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ABSTRACT

In the IoT (Internet of Things) domain, the increased use of encryption protocols such as SSL/TLS, VPN
(Virtual Private Network), and Tor has led to a rise in attacks leveraging encrypted traffic. While research on
anomaly detection using AI (Artificial Intelligence) is actively progressing, the encrypted nature of the data poses
challenges for labeling, resulting in data imbalance and biased feature extraction toward specific nodes. This study
proposes a reconstruction error-based anomaly detection method using an autoencoder (AE) that utilizes packet
metadata excluding specific node information. The proposed method omits biased packet metadata such as IP
and Port and trains the detection model using only normal data, leveraging a small amount of packet metadata.
This makes it well-suited for direct application in IoT environments due to its low resource consumption. In
experiments comparing feature extraction methods for AE-based anomaly detection, we found that using flow-
based features significantly improves accuracy, precision, F1 score, and AUC (Area Under the Receiver Operating
Characteristic Curve) score compared to packet-based features. Additionally, for flow-based features, the proposed
method showed a 30.17% increase in F1 score and improved false positive rates compared to Isolation Forest and
OneClassSVM. Furthermore, the proposed method demonstrated a 32.43% higher AUC when using packet features
and a 111.39% higher AUC when using flow features, compared to previously proposed oversampling methods.
This study highlights the impact of feature extraction methods on attack detection in imbalanced, encrypted
traffic environments and emphasizes that the one-class method using AE is more effective for attack detection
and reducing false positives compared to traditional oversampling methods.

KEYWORDS
One-class anomaly detection; feature extraction; auto-encoder; encrypted traffic; CICIoT2023

1 Introduction

With the advancement of mobile communication technologies such as 5G and the upcoming 6G,
the connectivity of IoT devices is steadily increasing. Especially, IoT devices and sensors installed on
vehicles [1], smart UAVs (Unmanned Aerial Vehicles) [2], smart infrastructure, and similar platforms
may contain sensitive information. Therefore, using SSL/TLS is crucial in mitigating risks such as
data exposure and man-in-the-middle attacks. According to Google’s transparency report, as of 18
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February, 2024, the HTTPS traffic rate through Google for websites and services has reached 96%.
Consequently, research on the utilization of SSL/TLS in mobile applications and web browsers is
underway worldwide [3–5]. Additionally, IoT devices are also beginning to adopt SSL/TLS protocols.

However, there is concern that attackers could exploit the SSL/TLS protocol to perform attacks
using hidden data on IoT (Internet of Things) devices that provide web-based services [6]. From a
network security perspective, a significant issue with encryption protocols is the inability to view traffic
payload data. Therefore, traditional rule-based attack detection and DPI (Deep Packet Inspection)
techniques, commonly used for non-encrypted traffic, cannot be applied.

As a result, most SSL/TLS inspection solutions employ SSL/TLS proxy servers. Inspection
through SSL/TLS proxy servers involves decrypting encrypted traffic, examining packet data, re-
encrypting it, and forwarding it. However, this process raises concerns about privacy breaches. Addi-
tionally, decrypting and encrypting traffic can introduce overhead and affect network speed. Moreover,
collecting encrypted traffic data in real-world environments poses challenges. The encryption of
traffic poses challenges for data labeling, causing difficulties in data collection for ML/DL (Machine
Learning/Deep Learning) model training.

Particularly in the case of IoT data, privacy concerns make data collection challenging [7].
This ultimately leads to imbalanced or insufficient training data, impacting the generalization and
classification performance of the models. Efforts are being made across various fields to address this
issue, including the utilization of data generation models [8] and model combination techniques.

To analyze encrypted traffic without decryption, researchers are approaching it from three main
perspectives: (1) utilizing packet metadata, (2) utilizing encrypted payload-based feature extraction
data, and (3) utilizing deep learning-based raw packet feature extraction data. Packet metadata
involves extracting data from packet headers, similar to the analysis of non-encrypted data, to generate
statistical features based on network behavior at the packet or flow level. Encrypted payload-based
feature extraction involves methods using entropy [9] or vectorization with deep learning. Using raw
packets themselves is mainly applied to service classification problems, often by vectorizing through
DNS (Domain Name System) networks or transforming into images using convolutional neural
network (CNN) models [10,11].

To analyze encrypted traffic without decryption, this paper compared two types of feature extrac-
tion methods using an autoencoder-based one-class anomaly detection (OC-AD) approach. Feature
extraction involved using a small amount of packet metadata as learning vectors and summarizing
a large amount of rows using a sliding-window algorithm. Additionally, to address the issue of class
imbalance caused by a significantly larger amount of normal data, this paper adopted a method of
training the Autoencoder using only normal data. Furthermore, in the feature extraction stage, this
method did not use metadata representing specific node information such as IP and Port.

Especially, due to the limited number of nodes used in creating the training data, the dataset
contains a small number of unique IPs and Ports, unlike real-world scenarios. Therefore, the model
may suffer from bias towards the IPs and Ports present in the training data, making it unsuitable
for real-world applications. Additionally, our proposed model uses the reconstruction error of the
Autoencoder for anomaly detection, enabling an explanation of the reasons for anomalies detected.
This addresses the issue of unexplainable decisions in traditional deep learning-based classification
and anomaly detection models. The contributions of our work are as follows:
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1. We propose an autoencoder-based one-class anomaly detection (OC-AD) model that learns
only from normal data and utilizes the reconstruction error for explainable anomaly detection,
tailored for environments with limited encrypted attack data.

2. The results demonstrate that when using a small amount of packet metadata for feature
extraction, flow-based feature extraction methods are more effective for anomaly detection
compared to packet-based methods.

3. Compare the differences in anomaly detection performance when using the same feature
extraction method for two types of attacks targeting IoT devices with encrypted traffic.

4. When compared to previously proposed oversampling methods, the proposed model demon-
strated greater effectiveness in both attack detection and reducing false positives.

2 Related Work
2.1 Anomaly Detection Approaches

Statistical-based approach. This approach utilizes metadata obtained from packets to generate
statistical features for model learning and detection.

Zhang et al. [12] focused their research on feature extraction and traffic clustering using a sliding
window algorithm with traffic distribution data. Their study demonstrated the ability to obtain more
clustering distribution features compared to traditional grid-based traffic clustering methods.

Yan et al. [13] demonstrated an effective classification of Tor network flows using time window-
based flow segmentation and bidirectional statistical feature extraction. The classification obtained
using packet length, fixed-length intervals, entropy, and similar parameters exhibited superior speed
and recognition rates compared to deep learning methods.

Dahiya [14] demonstrated DDoS (Distributed Denial of Service) detection in 5G systems using
only statistical features and showed up to a 22.73% improvement compared to traditional models.
This research utilized higher-order statistical features, in addition to basic statistical metrics like mean,
median, and standard deviation (SD). Furthermore, they proposed entropy features considering the
relationship between data points.

Yang et al. [15] generated packet-level and flow-level features by utilizing packet metadata and
flow metadata. It is noteworthy that they focused on considering both levels of network flow,
employing a total of 249 statistical features. However, the sheer number of features may pose challenges
in terms of resource consumption for data processing and storage, making it difficult to directly apply
in the IoT field.

Applying the slicing window algorithm to network traffic data can better represent behavior
compared to a mere sequence of consecutive packets. While the statistical characteristics of individual
features are important, this algorithm is particularly useful for observing the overall behavior of
network traffic.

Deep learning-based approach. This approach involves training models directly on data features
through neural networks and being explored in various fields to enable models to extract and learn
features directly from raw data without preprocessing [16].

In papers [10,11], 2D CNN models were utilized for service classification of encrypted traffic.
While CNN-based methods are helpful for pattern extraction, they come with the drawback of
requiring significant computing power or large memory space at once. To be practical, lighter feature
extraction methods and utilization strategies are needed.
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On the other hand, Fatani et al. [17] proposed a deep learning-based feature extraction and feature
selection algorithm for intrusion detection and malicious identification in IoT environments. They
employed a convolutional neural network (CNN) consisting of two 1D convolution layers and four
fully connected (FC) layers to perform feature extraction from raw input packets.

Additionally, in the paper [11], 1D CNN was used for service identification of encrypted traffic.
When compared to previous image-based research on various identification problems, their proposed
model demonstrated superior effectiveness in identifying encryption types, Tor traffic types, and Non-
VPN (Virtual Private Network) traffic types.

Autoencoder-based approach. In many cases, supervised learning-based algorithms have been
widely used in traditional machine learning-based detection. However, labeling real-world encrypted
data as normal or abnormal entails significant costs, making it challenging to collect and label data.

To address these limitations, research is being conducted on anomaly detection using Autoencoder
deep learning structures with self-supervised learning algorithms. Yao et al. [18] performed unsuper-
vised anomaly detection using feature extraction with Variational Auto-Encoder (VAE). They found
that the VAE-based feature extraction method outperformed other methods, including Autoencoder
(AE) and Kernel Principal Component Analysis (KPCA).

Ruikun et al. [19] proposed a method for determining discriminative thresholds using recon-
struction errors by detecting the density of compressed features in the hidden layer of a Denoising
Autoencoder. Despite employing a complex model, this method demonstrated superiority over other
Autoencoder models.

Xu et al. [20] introduced an outlier removal method and compared the performance of reconstruc-
tion error functions to alleviate bias caused by data imbalance using a 5-layer Autoencoder. This led
to improved anomaly detection performance on the NSL-KDD dataset.

Many studies utilize Autoencoders for data preprocessing. However, reference [19] standed out
by utilizing the reconstruction error data generated during the training process of Autoencoders. The
reconstruction error, which represents the difference between the data the model was trained on and
the reconstructed data, can be crucial for anomaly detection.

2.2 ML/DL Training in Imbalanced Data
Oversampling approach. The most actively researched oversampling method involves using gener-

ative adversarial network (GAN)-based algorithms.

Papers [21–24] utilized GAN-based variant models to address imbalanced data. Well-designed
GAN variant algorithms can effectively address issues caused by imbalanced data more efficiently than
traditional oversampling techniques like the synthetic minority oversampling technique (SMOTE).

In paper [25], a method was proposed to control the data generation mode of Conditional GAN
using application types of traffic to address the imbalance problem in encrypted traffic data. Although
GAN-based algorithms demonstrate overwhelmingly superior performance among generative models,
they may face issues with unstable data generation due to non-convergence oscillation or mode collapse
during training. Additionally, the problem of generating incorrect data arises when fake data is mixed
with real data for oversampling [26].

In paper [27], a method was proposed to input the latent variables of an autoencoder into a linear
separator for oversampling, showing robustness against overfitting due to the linear separator.
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In paper [28], attention was drawn to the time-consuming aspect of most oversampling methods,
particularly concerning the use of k-nearest neighbors. They significantly reduced computation time
by calculating the absolute values between the minimum and maximum values of each feature of the
minority class, achieving similar effects to SMOTE.

Undersampling approach. Undersampling is a method that reduces the data of the majority class,
opposite to oversampling. To accomplish this, it is crucial to establish criteria for determining which
data from the majority class to remove.

Papers [29,30] proposed two methods for undersampling: random undersampling (RUS), which
randomly removes data, and removing data from high-density clusters in the majority class to minimize
information loss. RUS showed good performance when used with deep learning classifiers, while the
method of removing data from high-density clusters outperformed traditional undersampling methods
when using ML/DL classifiers on various datasets.

One-class training approach. The one-class training approach is advantageous for imbalanced data
because it only uses one class for training. Additionally, it is effective in saving time and cost [31].

In the paper [32], various variations of autoencoders were evaluated and compared as classifiers. A
total of 5 autoencoder variant models performed classification on IDS (Intrusion Detection System)
data. As a result, all AE classifiers showed an F1 score of 88 or higher, indicating effectiveness in
building unsupervised learning-based IDS.

Furthermore, papers [33,34] proposed methods to ensemble one-class classifiers. In particular,
Krawczyk et al. [33] suggested a dynamic ensemble method to address multi-class classification
problems. It applied a threshold to discard incompetent classifiers among multiple classifiers. It
demonstrated stable performance across 22 different datasets.

Vaiyapuri et al. [32] demonstrated the possibility of using Autoencoders as classifiers. Addition-
ally, One-Class training is advantageous in highly imbalanced datasets as it allows training with only
one class. Moreover, the algorithms used for One-Class training are mostly unsupervised learning
algorithms, which makes them well-suited for handling unseen data.

This study employed a self-supervised model, the Autoencoder, to overcome the challenge of
labeling encrypted data. Furthermore, to address the issue of class imbalance in encrypted attack data,
an Autoencoder-based one-class learning approach was utilized.

3 Proposed Method
3.1 Feature Extraction Methods

This section explains the processes of two statistical feature extraction methods for network
anomaly detection from TCP (Transmission Control Protocol) traffic data containing SSL/TLS
protocol packets. Both of these feature extraction methods utilize identical packet metadata for
feature extraction. Furthermore, the quantity of features extracted was minimized to utilize as little
computational resources as possible, making it suitable for application in IoT environments.

Packet-based feature extraction: This method involves extracting statistical features on a packet-
by-packet basis from the PCAP (Packet Capture) files. This process was performed in two steps:

First, we stored the metadata of individual packets. The metadata used in this step included
information on the packet itself, such as frame size and epoch time, as well as transmission status
information (e.g., TCP flags) and encrypted user data information (e.g., TLS application data length).
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We excluded information that could specifically identify attacking nodes, such as IP addresses, to
prevent bias during model training.

Second, we extracted statistical features for every set of 10 packets using their metadata and the
10-sliding window algorithm. Table 1 lists statistical features based on packets that were ultimately
extracted through these two steps.

Table 1: Packet-based features

Feature Description

Packet size Packet frame size
IAT (Inter arrival time) The epoch time difference with the previous packet
Ack value Ack flag value
Syn value Syn flag value
Fin value Fin flag value
Psh value Psh flag value
Rst value Rst flag value
App data size TLS application data length

Flow-based feature extraction: This method involved extracting features from the accumulated
packet information flowing in one direction between two endpoints from the PCAP file. This process
was performed in three steps:

First, we stored metadata of individual packets, categorized by flow, based on a 5-tuple. The
metadata used in this step were the same as those used in packet-based feature extraction.

Second, we extracted statistical features using the accumulated metadata for flows in which new
metadata were added.

Third, we extracted statistical features for every set of 10 packets using their metadata and the
10-sliding window algorithm. Table 2 lists the final statistical features based on flows that extracted
through these two steps. Additionally, in flow-based feature extraction, we considered the direction of
packet flow within a single flow, extracting features related to inbound and outbound traffic.

Table 2: Flow-based features

Feature Description

Packet size Packet frame size mean in flow
IAT The epoch time difference with the previous packet in the same flow
Outbound packet size Outbound packet size mean in a flow
Inbound packet size Inbound packet size mean in a flow
Transmission rate Rate of packet transmission in a flow
Outbound packet rate Rate of packet outbound transmission in a flow
Inbound packet rate Rate of packet inbound transmission in a flow
Ack count Number of packets with ack flag set in the same flow
Syn count Number of packets with syn flag set in the same flow

(Continued)
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Table 2 (continued)

Feature Description

Fin count Number of packets with fin flag set in the same flow
Psh count Number of packets with psh flag set in the same flow
Rst count Number of packets with rst flag set in the same flow
App data size TLS application data length in a flow

4 Experiments
4.1 Setup and Work Flow

Dataset. This study utilized the CIC IoT Dataset 2023 (CICIoT2023), created by the Canadian
Institute for Cyber-security (CIC) at the University of New Brunswick in Canada. This dataset pro-
vides data from real-time traffic generated by various attacks attempted in an actual IoT environment.
It includes original PCAP files with traffic data and CSV files containing extracted features from the
packet capture (PCAP) files.

Additionally, it provides example code in an ipynb file for ML-based multi-class classification
using this dataset, as well as source code and tool descriptions used for data feature extraction. The
dataset includes 33 types of IoT attacks categorized into 7 classes. Among them, encrypted traffic of
browser hijacking and SQL (Structured Query Language) injection attacks are included.

This paper utilized benign traffic composed within the dataset for model training. Additionally,
to measure the anomaly detection performance of models trained based on normal data, both browser
hijacking and SQL injection attacks were employed as different types of attacks. As depicted on the left
side of Fig. 1, the Benign PCAP and Attack PCAP provided by the CICIoT2023 dataset are prepared
as training and testing datasets through three steps.

Figure 1: Experiments workflow
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Step (1): Select traffic related to devices involved in providing web-based services from IoT devices.
Step (2): Use Python’s Scapy library to extract metadata for each protocol layer of the packets. Exclude
specific node unique data like IP and Port. Extracted metadata is transformed into feature vectors.
Feature data is converted into CSV format, and the averaged values for every 10 rows are saved into
files. Step (3): Distribute the data to construct datasets for training and evaluation.

The train set comprises 50% of benign data, the validation set includes 25% of benign data, and
the test set consists of the remaining 25% of benign data and 100% of malicious data. The actual
amount of data used is as shown in Table 3, with 39,119 rows for Benign traffic, 1739 rows for browser
hijacking, and 1699 rows for SQL injection.

Table 3: Traffic data summary

Traffic Packet rows Csv rows

Benign 391,187 39,119
Browser Hijacking 17,385 1739
SQL injection 16,981 1699

One-class anomaly detection. The anomaly detection process, as illustrated on the right side of
Fig. 1, consists of five main steps. Step (1): Normalize the range of all datasets using StandardScaling
and MinMaxScaling. Step (2): Train the Autoencoder (AE) using the Train Set containing only benign
data. The AE aims to minimize the reconstruction error between the output data, obtained after
compression and de-compression, and the input data, which is the benign data. Step (3): Input the
Test Set, containing a mixture of benign and malicious data, into the trained AE.

The AE reconstructs the input similar to the benign data used during training. However, the
reconstructed output for the malicious data input will have significant errors compared to the benign
data. Step (4): Select the threshold that maximizes the F1 score based on the reconstruction errors
of both benign and malicious data from the Test Set. Step (5): Detect anomalies using the selected
optimal threshold.

Auto-encoder architecture. The layers of the AE model consisted of four Dense layers and two
Dropout layers, as shown in Fig. 2. The number of units in each layer of the encoder gradually
decreased by 25% from the number of input features to a maximum reduction of 50%. In contrast,
the number of units in each layer of the decoder increased by 25%, mirroring the AE’s input feature
count to maintain consistency.

Training setting. The AE was trained with a batch size of 32, and shuffle set to false. The number
of epochs was set to 20, based on manual determination of when the validation loss did not improve
for more than 4 consecutive epochs. Only the same normal data was used for both input X and output
Y, with separately segmented validation data.

Layer hyperparameter tuning. Manual parameter optimization was conducted for the activation
function of the hidden layers, the activation function of the output layer, the loss function, and the
optimizer of the Autoencoder. The parameters yielding the smallest validation data loss during training
were selected as the optimal parameters. The optimized parameters for the Autoencoder are presented
in Table 4.
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Figure 2: Auto-encoder layer architecture for experimental

Table 4: The optimized hyperparameters of the autoencoder

Feature Attack Hidden layer
activation

Output layer
activation

L2
regularizer

Loss
function

Optimizer

Packet-based Browser
hijacking

Sigmoid Sigmoid 0.1 Mean
squared
error

Adam

SQL
injection

ReLU Sigmoid 0 Mean
squared
error

Flow-based Browser
hijacking

ReLU ReLU 0.1 Binary cross-
entropy

SQL
injection

Environment. All experiments were conducted on a PC equipped with an Intel Core i9-10980XE
CPU, 128 GB RAM, and an NVIDIA GeForce RTX 3090 24 GB GPU. Furthermore, for evaluating
the performance of the anomaly detection model, we utilized metrics such as Confusion Metrics,
precision-recall curve, and F1 score.

4.2 Evaluation Metrics
The anomaly detection results of the deep learning model employed in the proposed approach can

be represented using a Confusion matrix. The Confusion matrix distinguishes between four categories:
True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN), which are
utilized in evaluating accuracy, precision, recall, and F1 score.

Accuracy refers to correctly classifying cases as anomalies or normal. Precision represents the ratio
of actual anomaly data among those classified as anomalies by the model, including false positives.
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Recall is the proportion of actual anomaly data classified as anomalies by the model among all actual
anomaly data.

Precision is based on the model’s anomaly judgment data, while recall reflects the performance
based on actual anomaly data. Precision and recall are in a trade-off relationship. thus, the model with
the highest scores for both is considered to have the best performance.

The harmonic mean of these two scores is represented by the F1 score. While all metrics in Eqs. (1)–
(4) are used in evaluating the model’s performance in the experiments, the F1 score is predominantly
used for performance comparison.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 score = 2 × Precision × Recall
Precision + Recall

(4)

4.3 OC-AD Result with Packet-Based Feature Extraction
This experiment conducted one-class anomaly detection using packet-based feature extraction.

Additionally, the AE trained with packet-based features determined the best threshold value for
detecting Browser Hijacking and SQL Injection attacks by identifying the threshold value that
maximizes the F1 score.

In this experiment, packet-based of 7 dimensions were used, and the training of the AE was
performed with 20 epochs. The architecture of the Autoencoder (AE) consists of layers with node
numbers as follows, based on the dimensionality of the features mentioned in Section 4.1: 7, 5, 5, 3, 5,
5, 7. Except for the code part, which constitutes 50% of the dimensions, dropout layers are configured
with the same number of nodes as the input and output parts.

Fig. 3 depicts the reconstruction error histograms for the AE trained on the Browser Hijacking
test set and SQL Injection test set. In the case of the Browser Hijacking test set, Fig. 3a shows a
noticeable overlap in the reconstruction error value ranges between the benign class and the Browser
Hijacking class. Conversely, for the SQL Injection test set, Fig. 3b reveals a substantial overlap in the
reconstruction error value ranges between the benign class and the SQL Injection class.

In order to perform anomaly detection for Browser Hijacking and SQL Injection attacks, it is
necessary to determine the threshold for the Reconstruction Error. The threshold value was chosen to
be the one that yields the highest F1 score for each attack dataset. As shown in Fig. 4, for the Browser
Hijacking test set, the best threshold value is 0.036, resulting in a maximum F1 score of 0.820. In the
case of the SQL Injection test set, the best threshold value is 0.009, with a maximum F1 score of 0.425.

Using the Best Threshold, anomaly detection was performed on the Browser Hijacking test set
and the SQL Injection test set, and accuracy, precision, recall, and F1 score were measured. Table 5
presents the anomaly detection scores for the two test sets.

The results of one-class anomaly detection using packet-based feature extraction indicate that the
performance of Browser Hijacking attack detection was approximately 1.5 times better in terms of
accuracy, 2.6 times better in precision, and 1.9 times better in F1 score compared to SQL Injection
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attack detection. However, the recall score was approximately 1.008 times better for SQL Injection
attack detection.

Figure 3: (a) Reconstruction error histogram for browser hijacking test set (b) Reconstruction error
his-togram for SQL injection test set

Figure 4: (a) Best threshold to maximum F1 score with browser hijacking test set, (b) Precision
and recall value for different threshold values with browser hijacking test set, (c) Best threshold to
maximum F1 score with SQL injection test set, (d) Precision and recall value for different threshold
values with SQL injection test set
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Table 5: Anomaly detection score with packet-based feature extraction

Browser hijacking test set SQL injection test set

Best threshold 0.035616 0.009337
True positive 1623 1599
True negative 9185 5555
False positive 595 4225
False negative 116 100
Accuracy 0.938 0.623
Precision 0.731 0.274
Recall 0.933 0.941
F1 score 0.820 0.425

4.4 OC-AD Result with Flow-Based Feature Extraction
This experiment involves one-class anomaly detection using flow-based feature extraction. Simi-

larly to Section 4.2, an AE trained with flow-based features was used to determine the best threshold
value for detecting Browser Hijacking and SQL Injection attacks by identifying the threshold value
that maximizes the F1 score. Flow-based features of 12 dimensions were used in this experiment, and
the AE’s training was conducted with 20 epochs.

The architecture of the autoencoder consists of layers with node numbers as follows, based on
the dimensionality of the features mentioned in Section 4.1: 12, 9, 9, 6, 9, 9, 12. Except for the code
part, which constitutes 50% of the dimensions, dropout layers are configured with the same number
of nodes as the input and output parts.

Fig. 5 depicts the reconstruction error histograms for the AE trained on the Browser Hijacking
test set and SQL Injection test set. In the case of the Browser Hijacking test set, Fig. 5a shows some
overlap in the reconstruction error value ranges between the benign class and the Browser Hijacking
class. However, for the SQL Injection test set, Fig. 5b demonstrates a considerable overlap in the
reconstruction error value ranges between the benign class and the SQL Injection class. This pattern
aligns with the results of the Reconstruction Error distribution analyzed using packet-based feature
extraction in Section 4.2.

To perform anomaly detection for browser hijacking and SQL injection attacks, it is essential to
determine the threshold for the Reconstruction Error, following the same approach as in Section 4.2.
The threshold value was chosen to be the one that yields the highest F1 score for each attack dataset.
As shown in Fig. 6, for the Browser Hijacking test set, the best threshold value is 0.028, resulting in a
maximum F1 score of 0.852. In the case of the SQL Injection test set, the best threshold value is 0.003,
with a maximum F1 score of 0.552.

Using the best threshold, anomaly detection based on flow features was performed on the browser
hijacking test set and the SQL injection test set, and accuracy, precision, recall, and F1 score were
measured. Table 6 presents the anomaly detection scores for the two test sets.
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Figure 5: (a) Reconstruction error histogram for browser hijacking test set (b) Reconstruction error
his-togram for SQL injection test set

Figure 6: (a) Best threshold to maximum F1 score with browser hijacking test set, (b) Precision
and recall value for different threshold values with browser hijacking test set, (c) Best threshold to
maximum F1 score with SQL injection test set, (d) Precision and recall value for different threshold
values with SQL injection test set
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Table 6: Anomaly detection score with flow-based feature extraction

Browser hijacking test set SQL injection test set

Best threshold 0.027593 0.002714
True positive 1417 1534
True negative 9608 7137
False positive 172 2643
False negative 322 165
Accuracy 0.957 0.755
Precision 0.891 0.367
Recall 0.814 0.902
F1 score 0.851 0.522

The results of one-class anomaly detection using packet-based feature extraction indicate that the
performance of Browser Hijacking attack detection was approximately 1.2 times better in terms of
accuracy, 2.4 times better in precision, and 1.6 times better in F1 score compared to SQL Injection
attack detection. However, the recall score was approximately 1.1 times better for SQL Injection attack
detection.

4.5 Comparison OC-AD Score Each Feature Extraction Method
In this section, we compare the results from Sections 4.2 and 4.3. For the Browser Hijacking

Test set, when using flow-based feature extraction instead of packet-based feature extraction, the
accuracy, precision, and F1 score all increased by approximately 1.02 to 1.21 times, while the recall
decreased by approximately 1.14 times. Similarly, for the SQL Injection test set, when using flow-based
feature extraction as opposed to packet-based feature extraction, accuracy, precision, and F1 score all
exhibited an increase of approximately 1.21 to 1.33 times, while the recall decreased by approximately
1.04 times.

In Fig. 7, when comparing (a) and (c) for the browser hijacking test set’s ROC (Receiver
Operating Characteristic) curve, it’s noticeable that the curve for (c), which employs flow-based feature
extraction, is shifted more towards the upper-right corner for threshold values below 0.1 compared to
(a), which uses packet-based feature extraction. Additionally, the AUC (Area Under the ROC) score
increased slightly from 0.9445 to 0.9694 with flow-based feature extraction.

Similarly, for the SQL injection test set, (b) using flow-based feature extraction shows a significant
improvement in the curve compared to (d) using packet-based feature extraction. Particularly, when
using packet-based feature extraction, the AUC value for SQL injection attacks was below proper
classification at 0.7042, while with flow-based feature extraction, the AUC value increased to 0.7978,
approximately 1.13 times better.

Through this, we can discern that using flow-based feature extraction results in an increase in
precision compared to using packet-based feature extraction, which in turn reduces false positives.
However, the decrease in recall, leading to an increase in false negatives, is relatively modest. This
discrepancy, as illustrated in Fig. 7, suggests that the difference in the extent of improvement is more
pronounced in the case of flow-based feature extraction. Therefore, flow-based feature extraction
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proves to be more effective in permitting fewer missed detections while mitigating a higher number
of false alarms compared to packet-based feature extraction.

Figure 7: (a) ROC curve using packet-based feature extraction with browser hijacking test set, (b)
ROC curve using packet-based feature extraction with SQL injection test set, (c) ROC curve using
flow-based feature extraction with browser hijacking test set, (d) ROC curve using flow-based feature
extraction with SQL injection test set

In the Browser Hijacking attack dataset, OneClassSVM and IsolationForest performed better
with packet-based feature extraction methods. However, for SQL Injection, IsolationForest demon-
strated better effectiveness with packet-based feature extraction, while OneClassSVM showed more
effectiveness with flow-based feature extraction.

In Fig. 8, both models exhibited high recall but lower precision on the attack test datasets,
indicating effective attack detection but a significant number of false positives, classifying normal
instances as anomalies.

Furthermore, the study compared the performance by applying the SMOTE-based method, one of
the existing solutions for addressing data imbalance, to the dataset used in this research. Additionally,
hyperparameter optimization was conducted for the KNN (K-Nearest Neighbor) model used as the
classifier. The optimization parameters were set for n_neighbors ranging from 1 to 10.

Table 7 presents the comprehensive (average) detection performance of the two attack datasets
when the best-performing feature extraction methods for each model were applied.
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Figure 8: Comparison OC-AD score each feature extraction method

Table 7: Comparison results average with other one-class models in flow-based feature extraction

Models Feature extraction
method

Accuracy Precision Recall F1 score

IsolationForest [35] Packet-based feature 0.854 0.533 0.960 0.682
OneClassSVM [36] Flow-based feature 0.739 0.363 0.969 0.527
Our propose methods Flow-based feature 0.856 0.629 0.858 0.686

The proposed model showed the highest values for Accuracy, Precision, and F1 score. However,
the Recall value was highest for OneClassSVM. The F1 score of the Isolation model showed a similar
value to the proposed model. However, there was a larger difference between the Recall and Precision
values, indicating a higher false positive rate compared to the proposed model.

4.6 Comparison OC-AD Score Each Feature Extraction Method
To address data imbalance, numerous data augmentation methods have been proposed histori-

cally. To compare the performance of our proposed model, we implemented the packetCGAN model
suggested in [25] and the Fest-SMOTE model presented in [28]. Both models were used to augment
attack data.

The packetCGAN model utilized an MLP (Multi-Layer Perceptron) classifier, while Fest-SMOTE
employed a KNN classifier to classify malicious traffic. The MLP classifier used the layer structure
and hyperparameters specified in [25], with a threshold set at 0.5. The KNN classifier’s optimal hyper-
parameter ‘k’ was determined using GridSearchCV with 5-fold cross-validation before performance
evaluation.

The datasets used for performance evaluation included both the browser hijacking attack set and
the SQL injection attack set. Additionally, evaluations were conducted separately for packet-based
feature sets and flow-based feature sets for each attack, resulting in a total of four evaluation scenarios.
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As shown in Table 8, the data used for testing each model was consistently set. To simulate real
attack scenarios using CICIoT data, augmented data was employed for both training and validation
datasets.

Table 8: Train, validation, test data set information used for performance comparison

Models Augmented data Train set info Validation set info Test set info

PacketCGAN [25] 29340 Normal: 19560
Attack: 19560
(Augmented data)

Normal: 9780
Attack: 9780
(Augmented data)

Normal: 9779
Attack: 1739
(1699)
(CICIoT data)

Fest-SMOTE [28] 29340 Normal: 19560
Attack: 19560
(Augmented data)

Normal: 9780
Attack: 9780
(Augmented data)

Normal: 9779
Attack: 1739
(1699)
(CICIoT data)

Proposed method – Normal: 19560
Attack: 0

Normal: 9780
Attack: 0

Normal: 9779
Attack: 1739
(1699)
(CICIoT data)

Performance evaluation was conducted by calculating the average detection performance across
both attacks using a single feature set, to determine how effectively each model detected the two types
of attacks.

Table 9 shows the detection performance for browser hijacking and SQL injection attack traffic
using packet-based features.

Table 9: Comparison results average with oversampling models in packet-based feature extraction

Metrics/Models PacketCGAN [25] Fest-SMOTE [28] Proposed method

Accuracy 0.8505 0.8599 0.781
Precision 0 0.7900 0.503
Recall 0 0.0778 0.937
F1 score 0 0.1410 0.623
AUC 0.7074 0.5376 0.824
TN 9779 9752.5 7370
FP 0 26.5 2410
FN 1719 1584.5 108
TP 0 134.5 1611

For packetCGAN, all classifications were predicted as normal, resulting in TP and FP values of
0, and thus precision, recall, and F1 score values of 0. However, the AUC value was 0.7074, indicating
that the issue might be related to the threshold used by the MLP classifier. This AUC value was the
second highest among the three models.



602 CMES, 2024, vol.141, no.1

For Fest-SMOTE, the accuracy and precision values were higher than those of the other models.
However, the recall value was very low at 0.0778, indicating poor performance in detecting attacks.
Additionally, the AUC value was 0.5376, the lowest among the compared models.

The proposed model had higher recall and F1 score values compared to the other models. Since
a higher recall value indicates better attack detection performance, the proposed model showed the
best attack detection performance among the compared models. Furthermore, the AUC value, which
considers the threshold, was 0.824, the highest among the compared models.

The detection performance for browser hijacking and SQL injection attack traffic using flow-
based features is shown in Table 10.

Table 10: Comparison results average with oversampling models in flow-based feature extraction

Metrics/Models PacketCGAN [25] Fest-SMOTE [28] Proposed method

Accuracy 0.8505 0.8873 0.856
Precision 0 0.9674 0.629
Recall 0 0.2468 0.858
F1 score 0 0.3619 0.6865
AUC 0.2092 0.6267 0.8836
TN 9779 9775 8372.5
FP 0 4 1407.5
FN 1719 5791 243.5
TP 0 428 1534

For packetCGAN, similar to the previous case, all classifications were predicted as normal,
resulting in TP and FP values of 0, and thus precision, recall, and F1 score values of 0. Additionally,
the AUC value was 0.2092, which is lower than when using packet-based features, indicating decreased
performance. This was the lowest performance among the compared models.

For Fest-SMOTE, the accuracy and precision values were higher than those of the other models.
The recall value improved to 0.2468 compared to when using packet-based features, but it still showed
insufficient performance in detecting attacks. The AUC value was 0.6267, which was the second highest
performance among the compared models.

For the proposed model, the recall and F1 score values were higher than those of the other models.
The recall value decreased to 0.858 compared to when using packet-based features, but it still showed
the best attack detection performance among the compared models. Additionally, the AUC value was
0.8836, which was the highest performance among the compared models.

Fig. 9 presents a chart comparing the performance results derived above at a glance. The
performance metrics of the three models are listed for each feature used. The same model is indicated
using similar color shades.

For accuracy and precision, the combination of the Fest-SMOTE-based KNN classifier with flow-
based features showed the highest performance, with an accuracy of 0.8873, which is 5.69% higher than
the average of 0.8395 for other cases.

In terms of recall, the proposed model using packet-based features achieved the highest perfor-
mance with a recall of 0.9370. This indicates that it detects the tested attacks most effectively.
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Figure 9: AD score comparison with oversampling approach

For the F1 score, the proposed model using flow-based features showed the highest performance
with a score of 0.6865. The F1 score, being the harmonic mean of precision and recall, is a good
metric to use when dealing with imbalanced data. This indicates that the proposed model with
flow-based features effectively distinguishes between normal and malicious traffic, detecting attacks
harmoniously.

The performance metrics can vary depending on the threshold used for detecting attacks. There-
fore, we also compared the performance using the AUC value, which considers various thresholds.
The proposed model using flow-based features had an AUC value of 0.8836, which is 52.06% higher
than the average AUC value of 0.5811 for the other models.

5 Conclusion

We proposed an autoencoder-based method for anomaly detection using a small amount of packet
metadata and training only on normal data to detect anomalies based on reconstruction error values.
In this method, we excluded simple packet metadata that could bias model training from being used
as training features in the data feature extraction process.

With the selected small amount of packet metadata, we applied packet-based and flow-based
feature extraction methods to the CICIoT2023 dataset and compared their performance with the
proposed autoencoder-based anomaly detection model. The dataset was created using various IoT
devices commonly found in smart homes, including 105 cameras, plugs, lighting systems, home
automation devices, and more.

The proposed method is expected to be applicable in environments where diverse IoT devices are
interconnected, offering versatility across different IoT setups. Furthermore, the proposed method
utilizes metadata from the Frame and TCP layers. Additionally, metadata related to TLS only utilizes
the payload length of encrypted traffic. Therefore, the proposed method is applicable to all encryption
protocols that ensure TLS-based connectivity, indicating scalability across various protocols.
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Through two experimental results, we verified which feature type is more effective for autoencoder-
based one-class anomaly detection and compared the performance with the previously proposed
oversampling approaches.

In the feature type experiment, the flow-based extraction method showed significant improvement
over the packet-based extraction method. Specifically, for the browser hijacking malicious data, the
F1 score increased from 0.802 to 0.851, a 6.23% improvement, and for the SQL injection malicious
data, it increased from 0.425 to 0.522, a 22.82% improvement.

When comparing performance differences by attack type, there was no significant difference
between the two feature extraction methods for browser hijacking. However, a substantial difference
was observed for SQL injection. This suggests that the importance or necessity of features can vary
depending on the attack type and model.

In the comparison experiment with the previously proposed oversampling approaches, the pro-
posed model demonstrated the best performance in terms of recall, focusing on detecting attacks, with
a recall value of 0.9370.

Additionally, the F1 score, which evaluates the harmonious distinction between normal and attack
traffic, showed the best performance with a score of 0.6865.

Notably, when comparing performance using the AUC value, which considers the classifier’s
threshold, the proposed model showed superior performance. For packet-based features, it achieved
an AUC value of 0.8244, which is 32.43% higher than the average of 0.6225 for other models. For
flow-based features, it achieved an AUC value of 0.8836, which is 111.39% higher than the average of
0.418 for other models.

However, this paper has the following limitations: (1) Performance was evaluated for only one
type of attack, and (2) The number of SSL/TLS traffic data in the attack samples was limited. (3) The
normal data used for training was sampled from only one dataset, and (4) The handling of outliers
that may be present within normal data and the optimal selection of the number of nodes for each
model layer were not considered. Future research will explore anomaly detection using session-based
feature extraction methods. This will involve comparing the performance of existing payload-based
methods with the method proposed in this study. Furthermore, there are plans to research attack
multi-classification using reconstruction errors.

Acknowledgement: This work was supported by Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT).

Funding Statement: This work was supported by Institute of Information & Communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-
2023-00235509, Development of Security Monitoring Technology Based Network Behavior against
Encrypted Cyber Threats in ICT Convergence Environment).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Min-Gyu Kim, Hwankuk Kim; data collection: Min-Gyu Kim; analysis and interpretation of
results: Min-Gyu Kim, Hwankuk Kim; draft manuscript preparation: Min-Gyu Kim. All authors
reviewed the results and approved the final version of the manuscript.



CMES, 2024, vol.141, no.1 605

Availability of Data and Materials: The datasets generated during and/or analyzed during the current
study are available in the Canadian institute for cybersecurity (CIC) repository, https://www.unb.ca/
cic/datasets/iotdataset-2023.html (accessed on 8 January 2024).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Hasan MK, Jahan N, Nazri MZA, Islam S, Khan MA, Alzahrani AI, et al. Federated learning for

computational offloading and resource management of vehicular edge computing in 6G-V2X network.
IEEE Trans Consum Electron. 2024 Feb;70(1):3827–47. doi:10.1109/TCE.2024.3357530.

2. Behera TK, Bakshi S, Khan MA, Albarakati HM. A lightweight multiscale-multiobject deep segmentation
architecture for UAV-based consumer applications. IEEE Trans Consum Electron. 2024;70(1):3740–53.
doi:10.1109/TCE.2024.3367531.

3. Oltrogge M, Huaman N, Amft S, Acar Y, Backes M, Fahl S. Why eve and mallory still love android:
revisiting TLS (In)security in android applications. In: 30th USENIX Security Symposium (USENIX
Security 21); 2021 Aug 11–13. p. 4347–64.

4. Orikogbo D, BüCRiOS M, Egele M. CRiOS: toward large-scale iOS application analysis. In: Proceedings
of the 6th Workshop on Security and Privacy in Smartphones and Mobile Devices: 2016 Oct 24; Vienna,
Austria. p. 33–42. doi:10.1145/2994459.2994473.

5. Felt AP, Barnes R, King A, Palmer C, Bentzel C, Tabriz P. Measuring {HTTPS} adoption on the web.
In: 26th USENIX Security Symposium (USENIX Security 17); 2017 Aug 16–18; Vancouver, BC, Canada:
Sheraton Vancouver Wall Centre. p. 1323–38.

6. Alrawi O, Lever C, Antonakakis M, Monrose F. SoK: security evaluation of home-based IoT deployments.
In: 2019 IEEE Symposium on Security and Privacy (SP); 2019; San Francisco, CA, USA: IEEE. p. 1362–80.
doi:10.1109/SP.2019.00013.

7. Tariq U, Ahmed I, Khan MA, Bashir AK. Fortifying IoT against crimpling cyber-attacks: a systematic
review. Karbala Int J Mod Sci. 2023;9(4):665.

8. Naqvi SMA, Shabaz M, Khan MA, Hassan SI. Adversarial attacks on visual objects using the fast gradient
sign method. J Grid Comput. 2023;21(4):1–20.
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