

When networked devices oversee most control and monitoring tasks in a developed economy, most
systems must remain unmanaged and unattended. Isolated deployments in remote areas (for example,
in digital agriculture or environmental monitoring) are quite common. Challenges such as energy
supply have been thoroughly examined, and open questions related to communication infrastructure
are anticipated to be addressed by the advent of 6G networks and their expected ultra-coverage (99% of
the geographical territory will be provided with mobile services) [12]. However, unattended or isolated
devices and networks are exceptionally vulnerable to manipulation. In fact, trust threats are the most
concerning security challenges in 6G networks and edge computing deployments [13]. Attacks such as
false information injection are relatively easy to develop [14]. Various attack vectors, including the
insertion of malicious nodes within the network, noise flooding to induce a Denial-of-Service, or
generation of anomalous information, have minimal costs for attackers in unattended environments.
Nonetheless, the potential impact on control loops and decision and monitoring software is huge.

Current mitigation schemes to make 6G technologies and edge computing deployments resilient
to malicious data are based on enriched control loops that can subtract the effect of false information
and keep global operations stable [15]. However, this approach has two major problems. On the one
hand, only malicious data or abnormal information matching a given mathematical function or model
should be detected and mitigated. The improved control loop is only resilient against those effects
for which a compensation loop is included. The remaining attacks or false data are not corrected.
On the other hand, even for those malicious data that match the proposed mathematical model, the
entire control software must be updated and transformed to include any trust protection module.
Although this is feasible, it limits the application of these technologies to a limited number of scenarios.
Therefore, more transversal and general protection mechanisms against malicious data injections are
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needed, and they must be able to operate transparently and regardless of the nature of the false
information. This paper fills this gap.

In this paper, we introduce a probabilistic trust model and a control algorithm designed to assess
the reliability of edge computing nodes. The model quantifies the probability that a given node is
trustworthy by integrating three distinct components, each representing a specific probability. These
probabilities are derived from a trust control algorithm, which is executed through a sequence of three
systematic steps. In the first step, nodes are represented in a bidimensional phase space and grouped
in clusters using a clustering algorithm and Gaussian mixture models. Nodes with outlier behavior
are potentially untrustworthy. In the second step, the traffic pattern generated by nodes is analyzed.
This involves calculating the distance between the actual traffic profile and a reference template based
on digital Bessel functions using the functional scalar product. Greater distances indicate a higher
probability of the node being unreliable. Finally, the content and coherence of the data are studied. A
Volterra filter is employed to differentiate between valuable information and non-essential noise within
data flows. Besides, a bank of Finite Impulse Response filters is utilized to detect anomalous internal
data structures. Non-valuable information makes an edge node more likely to be untrustworthy.

When all three probabilities are combined in the global probabilistic trust model, all nodes for
which the final value is below a given threshold are pruned. The model also considers a historical data
series to avoid transitory effects.

Thus, three key contributions are presented in this study. Namely:

• A holistic mathematical probabilistic model to compute trust, considering several different
perspectives from which data streams (and 6G devices) can be malicious and untrustworthy,
including noise injection at the physical level and information level, Denial-of-Service attacks,
and false data injections.

• A new mathematical model to represent traffic patterns in embedded 6G devices, based on the
oscillatory behavior of Bessel functions.

• An innovative application of signal processing technologies, such as the Volterra filter, to detect
false information attacks in real-time data streams in 6G nodes.

The rest of the manuscript is organized as follows. Section 2 introduces the state of the art in
trust management and anomaly detection in 6G mobile networks and edge computing environments.
Section 3 presents the proposed contribution, including the global probabilistic trust model and all
required computational algorithms. Section 4 describes the experimental methodology and experi-
ments. Section 5 discusses the experimental results, and Section 6 concludes the paper.

2 State-of-the-Art

Several authors have analyzed trust management issues in 6G networks. Although some works
are just white papers or position papers on this topic [16,17], the most common proposals define
various blockchain-enabled solutions. In these schemes, asymmetric encryption is used to guarantee
the identity of data sources [18], or distributed file storage supports the collection of various proofs
describing the trustworthiness of devices [19]. Blockchain-enabled reputation systems, based on
various statistics, have also been proposed [20]. The final decision is based on a fixed threshold that can
only detect stationary behavior. The results show that this technology takes up to 50 days to converge,
which is several orders of magnitude longer than the performance of our proposal.
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In general, trust in the context of 6G networks is equivalent to network reliability, and typical
trust models are based on Quality-of-Service (QoS) metrics such as packet loss or bit error rate
[21]. Measurements can be registered using blockchain to add transparency and accountability to the
management system [22]. However, on the one hand, blockchain-based solutions are very inefficient
for managing large amounts of data or devices and have several limitations regarding data formats,
latency, etc. Many of these limitations are not compatible with the extreme QoS of 6G. On the other
hand, these network-based approaches have a limited understanding of trust because they only analyze
QoS. Thus, the accuracy is limited to a maximum of approximately 75%. In contrast, the technology
proposed in this paper aims to improve performance by up to 20% compared to these conventional
models.

Artificial Intelligence is an enabling technology typically employed in trust management solutions.
Many researchers have described how Artificial Intelligence can protect users from illegitimate data
capture attacks in a zero-trust architecture [23]. However, works tend to be descriptive, focusing
on limitations and opportunities [24]. Typical real contributions are synthetic data generators to
confuse intrusive learning tools, which can be based on simple random distributions [25] or advanced
generative models [26]. However, all these technologies require large and exhaustive datasets for
training, which are not always available. Therefore, the accuracy is limited and only reaches 70% in
scenarios with a low presence of malicious nodes (less than 10%). In fact, accuracy drops to 40% (or
lower) as the number of malicious nodes increases. Although a higher number of nodes is an obstacle to
achieving high success rates, the behavior of the proposed technology in this paper is better because the
rates become stable (they do not increase, but they do not decrease either). Furthermore, deep learning
techniques are implemented in resource management protocols for 6G networks [27] to ensure that all
users are treated with equity and increase social trust in mobile technologies [28].

Similarly, artificial intelligence is integrated into other subsystems, such as the authentica-
tion module [29], to ensure objective network operation. Although preliminary results show these
approaches achieve the expected goals, they focus on protocol enrichment or illegitimate data
acquisition. In contrast, we focus on malicious information injection attacks in this paper.

Other trust models have been reported for various distributed systems [30]. The models are usually
based on direct and indirect observations, which are later combined by a Bayesian expression [31]. The
accuracy of these models is high, and the processing time is low, which is comparable to the results
of the proposed solution in this paper. However, they require such heavy processing and large data
messages to operate that they are limited to cloud services or similar distributed applications. Sensing
nodes or other edge devices are not capable of operating these mechanisms.

Other technologies, such as hash functions or machine learning, are employed [32]. But again,
many works consider trust equivalent to network reliability, so most proposals aim to identify the
interface [33] or proxy [34] with the optimum QoS. Furthermore, these heterogeneous models have
not been evaluated in edge computing environments or 6G networks but in smart grids or vehicular
ad hoc networks [35]. This paper fills this gap by proposing a probabilistic trust model for 6G edge
computing deployments.

On the other hand, several previous studies have focused not on addressing trust threats but
rather on detecting anomalies or false data. The majority of these approaches are enabled by Artificial
Intelligence techniques. Machine Learning technologies are applied to historical offline datasets [36] to
rectify false information, and reinforcement learning is utilized to discourage devices from generating
undesirable data flows [37]. Moreover, intelligent trajectory prediction schemes are reported too to
mitigate or remove abnormal data from communication channels in real time [38]. Other conventional
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mathematical models have also been employed to characterize malicious data flows based on QoS
indicators [39], control signals [40], or statistical coefficients [41]. The main problem with these
solutions is their lack of flexibility. Trained models are limited to detecting anomalies that have been
previously identified and labeled. Consequently, numerous similar technologies have been developed
for varying scenarios, ranging from healthcare applications [42] to software-defined networks [43].
Results are promising, but the external validity of these solutions is not guaranteed, and further
analysis and more transversal solutions are needed.

3 A Probabilistic Trust Model against False Information Injection

Future 6G networks will follow a Cloud Radio Access Network (C-RAN) topology. A set of
A antennas will cover a given geographical area G. All these antennas, however, are connected to
a unique processing node U where all N edge computing devices within area G are managed and
monitored. Fig. 1 represents the proposed scenario. Each edge computing device di (1) is provided with
an identifier according to the 6G network protocols [44] so that the processing node U can distinguish
the origin of each data flow xi (whose source is the i-th device, di).

{di i = 1, . . . , N} (1)

Figure 1: Proposed scenario

For each device di, a trust value πi[n] is calculated and updated every time frame with a duration of
Tframe seconds (2). Within each time frame, M different measurement slots are defined. The slots have
a uniform duration of Tslot seconds (3). For each time frame, devices di for which the trust value πi is
below the threshold π low

th (4) are pruned by denying them access to the physical media. Under certain
circumstances, trust values may be close to the threshold π low

th . Then, to avoid on-off connections, each
pruned device di can only regain access to the physical media if trust rises above a second threshold
π

high
th (5). The resulting system has hysteresis, as shown in Fig. 2. Thresholds must be adjusted for each

specific application scenario. Heuristic techniques [45], experimental measures [46], or optimization
strategies [47] can be used. Some data sources are more stable or reliable than others (due to natural
variations, the complexity or characteristics of sensors, etc.), and it is essential to adapt the thresholds
to the behavior of the expected scenario to ensure high performance.

πi [n] n = k · Tframe k ∈ N (2)

Tframe = M · Tslot (3)
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πi < π low
th ⇒ di pruned (4)

π
high
th > π low

th (5)

Figure 2: Hysteresis in the proposed trust model

However, even with this hysteresis behavior, mobile networks are affected by several different
exogenous effects, so trust values may eventually fluctuate. To avoid these transient effects, the trust
value at the n-th time frame πi[n] is calculated as the geometric sum of the last W trust values (6).
Being r a configuration parameter that controls the influence (weight) of past trust values in the
current computation and r > 1. The model also includes a probability ptrust, which is updated with
each time frame Tframe and represents the probability of the node di to be trustworthy at the current
moment. This probability ptrust is composed of the weighted addition of three other probabilities
(7) and three weighting parameters λ{1,2,3}, which ensures that the global probability remains in the
interval [0, 1]. Probability poutlier represents the probability that node di has an outlier behavior (see
Section 3.1). Probability ppattern represents the probability that node di has an abnormal traffic pattern
(see Section 3.2). And probability pinfo represents the probability of node di to generate a valuable and
coherent information flow (see Section 3.3).

πi [n] = ptrust [n] +
W∑

k=1

(
1
r

)k

· πi [n − k] (6)

being r > 1

ptrust [n] = λ1 · poutlier + λ2 · ppattern + λ3 · pinfo (7)

being λ1 + λ2 + λ3 = 1

3.1 Outlier Detection: Gaussian Mixture Models and Clustering Algorithms
The proposed trust model and control algorithm are fully transparent to edge computing nodes

and rely only on non-intrusive measurements. To analyze the node behavior and obtain the poutlier

probability, we consider two different random variables (stochastic processes): the number of packets
ρ [y; n] transmitted within a time slot Tslot (8), and the average length (in bits) of these packets L [z; n]
(9). Where y and z are the non-negative integer independent variables and n is the usual discrete time
variable. Since several independent random phenomena affect these stochastic processes, the central
limit theorem guarantees that the linear combination of all these variables is a Gaussian distribution,
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where σρ,L[n] is the standard deviation and μρ,L[n] is the mean value at t = n · Tslot (both non-negative
real numbers).

ρ [y; n] = 1

∑∞
q=0 e

−(q−μρ [n])
2

2·(σρ [n])
2

· exp

{
− (y − μρ [n]

)2

2 · (σρ [n]
)2

}
(8)

beingy ∈ N ∪ {0}
L [z; n] = 1

∑∞
q=0 e

−(q−μL [n])
2

2·(σL [n])
2

· exp
{− (z − μL [n])2

2 · (σL [n])2

}
(9)

being z ∈ N ∪ {0}
In general, edge computing nodes execute infinite loops with a limited number of repetitive

operations. Then, the two stochastic processes described above are expected to be stationary ((10) and
(11)), with standard deviation σ ∗

ρ,L and mean μ∗
ρ,L. In this context, the standard deviation and mean are

sufficient to fully characterize and identify all stochastic processes.

ρ [y; n] = ρ [y] = 1

∑∞
q=0 e

−(q−μ∗
ρ)

2

2·(σ∗
ρ )

2

· exp

{− (y − μ∗
ρ

)2

2 · (σ ∗
ρ

)2

}
∀n (10)

L [z; n] = L [z] = 1

∑∞
q=0 e

−(q−μ∗
L)

2

2·(σ∗
L)

2

· exp

{
− (z − μ∗

L

)2

2 · (σ ∗
L

)2

}
∀n (11)

Additionally, we assume that both stochastic processes are ergodic. Then, the central and non-
central moments computed from a time series can be used to estimate the general (statistical) moments.
Specifically, we can estimate the first non-central moment (mean or expected value) and the second
central moment (variance) by taking one measurement for each time slot Tslot and obtaining the mean
(12) or the central mean (13) for the resulting M independent values {ym} and {zm}, respectively.

μ∗
ρ
∼= 1

M

M∑
k=1

ym [k · Tslot] (12)

μ∗
L

∼= 1
M

M∑
k=1

zm [k · Tslot]

σ ∗
ρ

∼= 1
M

M∑
k=1

(
ym [k · Tslot] − μ∗

ρ

)2
(13)

σ ∗
L

∼= 1
M

M∑
k=1

(
zm [k · Tslot] − μ∗

L

)2
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These four values are also independent and can be considered as the position coordinates of each
device di in a four-dimensional phase space (14). Therefore, it is possible to represent the behavior of
the nodes as a constellation of points in an Euclidean hyperspace (see Fig. 3).
	di = (μ∗

ρ
, μ∗

L, σ ∗
ρ
, σ ∗

L

)
(14)

Figure 3: Edge devices represented in a four-dimensional phase space

In general terms, all edge nodes have similar behavior, so they tend to appear grouped in point
clouds in phase space. Any isolated device is a clear indicator of outlier behavior. To detect these
outliers, we use a Gaussian mixture model (GMM).

We assume that the point (device) distribution in phase space is a realization of a four-dimensional

random variable ξ
(	di

)
defined as the weighted linear combination of C Gaussian distributions (15),

so that each component is the standard continuous Gaussian distribution with mean value 	�j (four-

dimensional vector) and covariance matrix (4 × 4 positive define matrix) 	�j (16). det
( 	�j

)
is the

determinant of matrix 	�j and T super index indicates the transpose matrix. To ensure that the final
distribution takes values within the interval [0, 1], all weights φj must be unitary (17).

ξ
(	di

)
=

C∑
j=1

φj · N
(	di; 	�j, 	�j

)
(15)

N
(	di; 	�j, 	�j

)
= 1√

(2π)
C · det

( 	�j

) · exp
{
−1

2

(	di − 	�j

)T

·
( 	�j

)−1

·
(	di − 	�j

)}
(16)

C∑
j=1

φj = 1 (17)

In order to calculate the parameters φj, 	�j and 	�j for each individual Gaussian distribution in the
GMM, we are using the maximum log-likelihood method. In this method, parameters are calculated to
make the logarithmic aggregate probability for all points (devices) maximum (18). Absolute maximum
points are located at points where the derivative is zero. Thus, partial derivatives with respect φj,
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	�j and 	�j are obtained (19)–(21), where γ
j

i is the probability of 	di to belong to the j-th Gaussian
distribution (22).(

φ∗
j , 	�∗

j , 	�∗
j

)
= max

φj , 	�j , 	�j

{
N∑

i=1

ln
(
ξ
(	di

))}
= (18)

= max
φj , 	�j , 	�j

{
N∑

i=1

ln

(
C∑

j=1

φj · N
(	di; 	�j, 	�j

))}

∂

∂ 	�j

(
N∑

i=1

ln
(
ξ
(	di

)))( 	�∗
j

)
= 0 
⇒ 	�∗

j =
∑N

i=1

(
γ

j
i · 	di

)
∑N

i=1 γ
j

i

(19)

∂

∂ 	�j

(
N∑

i=1

ln
(
ξ
(	di

)))( 	�∗
j

)
= 0 
⇒ 	�∗

j =
∑N

i=1

(
γ

j
i ·
(	di − 	�∗

j

)
·
(	di − 	�∗

j

)T
)

∑N

i=1 γ
j

i

(20)

∂

∂φj

(
N∑

i=1

ln
(
ξ
(	di

))) (
φ∗

j

) = 0 
⇒ φ∗
j = 1

N
·

N∑
i=1

γ j
i (21)

γ j
i =

φj · N
(	di; 	�j, 	�j

)
∑C

j=1 φj · N
(	di; 	�j, 	�j

) (22)

Since the expressions for estimating φj, 	�j and 	�j are recursive, the maximization step is repeated
until the values converge and variations in the values between sequential steps are lower than ε (23).
The final GMM can be used to define clusters. Each Gaussian distribution defines a cluster cj, to which
points 	di for which γ

j
i is maximum belong (24). The number of clusters C to be defined is calculated by

incremental iterations. For each possible value of C, the Davies–Bouldin index (25) is obtained, where
Qj is the number of points in cluster cj. The number C for which the index is maximum is chosen as
the clustering solution.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣φj (h step) − φj (h + 1 step)
∣∣ ≤ ε∀j∥∥∥ 	�j (h step) − 	�j (h + 1 step)

∥∥∥ ≤ ε∀j∥∥∥ 	�j (h step) − 	�j (h + 1 step)

∥∥∥ ≤ ε∀j

⇒ convergence (23)

	di ∈ cj ⇔ γ j
i > γ h

i ∀h ∈ [1, C] , h = j (24)

DBI = min
j

⎧⎪⎨
⎪⎩
√√√√ 1

Qj

·
Qj∑
i=1

∥∥∥	di − 	�∗
j

∥∥∥2

⎫⎪⎬
⎪⎭ (25)

Finally, probability poutlier is obtained as the probability of point 	di according to the j-th Gaussian
distribution (26), assuming that the point belongs to the cluster cj. Algorithm 1 shows the final
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calculation process of the probability poutlier.

poutlier

(	di

)
= φj · N

(	di; 	�j, 	�j

)
(26)

3.2 Traffic Patterns: Digital Bessel Functions
In some cases, edge devices may show average behavior that appears normal, but instantaneous

traffic patterns follow a harmful or malicious flow. The probability ppattern takes this situation into
account.

Software for embedded devices typically generates data following an oscillatory but decreasing
pattern. For short periods, configuration and control messages must be exchanged (for media access
negotiation with 6G nodes, for example), followed by a sequence of data using a low bitrate and, finally,
a quite long period when the edge node is slept (not transmitting). 6G verticals (network segments
specialized in some applications) for edge computing are typically designed according to this expected
behavior, and other traffic patterns can cause a Denial-of-Service quite easily (given the ultra-massive
device density in edge environments).

For each time frame, we can define a time series bi[n] describing the number of bits transmitted in
each time slot (27). This series represents the real traffic pattern of the node di. On the other hand, the
ideally expected traffic pattern β[n] is common to all N edge nodes and follows a piecewise function
(28), where Jα[n] is a function obtained by sampling the Bessel function of the first kind Jα(s) (29),
but considering that α is always an integer. The piecewise function ensures that the traffic pattern
is defined as non-negative (the original Bessel function of the first kind takes values in the interval
[−1, 1]). Additionally, since Bessel functions are unitary, we consider a weighting parameter βmax to
apply homothety. Fig. 4 shows the proposed ideal pattern.

Figure 4: Proposed ideal traffic pattern
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Algorithm 1: Clustering and poutlier calculation

Input Points
{	di i = 1, . . . N

}
Output Probability poutlier

Create variable DBIold → 0
for C < Cmax do

Create converge → false boolean
Initialize and give a random value to φj, 	�j and 	�j

while convergence is false do
for every point 	di do

for j ∈ [1, C] do
Calculate γ

j
i

end for
end for
for j ∈ [1, C] do

Calculate φ∗
j , 	�∗

j and 	�∗
j

end for
for j ∈ [1, C] do

if
∣∣φj − φ∗

j

∣∣ ≥∈ and
∥∥∥ 	�j − 	�∗

j

∥∥∥ ≤ ε and
∥∥∥ 	�j − 	�∗

j

∥∥∥ ≤ ε do
convergence is true

end if
end for
Update φj = φ∗

j ; 	�j = 	�∗
j ; 	�j = 	�∗

j

end while
Calculate DBI

if DBI ≥ DBIold do
for every point 	di do

if γ
j

i > γ h
i ∀ h ∈ [1, C] , h = j do

poutlier

(	di

)
= φj · N

(	di; 	�j, 	�j

)
end if

end for
end if

end for

bi [n] n = 1, . . . , M (27)

β [n] =
{

βmax · Jα [n] if Jα [n] ≥ 0
0 otherwise

(28)

Jα [n] = Jα (n · Tslot) =
∞∑

s=1

(−1)
s

s! · (s + α) !
·
(

n · Tslot

2

)2s+α

(29)

The distance δ
pattern
i (30) between the ideal traffic pattern β[n] and the actual pattern bi[n] can be

calculated using the functional scalar product (31) typically employed in series analysis. The distance
δ

pattern
i takes values in the interval [0, ∞), while the probabilities must take values in the interval [0, 1]. A
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decreasing exponential mapping function (32) is used to make both requirements compatible, where
τ1 is a configuration parameter that controls the rate of decrease.

δpattern
i =

√
‖β [n] − bi [n]‖2 = √〈(β [n] − bi [n]) , (β [n] − bi [n])〉 (30)

〈(β [n] − bi [n]) , (β [n] − bi [n])〉 =
M∑

n=1

(β [n] − bi [n]) · (β [n] − bi [n]) (31)

ppattern = e− δ
pattern
i

τ1 (32)

3.3 Data Filtering and Noise Detection
Finally, even if the traffic patterns are perfectly trustworthy, the information content can be

malicious: noise or false information can be injected. The probability pinfo measures this risk. Fig. 5
shows the proposed spectral analysis to ensure that the information content is trustworthy. The first
module is a Volterra filter, which is used to measure the statistical or numerical noise level. The Volterra
filter employs a linear combination (33) of a finite number Hmax of polynomial functions pl (·), where
ξl are weights and θj are the coefficients of the polynomial function of order Jmax (34). On the other
hand, the variables uk are weighted linear combinations with Kmax elements, of the k-th samples in the
data stream xi[n] (35), where ωk

i are the weights as well.

Figure 5: Filtering for malicious information and noise detection
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On the other hand, edge nodes monitor physical variables that are governed by a previously known
dynamic 	F(η1, η2, ..., ηΛ), where {η1, η2, ..., ηΛ} are the independent variables (time, climatic conditions,
etc.).

�i [n] =
Hmax∑

l=1

ξl · pl (uk) (33)

pl

(
uj

) =
Jmax∑
j=0

θj · (uk)
j (34)

uk =
Kmax∑
k=1

ωk
i · xi[n − nk] (35)

This dynamic can be developed as Tylor series (36), where 	χ0 is a Λ-dimensional point, resulting
in a polynomial function as well. If the weights

{
ωj, ξl

}
and coefficients θj are correctly selected in the

Volterra filter, environmental noise and other numerical or statistical errors would be removed, and
the output �i[n] would follow a similar trajectory to the one generated by dynamic 	F(η1, η2, ..., ηΛ). On
the contrary, if data flow xi[n] is useless noise or is affected by noise injection. The output Γi[n] will be
zero or very different from fi[n].

	F (η1, η2, ..., ηΛ) =
∞∑

t1,t2,...,tΛ=0

(
Λ∏

j=1

(
ηj − 	χ0

)tj

tj!

)
· ∂ t1+...+tΛ 	F
∂η

t1
1 · ... · ∂η

tΛ
Λ

( 	χ0) (36)

The distance δ
info
i between Γi[n] and fi[n] can be estimated using the functional scalar product (37),

where Ymax is the number of samples in the entire time frame Tframe.

δinfo
i =

√√√√Ymax−1∑
n=0

(Γi [n] − fi[n])2 (37)

Additionally, non-noisy false information could be generated and injected so that the Volterra
filter produces a coherent flow even though the edge environment is under attack. A spectral analysis
using a bank of Emax Finite Impulse Response (FIR) filters is proposed (see Fig. 6). These FIR
filters will decompose the data stream into different frequency bands. For legitimate information, the
magnitude (power) at the output of each of these filters should be similar and relevant for all edge
nodes di (we assume that they all have the same objective and use the same 6G technology).

The output of each FIR filter ψ e
i [n] can be obtained as a linear combination of the lagged data

streams (38) xi[n], where gk is the coefficients controlling the passband width and the center frequency.
They can be computed using standard signal processing techniques [48]. The spectral magnitude Θe

i [n]
can be easily obtained (39) by considering the Fourier transform Ψe

i [Ω] of each output (40). This
transform can be computed using the Fast Fourier Transform (FFT) algorithm [49]. Then, as all
spectral magnitudes Θe

i must be similar, the Mean Square Error (MSE) is a good measure of how
different an information data flow xi[n] is, compared to the data flows produced by the other edge
nodes dj (41), where Θ

e
is the average value for the h-th filter (42).

ψ e
i [n] = g0 · xi [n] + g1 · xi [n − 1] + g2 · xi [n − 2] + g3 · ψ e

i [n − 1] + g4 · ψ e
i [n − 2] (38)
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�e
i = ∣∣�e

i [�]
∣∣ (39)

Ψe
i [Ω] =

Ymax−1∑
n=0

ψ e
i [n] · e

−2π j
Ymax

·Ω·n (40)

MSE = 1
Emax

Emax∑
e=1

(
Θe

i − Θ
e
)2

(41)

Θ
e = 1

N
·

N∑
i=1

Θe
i (42)

Figure 6: Bank of FIR filters and internal structure

Considering the MSE and the distance δ
info
i , it is possible to calculate probability pinfo through an

exponential mapping function (43) where τ2 and τ3 are parameters which control the decreasing speed
of the exponential curve and {ε1, ε2} are unitary weights (44).

pinfo = ε1 · e− δ
info
i
τ2 + ε2 · e− MSE

τ3 (43)

ε1 + ε2 = 1 (44)
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4 Experimental Validation

An experimental validation was designed and performed to evaluate the performance of the pro-
posed trust model and protection solution. Simulation scenarios and tools supported the validation,
as commercial 6G networks and hardware are unavailable.

The validation included two different aspects. On the one hand, the level of protection provided by
the proposed trust model and control algorithm is evaluated by the success detection rate against false
injection attacks. Different types of attacks (false information and noise injection) were considered.
False positive detections were also monitored. On the other hand, the performance regarding detection
delay and scalability is analyzed in a second experiment. The required processing time is controlled by
native instruments within the simulation framework.

The proposed scenario represents an industrial environment where comfort and working condi-
tions are monitored. Temperature, humidity, and carbon dioxide levels are monitored through a dense
deployment of edge computing nodes. The number of nodes was variable, but in different simulations, it
evolved from ten (10) devices to twenty-five thousand (25,000) devices homogenously distributed over
a geographical area of thirty thousand (30,000) square meters. Data streams were generated using a
‘replay’ process, where the source was a dataset taken from a real industrial edge deployment [50]. Edge
nodes represented a 16-bit architecture. Malicious nodes and the attacks they perform are randomly
selected for each different simulation. In each simulation, a percentage ranging from 1% to 10% of
malicious nodes are generated. For the second experiment, higher percentages (40%) are considered
to represent several scenarios, from very low risk to applications where the number of malicious nodes
is higher than expected. The attacks are not continuous, and they start and end randomly throughout
the simulation period. However, attacks have a minimum duration of one hundred (100) time frames.
The entire scenario was served by two different 6G base stations.

Both attacks (noise injection and false information injection) are performed using numerical
techniques. Noise injection attacks were supported by white noise generators (e.g., the wng function
in MATLAB). The noise power was calculated to be at least 3 dB above the power of the information
signals (calculated offline from datasets). On the other hand, false information injection attacks were
supported by differential equations solved in real time using the Runge-Kutta method. These equations
represented the climate evolution in a tropical forest (different from the industrial scenario considered
in the dataset). The resulting trajectory is fictitious and is injected into the legitimate system to confuse
end-user applications. In both cases, data samples are generated and sent to the base stations as regular
messages.

Since this scenario was not exposed to any particular cyber risk and all types of attacks were
equally likely, the configuration parameters were chosen to be homogeneous and uniform. Then,
all parameters, including thresholds and weights, were determined from the theoretical standard and
generic definitions from traffic or network theory. Table 1 shows the selected values.

The simulation scenario was implemented and executed using MATLAB 2022a software to
perform the experiments. 6G wireless technologies were simulated using the MATLAB 5G Toolbox.
Edge devices and remote cloud servers were represented by numerical functions that were periodically
executed. The proposed trust model and control algorithm were also implemented using the MATLAB
language, and existing libraries for common calculations (average, scalar products, sum, etc.) were
extensively used to avoid any possible errors. In the second experiment, execution time monitoring
functions were used.
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Table 1: Configuration parameters

Parameter Value Comments Parameter Value Comments

ε1, ε2 0.5 Homogenous weights τ1, τ2, τ3 530 The null probability is
reached for distances
above half the
maximum value in a 16
bits architecture

βmax 256 kbps Typical value in
personal area networks

M 20 Significant enough for
precise average values

r 2 Recent trust values have
a quite relevant wight

π low
th 0.5 Coherent with

teletraffic theory
ε 10% Standard value in

experimentation
π

high
th 0.8 Coherent with

teletraffic theory
α 4 Edge devices are slept

for very long periods
Jmax, Kmax

Hmax

2 Volterra filter second
order

In the first experiment, the success detection rate and false detection rate are monitored for
different numbers of edge devices. Specific analyses for different types of attacks are also developed. In
the second experiment, the processing delay required to complete a successful detection is monitored.
The study is repeated for different numbers of edge devices, types of attacks, and percentages of
malicious nodes. The results are also presented using the MATLAB suite.

All simulations were performed on a Linux architecture (Ubuntu 20.04 LTS) with the following
hardware specifications: Dell R540 Rack 2U, 96 GB RAM, two processors, Intel Xeon Silver 4114
2.2 G, HD 2TB SATA 7.2 K rpm. All simulations represented an operating time of seventy-two (72)
h. Each simulation was repeated twelve times, and the final results were obtained as the average of all
partial results. With this configuration, and according to the t-student distribution, the error is below
3.055% with a probability of 99.5%. In addition, to ensure the internal validity of the results, outlier
simulations are discarded and repeated to remove any exogenous effect.

5 Experimental Results

Figs. 7 and 8 show the results of the first experiment. As can be seen, the success detection rate
is higher than 80% for all types of attacks and for edge environments with a significant number of
nodes. Since the spectral analysis and MSE calculation (see Section 3.3), as well as the clustering
technique for outlier detection (Section 3.1), depending on the average behavior of the nodes, the
results tend to be more stable and accurate when considering a significant number of edge devices. For
small deployments, variability and non-convergent behavior are common and severely impact overall
performance.

The results for noise injection attacks are generally more favorable. Since noise can be easily
detected by the Volterra filter (Section 3.3) and the traffic pattern analysis algorithm (Section 3.2),
both of which are independent of the size of the edge environment, success detection rates for these
attacks tend to be higher and almost invariant to the number of edge devices. The success detection
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rate for noise injection attacks can reach 92%. On the other hand, the true detection rate for false-
information injection attacks diminishes when the number of edge devices within the 6G network
is limited. That is because of two different causes, the proposed pattern-based outlier detection
algorithm. As the number of independent samples (data sources) to be analyzed increases, the precision
and significance of the results from this outlier detection algorithm also increase. Therefore, global
detection rates improve. In contrast, for small sets of devices, the results can fluctuate and may
not be fully reliable. Second, false information injection attacks are highly dependent on spectral
analysis (which in turn is significantly influenced by the number of devices under consideration),
so the performance is poorer. The detection success rate for these attacks follows an exponential-
like pattern, starting from very low values (around 10%) and increasing to approximately 85% for
larger deployments. The global behavior (considering both kinds of attacks) is clearly affected by the
suboptimal performance in detecting false information, so it shows an exponential-like evolution as
well, with the minimum detection rate being around 38% and the maximum rate approaching 90%.

Figure 7: First experiment: results. True detection rate

Figure 8: First experiment: results. False detection rate
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Although this evidence is inconclusive, since 6G networks will be dense (with up to ten million
devices per square kilometer), we can conclude that the proposed trust model and control algorithm
are valid solutions for future edge computing environments. The reported true detection rate is
actually higher than the performance provided by other advanced conventional models. For example,
generative artificial intelligence models [26] report precision values around 70%, while network-based
approaches [22] can only achieve a success rate of 75% (approximately). Reported results show a
significant improvement.

Regarding the false detection rate (see Fig. 8), it follows a complementary behavior. Again, since
false information injection attacks depend strongly on the calculation of an average behavior, the
performance is worse for small edge deployments (for very small networks, the rate is around 9%).
However, in this case, all curves converge to a very similar value for large deployments, and the false
detection rate is kept slightly below 1%. Anyway, in all situations, the false detection rate is below 10%,
which is acceptable in most engineered solutions and scientific experiments.

Figs. 9–12 show the results for the second experiment.

Figure 9: Second experiment: results for 1% of malicious nodes

As can be seen, the evolution is almost linear in all cases, as the number of operations in the
proposed trust model and control algorithms also increases linearly with the number of edge nodes
within the deployment to be protected. While environments with a malicious node rate between 1%
and 5% show values in the same order of magnitude, the processing delay duplicates when the rate
grows up to 10%. Similarly, when the rate achieves 40%, the processing delay also increases, but not as
much as the number of malicious nodes. Thus, we can see that the increasing rate of processing delay is
slower than linear evolution. That indicates that scalability is ensured regarding the number of nodes
within the edge environment. Still, if a massive attack is performed, the model needs a longer time
to converge, and only slow attacks would be successfully detected. If the attacks are shorter than the
processing delay, they could be successful. Although the time frame could be adjusted to mitigate this
challenge, different trust domains could be defined [51] to reduce processing delay.
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Figure 10: Second experiment: results for 5% of malicious nodes

Figure 11: Second experiment: results for 10% of malicious nodes

In addition, noise injection attacks are detected faster in all cases. All indicators (outlier
behavior, malicious traffic patterns, and unusual information content) are affected for noise injection
attacks, so the final trust value suffers a more relevant decrease, and detection delays are shorter.
However, for false information injection attacks, only spectral analysis is able to fully detect malicious
behavior, and trust values decrease more slowly. And processing delays are longer. However, as more
edge nodes are malicious, the differences become less significant (the differences between Figs. 9
and 12 are very significant). In these situations, the complexity of the data structures required to
execute the proposed control algorithm (mainly the Gaussian mixture models) is high, and the
computational delays start to become more relevant in the final processing delay than the convergence
delays associated with the trust model. This phenomenon can be seen by comparing Figs. 9 and 12.
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Figure 12: Second experiment: results for 40% of malicious nodes

Despite all these limitations, the reported results significantly improve over state-of-the-art
solutions. In most approaches, the processing or convergence time is longer and much less scalable.
For example, in existing blockchain-enabled solutions [19], detection delays can grow up to 50 days.
This is completely unsuitable for real-time scenarios.

In any case, even a linear evolution is typically considered a scalable growing order. The processing
delays (global) range from ten (1% malicious nodes) to twenty (10% malicious nodes) and thirty (40%
malicious nodes) time frames, which is a reduced delay compared to the duration of the most common
malicious data injection attacks [14]. In conclusion, the proposed solution is scalable and can operate
in all edge environments.

6 Conclusions

This paper presents a probabilistic trust model and control algorithm designed to detect and
mitigate malicious information injection attacks within edge computing environments. The model
determines the probability of any node to be trustworthy. Communication channels are pruned for
those nodes whose probability is below a given threshold. Historical time series data with prior
trust values are incorporated into the calculations to ensure stability and account for long-term
behavior. The trust control algorithm includes three main phases, which feed the model with three
different weighted and combined probabilities. Initially, using Gaussian mixture models and clustering
techniques, nodes with anomalous behaviors are identified as outliers. In the subsequent phase, traffic
patterns are analyzed by applying digital Bessel functions and the functional scalar product. Finally,
the coherence of the information and content are analyzed. Utilizing a Volterra filter and a suite of
Finite Impulse Response filters, the noise content and abnormal information sequences are detected.

The proposed solution is validated using MATLAB 2022 suite and simulation scenarios. Two
experiments were conducted, demonstrating a detection success rate of up to 92% and exhibiting
favorable linear scalability.

Future work will involve the application of the model to real 6G hardware devices and networks
as soon as commercial equipment becomes available. Other possible opportunities for future research
will be the exploration of alternative spectral analysis strategies and filters, such as Kalman filters
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or custom-designed solutions. Additionally, further studies could be conducted to determine optimal
threshold values and weights. Moreover, future research may consider other types of attacks, such as
fast Denial-of-Service attacks, where many illegitimate samples are injected within a short timeframe.
Traffic theory strategies, such as traffic shaping, may offer a viable solution to this challenge.
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