
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.051856

ARTICLE

Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer
Classification on Medical Images

Sonali Das1, Saroja Kumar Rout2, Sujit Kumar Panda1, Pradyumna Kumar Mohapatra3,
Abdulaziz S. Almazyad4, Muhammed Basheer Jasser5,6,*, Guojiang Xiong7 and Ali Wagdy Mohamed8,9

1Department of Computer Science & Engineering, Gandhi Institute for Technology, BPUT, Bhubaneswar, 752054, India
2Department of Information Technology, Vardhaman College of Engineering (Autonomous), Hyderabad, 501218, Telangana, India
3Department of Electronic & Communication Engineering, Vedang Institute of Technology, Bhubaneswar, 752010, India
4Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 11543,
Saudi Arabia
5Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Jalan Universiti,
Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
6Research Centre for Human-Machine Collaboration (HUMAC), School of Engineering and Technology, Sunway University, Jalan
Universiti, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
7Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University,
Guiyang, 550025, China
8Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, 12613, Egypt
9Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan

*Corresponding Author: Muhammed Basheer Jasser. Email: mbjasser@gmail.com, basheerj@sunway.edu.my

Received: 17 March 2024 Accepted: 19 June 2024 Published: 20 August 2024

ABSTRACT

In blood or bone marrow, leukemia is a form of cancer. A person with leukemia has an expansion of
white blood cells (WBCs). It primarily affects children and rarely affects adults. Treatment depends on the
type of leukemia and the extent to which cancer has established throughout the body. Identifying leukemia
in the initial stage is vital to providing timely patient care. Medical image-analysis-related approaches
grant safer, quicker, and less costly solutions while ignoring the difficulties of these invasive processes. It
can be simple to generalize Computer vision (CV)-based and image-processing techniques and eradicate
human error. Many researchers have implemented computer-aided diagnostic methods and machine learning
(ML) for laboratory image analysis, hopefully overcoming the limitations of late leukemia detection and
determining its subgroups. This study establishes a Marine Predators Algorithm with Deep Learning
Leukemia Cancer Classification (MPADL-LCC) algorithm on Medical Images. The projected MPADL-LCC
system uses a bilateral filtering (BF) technique to pre-process medical images. The MPADL-LCC system
uses Faster SqueezeNet with Marine Predators Algorithm (MPA) as a hyperparameter optimizer for feature
extraction. Lastly, the denoising autoencoder (DAE) methodology can be executed to accurately detect and
classify leukemia cancer. The hyperparameter tuning process using MPA helps enhance leukemia cancer
classification performance. Simulation results are compared with other recent approaches concerning various
measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.
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1 Introduction

With the clear benefits for patients and medical professionals, the importance of computer-aided
diagnosis (CAD) has suddenly become obvious in modern healthcare. Also, the automatization of
processes conventionally maintained by human professionals becomes increasingly important [1]. The
image analysis process can be supported using networks that perform multilayer analysis of patterns,
widely known as artificial intelligence (AI). Computer networks can exhibit the result with lower error
bias if supported by large datasets of input data [2]. Medical imaging focused on pattern detection is
usually supported by AI algorithm, and it is used as a powerful aid in the three most important steps of
decision-making in the medical imaging task: recognition (assignment to the class) [3], detection (image
segmentation), and result description (conversion of the results into natural language). Implementing
an AI algorithm can contribute to standardizing the diagnosis process and significantly decrease the
time required to diagnose pathology and describe the result [4].

Leukemia is a lethal cancer-related disease that significantly causes higher mortality rates world-
wide and affects all age groups, i.e., adults and children [5]. Specifically, it is linked with White
Blood Cells (WBC), which can cause damage to the blood or bone marrow and increase immature
lymphocytes. The correct classification of WBC is critical to find the disease’s nature [6]. They are
classified based on the composition of the cytoplasm. Most classifications of WBC are Lymphocytes
and syndromes resulting in Acute Lymphoblastic Leukemia (ALL). In General, leukemia can be
classified into two types: chronic and acute leukemia. Without any specific medication, the total
recovery time of acute leukemia was three months, whereas the recovery time of chronic leukemia
was found to be greater than that of acute leukemia [7]. ALL can be referred to as one common type
of acute leukemia accountable for nearly 25% of every childhood tumor.

In the primary step, it seems to be in the bone marrow and can be later dispersed all over the
human body [8]. In a healthy person, the WBC development is based on body necessities, but in terms
of leukemia, it can be formed abnormally and turns out to be ineffective. Hence, a reliable and rapid
cancer diagnosis becomes a severe need for fruitful treatment to increase survival rates. At present,
a manual examination of blood samples gained with the help of microscopic images was made to
detect this disease, which can be less accurate, often very slow, and time-consuming [9]. Also, in the
microscopic study, the shape and appearance of leukemic cells are like normal cells, which makes
diagnosis challenging [10]. Convolutional Neural Networks (CNNs) have been used in Deep Learning
(DL) to classify images for years, but there is still a gap in enhancing their performance, efficiency,
and learning process.

The MPADL-LCC algorithm was applied to classify medical images based on the Marine Preda-
tor Algorithm with Deep Learning (MPADL-LCC). The projected MPADL-LCC system utilizes the
bilateral filtering (BF) technique as a preprocessing stage. In addition, the MPADL-LCC technique
employs Faster SqueezeNet for feature extraction with the Marine Predator Algorithm (MPA) as
a hyperparameter optimizer. Eventually, the denoising autoencoder (DAE) methodology can be
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executed to detect and classify leukemia cancer accurately. The series of simulations of the MPADL-
LCC approach can be tested on the medical imaging dataset.

1.1 Motivation
The goal is to integrate the Marine Predators Algorithm with Deep Learning for Leukemia

Cancer Classification in medical images, creating highly efficient diagnostic tools. The aim is to
enhance leukemia detection accuracy for more reliable diagnostic instruments in medical imaging
using the unique capabilities of the Marine Predators Algorithm and robust pattern recognition of
deep learning.

• The Marine Predators Algorithm is inspired by sea species’ predatory behavior. The technique
tries to increase solutions’ convergence speed and quality by replicating these natural processes
in the context of optimizing deep learning models. This nature-inspired method adds a new
dimension to the optimization process.

• Despite their potency, deep learning models encounter hurdles such as overfitting and a
dearth of robustness. To address these challenges, integrating the Marine Predators Algorithm
introduces an optimization strategy geared towards augmenting the model’s capacity for
generalization. The algorithm’s predatory characteristics promise to foster a learning process
that is more robust and adaptive to diverse datasets, mitigating the risks associated with
overfitting and bolstering the model’s overall performance.

• Leukaemia Cancer Classification includes identifying complicated patterns and features in
medical imaging. Traditional approaches can struggle to deal with the complexities of these
patterns. Deep learning holds immense promise when correctly led and optimized. The Marine
Predators Algorithm provides a novel optimization technique designed specifically for the
challenges of medical image interpretation.

• The combination of marine biology-inspired algorithms and deep learning in the medical
arena exemplifies interdisciplinary innovation. It combines biology, optimization, and artificial
intelligence principles to develop a comprehensive approach to a critical problem like cancer
categorization.

• The idea stems from a desire to find a more robust and adaptable solution for the Leukaemia
Cancer Classification. The combination of Deep Learning with the Marine Predators Algo-
rithm is motivated by a desire to push the limits of accuracy, efficiency, and robustness in
medical picture processing, ultimately contributing to advances in cancer diagnosis.

1.2 Contribution
• The algorithm is anticipated to employ novel optimization tactics based on marine predators.

These can include emulating the hunting or swarming behavior seen in marine species to
improve the algorithm’s performance.

• The algorithm can demonstrate increased convergence properties using predatory instincts,
allowing faster and more accurate solutions to complicated optimization problems.

• Deep learning, specifically CNNs in the context of medical pictures, contributes by recognizing
detailed patterns and elements suggestive of leukemia in the photos.

• The method can automate the extraction of relevant information from medical images, which
is critical in the case of cancer categorization.
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• When properly trained, deep learning has a high accuracy in classification tasks. This will make
a significant difference in the accurate identification of leukemia.

• Collaborating the Marine Predators Algorithm with Deep Learning can result in a hybrid
model that uses nature’s optimization capabilities and deep learning’s pattern identification
capabilities.

• The model can become more resistant to fluctuations and complexities in medical pictures by
integrating these approaches, increasing its real-world applicability.

• The combined model can aid in the early diagnosis of leukemia, which is crucial for improving
patient outcomes.

• The algorithm might be used as a decision support system for doctors, assisting them in making
more accurate and fast diagnoses.

• The model can be adaptable to varied datasets, making it suitable for various medical imaging
contexts.

• Contributions include the creation of a generalizable framework that can be applied to different
types of medical picture categorization problems.

1.3 Novelty
The distinctive methodology employed by the Marine Predators Algorithm combined with

deep learning for leukemia cancer categorization presents a novel approach to feature extraction,
optimization, and disease detection. This innovative strategy has the potential to drive significant
advancements in medical imaging analysis for cancer research and diagnosis, offering promising
prospects for breakthroughs in the field.

The central research question for investigating the Marine Predators Algorithm combined with
deep learning for the classification of Leukemia Cancer on medical images is framed as follows:

Q1. How does the Marine Predators Algorithm enhance optimization efficiency in the context of
deep learning for leukemia cancer classification?

Q2. What is the impact of integrating the Marine Predators Algorithm with deep learning
techniques on the overall performance of the leukemia cancer classification model?

Q3. How robust is the hybrid model to variability in medical imaging datasets, and does it exhibit
consistent performance across diverse sets of leukemia images?

2 Related Works

Devi et al. [11] presented an innovative technique called the Gaussian Blurring Hue Saturation
Value GBHSV-Leuk approach for classifying and segmenting ALL cancer cells. The first stage includes
preprocessing and blurring the reflections and noise in the image using the Gaussian Blurring (GB)
method. The next stage contains segmentation through the morphological operations and Hue Satura-
tion Value (HSV) technique for distinguishing the background and foreground colors, which enhances
the prediction accuracy. Jawahar et al. [12] offered a deep neural network (DNN)-based (ALNett)
technique to classify microscopic WBC images, and depth-wise convolutions having different dilation
rates were used. For extracting robust global and local features out of microscopic images for precise
forecasting of ALL, the cluster layers with convolution, max-pooling, and normalizing procedures
are utilized to offer enriched contextual and structural details. Ramaneswaran et al. [13] devised a
hybrid Inceptionv3 and XGBoost methods for classifying ALL from microscopic WBC images. In
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this technique, the XGBoost method performs as classification, and head Inceptionv3 performs as
image feature extraction.

Sunil et al. [14] introduced a completely automatic ALL detection technique that depends on
DNN. ALL refers to a condition that affects the leukocytes. Children are likely to suffer from
melanoma. Unlike other cancers, it does not create tumors, which is the main difficulty faced with this
type of cancer and makes it very difficult to detect. Manual microscopic testing procedures have been
employed before automation, but they are error-prone and time-consuming. However, this study deals
with medical data and needs better accuracy and efficiency; hence, this system used various CNNS
architectures. The research presents a potential deep CNN structure for mitigating this problem and
yielding more precise ALL detection. Prostate cancer (PRC) stands as a predominant global cause of
mortality. The imperative for enhancing healthcare services lies in the early identification and charac-
terization of the PRC. Utilizing microarray gene expression data (GED), a contemporary approach
intertwining DL and machine learning (ML) methodologies, fortified by multiple optimization tools,
presents a promising avenue for the effective categorization of PRC [15].

In this technique, a new probability-related weight factor was recommended, which has a vital
role in hybridizing professionally Mobilenet-V2 and ResNet-18 while protecting the merits of both
methodologies. Zakir Ullah et al. [16] described a non-invasive, CNN-related technique that sizes
medical images to make tasks. The presented solution, an attention module termed Efficient Channel
Attention (ECA) comprising CNN-related techniques, utilizes VGG16 to derive better-quality deep
attributes and image data, leading to superior classifier outcomes and feature representations. A
technique with an ECA module will help solve morphological similarity among healthy cells and
ALL cancer images. In [17], a potential CAD system for ALL detection was devised. This technique
covers two stages. In the first phase, the WBC was segmented in microscopic blood images. The
second stage extracts significant features, such as texture and shape features, from segmented cells.
Eventually, K-nearest neighbor (KNN) and Naive Bayes (NB) methods are applied to find the normal
and abnormal segmented cells on the extracted features. The histological diagnosis of these cancers is
critical in choosing the best treatment option. On either front, early and accurate diagnosis reduces
the probability of death.

This study employs an innovative deep-learning model inspired by marine predators, MPADL-
LC3, to classify lung and colon cancer. As cancer spreads from one part of the body to another,
metastasis is a complex process [18]. Through a comparative analysis, the study exhibits the supe-
rior performance of the MPADL-LC3 system across various parameters. The study introduces an
advanced hybrid methodology for classifying WBC subtypes. Initially, to extract optimal deep features,
refined and segmented WBC images undergo transfer learning on established neural networks,
including DenseNet201 and Darknet53. Subsequently, the feature vector undergoes filtration using an
entropy-controlled marine predator algorithm (ECMPA). This meta-heuristic optimization technique,
inspired by nature, selectively retains robust features and discards weaker ones. The resultant reduced
feature vector is inputted into various baseline classifiers with diverse kernel values to achieve effective
subtype classification. The efficacy of the proposed approach is demonstrated through validation
on a publicly available dataset, encompassing 5000 synthetic images representing five distinct WBC
subtypes [19].

The marine predator algorithm is a meta-heuristic optimization method rooted in the survival-
of-the-fittest concept. However, the conventional marine predator algorithm exhibits a unidirectional
search approach, limiting its ability to converge effectively and often leading to stagnation at local
minima. An innovative opposition-based learning feature has been introduced to enhance exploration
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capabilities and facilitate productive convergence towards global optima [20]. Although the automated
classification of White Blood Cells (WBCs) using deep convolutional neural networks indicates
promising accuracy, it grapples with substantial processing costs attributed to extensive feature
sets. Through dimensionality reduction, intelligent feature selection emerges as a critical strategy
to enhance model performance while mitigating computational complexity [21]. Peripheral Blood
Smear (PBS) images are frequently favored for initial malignancy screenings in ALL diagnoses.
Manual perusal of PBS images in laboratories for cancer detection is susceptible to errors due to
interoperability issues and human fatigue. In addition, the non-specific nature of symptoms in blood
smear images and their intricate morphological structures pose significant challenges when using
trained data. Advanced algorithms outperform traditional methods, offering effective solutions to
image processing challenges [21]. A novel CNN-based framework was introduced to improve accuracy.
The proposed CNN model was tested on the primary biliary cholangitis (PBC) dataset normal
DIB (Direct Immunoblotting). The results of the studies showed that the CNN-based framework
for blood cell categorization achieves a 99.91% accuracy on the PBC dataset. When compared to
previous results given in the literature, the proposed convolutional neural network model performs
competitively [22,23].

This research aims to establish an innovative framework for predicting lung cancer using Elec-
tronic Claims Records (ECRs) through a meticulously designed exclusion process, employing a state-
of-the-art sequence-based transformer. It unveils pioneering outcomes by applying a disease prediction
model to the entire population of Taiwan. It provides comprehensive evaluations of lung cancer
prediction, presenting the proposed methodology as an advanced framework for predicting disease
risk based on claims data. Although clinical tests and imaging methods are conventionally employed
for diagnosing metastasis, they are typically administered after the event. Metastasis prediction or
early diagnosis is critical for treatment planning since it affects patient survival. The method created
in this study will be valuable in predicting metastasis and, as a result, in choosing therapy options for
cancer patients [24,25].

This study presents a diverse array of conventional Machine Learning and cutting-edge deep
learning algorithms designed for the intricate classification of driver somatic non-synonymous muta-
tions. Using a 70-feature annotation derived from medical and statistical tools, the methodology,
Driver-Oriented Genomics Analysis (DrOGA), surpasses individual and ensemble methods based
on the extensive analysis of a comprehensive database from various public data sources [26]. The
developed computer-aided detection technique discriminates lung tumors and extracts tumor-related
attributes from chest computed tomography images. After the feature selection process, a classifier is
applied based on the Naive Bayesian network, utilizing eight selected image features. In addition,
a multilayer perceptron classifier is employed that integrates two genomic biomarkers. This dual-
classifier approach enhances the system’s robustness, incorporating visual and genomic information
for more accurate and comprehensive leukemia detection 22. This system accurately predicts the risk
of cancer recurrence. Training and evaluation involve a dataset comprising 79 stage I Non-small cell
lung cancer (NSCLC) patients, utilizing a synthetic minority oversampling strategy and a leave-one-
case-out validation approach. In addition, a fusion method integrates prediction scores from the two
classifiers for enhanced accuracy [27].

A multi-class classification problem is created by binning the objective variable into four bins to
accurately forecast the patients’ survival months. Using a multi-tier categorization system improves
the accuracy of the results. Although the final numerical results are biologically significant, it is
advised that a therapeutically meaningful model be derived with caution [28]. This research investigates
numerous aspects of machine learning and deep learning approaches, focusing on feature selection
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and categorization. The reviews and comparisons demonstrate the parameter algorithm’s resultant
correctness in the feature selection and classification process by assessing the testing outcomes in
different datasets. In addition, different methodologies are used in this study to focus on the difficulties
and identification of variables [29]. Exploring both Acute Myeloid Leukemia (AML) and ALL, this
investigation utilizes gene expression data from a diverse cohort to predict leukemia subtypes using
three distinct machine learning algorithms: XGBoost, Random Forest Classification, and Artificial
Neural Networks. Before applying the algorithms, the dataset underwent dimensionality reduction
through principal component analysis (PCA) [30]. Focusing on binary categorization, the primary
goal of this study is to optimize the efficiency and accuracy of classifying leukemia samples into
Acute Lymphocytic Leukemia and Acute Myelocytic Leukemia. Various feature selection approaches
were employed and compared, ultimately selecting the dimensionality reduction algorithm that
demonstrated the highest classification accuracy with the fewest genes (features). Computer science
researchers have developed numerous automatic approaches for selecting algorithms and/or hyper-
parameter values for a particular supervised machine learning problem, making machine learning
accessible to layperson users with minimum computing skills [31]. Hyper-parameter tuning is crucial in
determining the ideal machine learning parameters [32]. This indicates that the hyper-parameter values
for certain leukemia traits were successfully determined using the Hybrid Optimization of Resource
Distributions (HORD) technique. The HORD approach also improved the model’s performance
by adjusting and locating the ideal set of hyper-parameters for the CNN model [33]. This model
maximizes feature selection and refinement from high-dimensional data by fusing machine learning
with image processing [34].

3 Proposed Model

This study formulated a novel MPADL-LCC system for detecting and classifying leukemia cancer
on microscopic images. The projected MPADL-LCC methodology encompasses BF-based noise
removal, Faster SqueezeNet, MPA-based hyperparameter optimizer, and DAE-based classification.
Fig. 1 illustrates the overall flow of MPADL-LCC methods. Integrating the Marine Predators
Algorithm with deep learning provides a unique approach to leukemia detection. It efficiently
extracts features from complex medical images using the algorithm’s strengths, which is crucial for
accurate cancer classification. Deep learning enables higher accuracy in distinguishing leukemia from
non-leukemia cells. Scalable and adaptable, the model can handle large datasets and improve with
additional data, enhancing its performance over time.

3.1 Image Preprocessing
In the primary stage, the presented MPADL-LCC technique enforced the BF approach for the

noise removal process. BF is a technique employed to smoothen images with the edges. The usage
of BF is quickly advanced, and now it is applied in image processing applications, including picture
enhancement, image de-noise, and others. Early detection can improve the chances of survival and
successful treatment. However, depending on the diagnostician’s experience, it is time-consuming and
complex. It is critical for patients and their prognoses that BC (Blood Cancer) can be automatically
recognized by interpreting histological pictures [35]. The pixel of all the points from the low-pass filter
is considered equivalent to the nearer point.

k−1
d (x)||

∫ ∞

−∞
f (δ) c (δ, x) dδ (1)
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Figure 1: The overall flow of the MPADL-LCC system

The output (h) and input (f) images can be multi-band; (c(δ, x)) is the arithmetic contact amongst
nearer point δ and the regional center x.

kd(x) = ||
∫ ∞

−∞
c (δ, x) dδ (2)

Nonetheless, the pixel of the point at the borders is very similar to the closing point.

Therefore, the lines are blurred. The filter blends gray rates based on multispectral similarities and
numerical proximity, allowing similar values. The filtering range can be expressed as follows:

h(x) = k−1
r (x)||

∫ ∞

−∞
f (δ)s(f (δ) , f (x) dδ (3)
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where s(f (δ), f (x) calculates photographic similarities among region centers; x and a nearer point
δ, and kernel evaluates pixel similarities. In such instances, the ongoing standardization is provided
below:

k−1
r (x) = ||

∫ ∞

−∞
s(f (δ) , f (x) dδ (4)

BF is defined as follows:

h(x) = k−1(x)||
∫ ∞

−∞
f (δ)c(δ, x)s(f (δ) , f (x) dδ (5)

k(x) = ∫ ∞
−∞ c(δ, x)f (f (δ), f (x)dδ. Every area integrates a filtration region, and their distance

is determined as bilateral filtration. In a flat region, pixel values in a smaller neighborhood were
associated with one another, and the BF efficiently acted as an averaging the weak, normal domain
filter and ineffectively related changes amongst the pixel values generated by noise.

3.2 Feature Extraction using Faster SqueezeNet
At this stage, the MPADL-LCC system exploited the Faster SqueezeNet algorithm for developing

feature vectors. Faster SqueezeNet is presented to expand the real-time performance and precision of
electronic module classification [36]. Residual structures and BatchNorm are added to avoid overfit-
ting. Fig. 2 defines the infrastructure of the SqueezeNet algorithm. Simultaneously, like DenseNet, the
concat was employed to connect various layers to improve the expressiveness of the first layers of the
networks. The model comprises a global average pooling layer, 3 block layers, 4 convolutional layers,
and 1 BatchNorm layer. In the following ways, the Fast SqueezeNet is enhanced:

Figure 2: Structure of SqueezeNet model

(1) It is a derivative of the DenseNet framework, and a linked mode is developed to increase the
data flow between layers. The present layer receives all the mapping features of the prior layer, and it
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is exploited x0, . . . , xl−1 as input; next, xl is given by

xl = Hl ([x0, x1, . . . , xl−1]) , (6)

In Eq. (6), xl shows the contact layer, Hl(·) concatenate more than one input [x0, x1, . . . , xl−1]
embodies the linking of feature graphs created from the layers 0, 1, . . . , l − 1, x0 exemplifies the max
pooling layer and x1 is the Fire layer.

Without excessively improving the network parameters, the network efficiency can be improved,
and concurrently, any 2-layer network can directly communicate data.

(2) It learns from the ResNet model and presents many primary components, including a fire
module and pooling layer, to ensure the best network convergence. Finally, the 2 layers are added and
connected with the second convolutional layer.

Correctly, representing desirable underlying mapping as H(x), assumed that stacked non-linear
layer fit another mapping of F(x) : = H(x) − x. A new mapping was recasting into F(x) + x. F(x) + x
is accomplished by the infrastructure called a shortcut connection from the actual encoder method.
Consequently, ResNet was utilized to deal with gradient vanishing and degradation problems.

3.3 Hyperparameter Tuning Using MPA
MPA was used for the hyperparameter tuning procedure. MPA can be a metaheuristic optimizer

approach inspired by natural laws, which control better foraging approaches and encounter rates
among prey and predators in the marine ecosystem. Medical data plays an essential part in cancer
illness diagnosis. Redundant and irrelevant highlighted genes are two different characteristics that
reduce the performance of the machine learning model [37]. The MPA uses Brownian and Lévy steps
to mimic a predator’s behavior during the prey attack. MPA depends on two motions; hence, it was
necessary to recognize the idea of the random walk (RW) model, including Lévy and Brownian motion,
as follows.

Key parameters in the MPA combined with deep learning for leukemia cancer classification
include the choice of deep learning architecture (e.g., CNN, ResNet) and specific layer configurations.
Image preprocessing techniques such as resizing, normalization, and augmentation are vital. MPA
parameters for feature selection, such as search step size and iteration count, are crucial. Hyperparam-
eters for training the model, like learning rate and batch size, also play a significant role. Additionally,
parameters for data preprocessing and dataset split are essential considerations.

3.3.1 Brownian Motion

With a Gaussian (norma was l) distribution using the zero mean (μ = 0) and unit variance
(σ 2 = 1), the probability functions determine step length for Brownian motion to attain step length.
The subsequent defines adjusting Probability Density Function (PDF) at point χ for these movements:

Fb = (x; μ, σ) = 1√
2πσ 2

exp
(

−x − μ2

2σ 2

)
= 1√

2π
exp

(
−x2

2

)
(7)

3.3.2 Lévy Flight (LF)

LF is a kind of RW where step size was defined through a probability function stated by Lévy
distribution (power law tail).

L(Xj) ≈ |xj|1−α (8)
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where Xj is flight length, and 1 < α ≤ 2 is the power law exponent.

The MPA begins with the primary population cast using a uniform distribution of random values
among upper and lower boundaries or respective variables, and it is formulated as follows:

X0 = Xmin + rand (Xmax − Xmin) (9)

where Xmin and Xmax are lower and upper boundaries of the control variable, and rand is the random
number within zero and one. An elite matrix is a subset of solutions that possess the fittest solution.
The dimensional matrix comprises problem dimensions and amount of search agents.

Elite =

⎡
⎢⎢⎣

X 1E
1.1 X 1E

1.2 . . . X 1E
1.d

X 1E
2.1 X 1E

2.2 . . . X 1E
2.1

...
...

...
X 1E

n.1 X 1E
n.2 . . . X 1E

n.d

⎤
⎥⎥⎦ (10)

where
−→
X 1E is the topmost predator vectors, n is the number of searching agents, and d is the count of

dimensions.

Another typical matrix of MPA is the prey matrix, an auxiliary matrix that assists in updating
the elite matrix process. The initialization process can enable these matrices. The predator updates the
location using a matrix. In addition, the fittest matrix is created and chosen as elite.

Prey =

⎡
⎢⎢⎣

X p
1, 1 X p

1, 2 . . . X p
1, d

X p
2, 1 X p

2, 2 . . . X p
2, d

...
...

...
X p

n, 1 X p
n, 2 . . . X p

n, d

⎤
⎥⎥⎦ (11)

where Xi,j characterizes the jth dimensional of its prey. The optimizer method is dependent primarily
on the abovementioned 2 matrices.

The MPA process is classified into three major stages.

Phase 1: This stage is relevant for up to one-third of the iteration procedure. In addition, the
velocity ratio was considerably higher. This makes sure the exploration of this searching space. The
ratio was greater compared with 10. The weaker stagnation during predator movement can be observed
as follows:

While Iter <
1
3

Max−Iter

−−−−−→
Stepsize1 = −→

λB ⊗
(−−−→

Elite1 − −→
λB ⊗ −−−→

Prey1

)
(12)

−−−→
Prey1 = −−−→

Prey1 + P.
−→
R ⊗ −−−−−→

Stepsize1

where
−→
λB is the vector comprising random numbers dependent upon uniform distribution demonstrat-

ing the Brownian motion.

Phase 2: Here, the balance between exploitation and exploration determines the convergence. For
exploration, the predator and the prey are responsible. As per the rules, in the unit velocity ratio
(v ≈ 1), the predator resolves on an approach to move in Brownian movement; consequently, the
prey follows the RW through Lévy.

While
1
3

Max−Iter < Iter <
2
3

Max−Iter
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For the first half of the population
−−−−−→
Stepsize1 = λL → ⊗

(−−−→
Elite1 − λL → ⊗−−−→

Prey1

)
i = 1, . . . ,

n
2

(13)

−−−→
Prey1 = −−−→

Prey1 + P.
−→
R ⊗ −−−−−→

Stepsize1 (14)

where λL is the vector of arbitrary numbers related to Lévy distribution demonstrating Lévy movement.

Phase 3: Here, the predator moves faster than the prey, mainly related to the exploitation ability.
In a lower velocity ratio (v = 0.1), the predator follows Lévy motion.

While Iter >
2
3

Max−Iter

−−−−−→
Stepsize = −→

RL ⊗
(−→

RL ⊗ −−−→
Elite1 − −−−→

Prey1

)
i = 1, . . . , n (15)

−−−→
Prey1 = −−−→

Elite1 + P.CF ⊗ −−−−−→
Stepsize1 (16)

3.4 Leukemia Classification Using DAE
In this study, the DAE approach is exploited for medical image classification. The Autoencoder

(AE) is a feedforward neural network (FFNN) with a 2L + 1 hidden layer. The training process aims
to learn a valuable and compact representation using a weighted matrix that approximates the input
dataset and regenerates the look-up map pixel. This study describes the Corona Virus Disease 2019
(COVID-19) transmission strategy utilizing ANN [38]. Assume that AE takes the input i with the
determined DR in the specific field (iGDRd) given below:

(1) The encrypted map i to lower dimension representations (h�Rd) based on a deterministic
function h1 = f1(i) = α(Wli + b1), where α denotes the hyperbolic tangent activation function
(W1 = weighted matrix and b1 = bias term for encoding). (2) The decrypted act as a reverse or mirror
mapping for resultant 0 by other deterministic function 0 = f1(h) = α(W ′

1h + b′
1) with 1′ = 1W ′b(W ′

= weighted matrix and b′ = bias for decoding). (3) In the trained stage, step (2) was reiterated for every
i (mapped to abstraction h) with the optimum cost function for fine-tuning.

Deep convolution AE offered a remarkable capacity for medical and neuroimaging scans. In gen-
eral, every Fully Connected (FC) layer can be replaced with numerous normalization, convolutional,
and pooling layers, in which amount of layers is based on the problems and the targeted performance.
The arithmetical formula of the convolution AE is the same as the elemental AE mentioned before,
except that weight is shared. For input I , the demonstration of jth mapping feature is shown in Eq. (17),
where b is dispersed over the entire map, α is activation function, and d∗ is convolution:

hj = α
(
i∗W j + bj

)
(17)

The input generated to the decoder is expressed in Eq. (18), where c = bias for each input channel,
h = the mapping feature, and W ′′ = reverse function of weight mapping. The cost function (MSE)
is shown in Eq. (19), where BP (Backpropagation) calculates the gradient of error, dh and do are the
difference in the hidden and output states, correspondingly. An SDG (Stochastic Gradient Descent)
in Eq. (20) adjusts the weight and class label 0′′ is evaluated as follows:

0 = v
∑
jεH

(hj ∗ W "j − c) (18)
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eα = l
2n

n∑
i=1

(ik − 0k)
2 (19)

δeα

δW j
= i ∗ dhj + h∼j ∗ do (20)

0" =
{

1 if k ≥ 0.5
0 if k < 0.5

(21)

The DAE is a decisive difference from AE, which accepts the stochastic noisy depiction of input
based on Gaussian additive noise when compared to the ideal input and thus attains an optimum set
of weights that highlights discriminatory features.

4 Experimental Validation

This study employed a robust computing environment with powerful CPU and GPU capabilities
to manage the intensive computational tasks required for training neural networks to implement the
leukemia cancer classification system using deep learning. It utilized popular frameworks such as
TensorFlow, PyTorch, or Keras, ensuring all necessary libraries were installed. This study designed
a convolutional neural network architecture for medical image analysis, specifying layer types (e.g.,
convolutional, pooling), activation functions, and layer depths based on previous research. A labeled
dataset of medical images containing leukemia and non-leukemia cases was prepared for supervised
learning. Then, an optimizer such as Adam or RMSprop was employed to minimize training loss.
For evaluation, key evaluation metrics (accuracy, precision, recall, F1 score, confusion matrix) were
defined for model assessment. The dataset was split into training, validation, and test subsets (e.g., 70-
15-15 ratio) to train and validate the model while preventing overfitting. The hyperparameters are fine-
tuned based on validation performance, and the final model was evaluated on the test set. In addition,
the developed model was constructed using Python in conjunction with the Keras deep learning
framework, and all computations are executed on Google Colab utilizing a 12GB NVIDIA Tesla K80
GPU. The experimental configuration encompasses the dataset used, and the model’s performance
was rigorously validated. The simulation result of the MPADL-LCC algorithm was tested on the
C-NMC_Leukemia dataset available from [16].

The Marine Predators Algorithm aids in efficient feature extraction from medical images inspired
by marine predators’ foraging behavior to capture relevant leukemia patterns. The model achieves
enhanced classification accuracy by learning intricate image patterns by integrating deep learning,
particularly CNNs. This combination results in a robust classifier capable of handling variations in
image data quality and resolution. Improved accuracy promises early leukemia detection, which is
crucial for timely intervention. These advancements have significant clinical implications, potentially
improving diagnostic processes and patient care. Future research aims to refine the algorithm, optimize
parameters, and validate its performance across diverse clinical settings.

Performance measures are described in Eqs. (22)–(25), and they are accuracy, recall, precision, and
F1 score. True Positive (TP) denotes the number of correctly detected positive samples; True Negative
(TN) is the number of correctly classified negative samples; False Positive (FP) is the number of falsely
detected positive samples; and False Negative (FN) is the number of undetected positive samples.

Accuracy = No. of correct predictions
Total no. of predictions

(22)
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Precision = TP
TP + FP

(23)

Recall = TP
TP + FN

(24)

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(25)

Confivence Interval = Estimated metric ± z ×
√

Estimated metric × (1 − Estimated metric)
n

(26)

where:

• Estimated MetricEstimated Metric is the observed performance metric (e.g., accuracy, sensitiv-
ity, and others),

• z is the z-score corresponding to the desired confidence level,

• n is the sample size.

In order to assess the robustness of the hybrid model, it is necessary to test it on datasets that differ
in picture quality, resolution, and illness subtypes, reflecting the variety present in clinical practice.
This method guarantees that the model can adjust to various imaging situations. Standard metrics,
including accuracy, precision, recall, and F1 score, evaluate the model’s performance across these many
datasets. This allows for understanding the model’s generalization and consistent performance in real-
world circumstances. Extensive testing on various leukemia picture sets is necessary to confirm the
model’s applicability in medicine by validating its dependability and possible clinical impact under
different imaging settings. It can evaluate if the model’s performance holds steady over various groups
of photos by dividing the dataset into folds and training/testing the model on various combinations.

This study used the dataset_2 for the second validation phase. In addition, this dataset has
insufficient microscopic blood samples to adequately train the proposed model. In order to overcome
this restriction, data augmentation techniques were employed to improve the diversity of photos in
the training set. The training process was improved by adding several image changes to the dataset.
The expanded train set was then utilized to train the model. This validation phase’s results, which
involved randomly rearranging the train and test sets, are encouraging. In particular, an accuracy of
98% was attained in the second run of testing with the dataset_2. Table 1 describes the Samples for
testing and training data. Fig. 3 describes the confusion matrics of the leukemia data for dataset_2.
The database contains 530 images, with 360 cancer images and 170 healthy images, as listed in Table 2.
Fig. 4 illustrates the sample images of the system.

Table 1: Samples for testing and training on the ALL_dataset_2

Name Not all ALL Total

Training 1030 1040 2070
Test 30 25 55
Total 1060 1075 2135

In Fig. 5, the confusion matrices of the MPADL-LCC methodology are inspected under varying
numbers of epochs. The MPADL-LCC algorithm perfectly recognizes cancer and healthy images.
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Figure 3: Confusion matrices of MPADL-LCC for dataset_2

Table 2: Details of the database

Class No. of samples

All (Cancer) 360
Hem (Healthy) 170
Total number of samples 530

Figure 4: (Continued)



908 CMES, 2024, vol.141, no.1

Figure 4: Samples images (a) Healthy (b) Cancer

Figure 5: Confusion matrices of MPADL-LCC methodology (a–f) Epochs 500–3000
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In Table 3, the overall classifier outcome of the MPADL-LCC approach is inspected under several
epochs. Fig. 6 depicts the sensy and specy results of the MPADL-LCC technique. The outcomes showed
that the MPADL-LCC methodology recognizes cancer and healthy classes under each epoch. For
instance, with 500 epochs, the MPADL-LCC technique achieves average sensy and specy of 95.56% and
95.56%, respectively. In addition, with 1500 epochs, the MPADL-LCC approach achieves an average
sensy and specy of 95.84% and 95.84% correspondingly. In addition, with 3000 epochs, the MPADL-
LCC method achieves an average sensy and specy of 98.87% and 98.87%, correspondingly. The model
has a 99% confidence level: z = 2.576.

Table 3: Classifier outcome of MPADL-LCC approach with distinct epochs

Class labels Accuracybal Precision Sensitivity Specificity F1 score

Epoch-500
All (Cancer) 95.83 97.73 95.83 95.29 96.77
Hem (Healthy) 95.29 91.53 95.29 95.83 93.37
Average 95.56 94.63 95.56 95.56 95.07

Epoch-1000
All (Cancer) 95.83 97.73 95.83 95.29 96.77
Hem (Healthy) 95.29 91.53 95.29 95.83 93.37
Average 95.56 94.63 95.56 95.56 95.07

Epoch-1500
All (Cancer) 96.39 97.75 96.39 95.29 97.06
Hem (Healthy) 95.29 92.57 95.29 96.39 93.91
Average 95.84 95.16 95.84 95.84 95.49

Epoch-2000
All (Cancer) 96.39 97.47 96.39 94.71 96.93
Hem (Healthy) 94.71 92.53 94.71 96.39 93.6
Average 95.55 95 95.55 95.55 95.27

Epoch-2500
All (Cancer) 98.33 99.72 98.33 99.41 99.02
Hem (Healthy) 99.41 96.57 99.41 98.33 97.97
Average 98.87 98.14 98.87 98.87 98.5

Epoch-3000
All (Cancer) 98.33 99.72 98.33 99.41 99.02
Hem (Healthy) 99.41 96.57 99.41 98.33 97.97
Average 98.87 98.14 98.87 98.87 98.5

Fig. 7 depicts the accubal, precn, and Fscore outcomes of the MPADL-LCC methodology. The
outcomes specify that the MPADL-LCC algorithm recognizes cancer and healthy classes under each
epoch. For example, with 500 epochs, the MPADL-LCC method achieves average accubal, precn, and
Fscore of 95.56%, 94.63%, and 95.07% correspondingly. Also, with 1500 epochs, the MPADL-LCC
method achieves an average accubal, precn, and Fscore of 95.84%, 95.16%, and 95.49%, correspondingly.
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With 3000 epochs, the MPADL-LCC method achieves an average accubal, precn, and Fscore of 98.87%,
98.14%, and 98.50%, correspondingly.

Figure 6: Sensy and Specy analysis of MPADL-LCC approach on distinct epochs

Figure 7: Accubal, precn, and Fscore analysis of MPADL-LCC approach on distinct epochs

TRAC (Training Accuracy) and VDAC (Validation Accuracy) of the MPADL-LCC method
are studied in the Leukemia cancer solution in Fig. 8. The outcome stated that the MPADL-LCC
approach has maximal results with enhanced values of TRAC and VDAC. Visibly, the MPADL-LCC
method has greater TRAC outcomes.

The TRLS (Training Loss) and VDLS (Validation Loss) of the MPADL-LCC methodology are
tested on Leukemia cancer performance in Fig. 9. The outcome inferred that the MPADL-LCC
algorithm has a greater outcome with the lesser values of TRLS and VDLS. The MPADL-LCC system
has minimal VDLS performance.

An evident PR curve of the MPADL-LCC algorithm on the test database is presented in Fig. 10.
The outcome highlighted that the MPADL-LCC methodology has greater PR values in two classes.
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Figure 8: TRAC and VDAC outcome of MPADL-LCC methodology

Figure 9: TRLS and VDLS outcome of MPADL-LCC system

Figure 10: Precision-recall curve of MPADL-LCC methodology
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A comprehensive ROC curve of the MPADL-LCC method on the test database is defined in
Fig. 11. The result indicated that the MPADL-LCC approach can classify two classes.

Figure 11: ROC curve outcome of MPADL-LCC approach

Table 4 and Fig. 12 show a brief comparative outcome of the MPADL-LCC algorithm with recent
DL methods [39]. The outcomes inferred that the YOLOv4, EfficientNet-B2, and Inception-ResNetV2
algorithms demonstrate moderately closer classification outcomes. Then, the Inception V3, Xception-
ensemble, and DenseNet121 models exhibit reasonable classifier results. However, the MPADL-LCC
technique highlights superior performance with a maximum accuracy of 98.87%, precision of 98.14%,
sensitivity of 98.87%, and specificity of 98.87%.

Table 4: Comparative outcome of MPADL-LCC system with current approaches

Methods Accuracy Precision Sensitivity Specificity

MPADL-LCC 98.87 98.14 98.87 98.87
Inception V3 96.26 95.37 97.31 95.91
Xception-Ensemble model 96.78 95.64 97.15 97.83
YOLOv4 95.04 97.78 97.14 96.26
EfficientNet-B2 95.39 95.98 96.46 97.94
Inception-ResNetV2 95.23 95.12 97.81 97.30
DenseNet121 96.92 97.10 96.73 96.64

These outcomes highlighted the improved performance of the MPADL-LCC approach over other
existing systems.
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Figure 12: Accuy outcome of the MPADL-LCC algorithm with existing methods

5 Conclusion & Future Work

This study presents a novel MPADL-LCC methodology for detecting and classifying leukemia
cancer on microscopic images. The presented MPADL-LCC algorithm primarily implements the BF
method for the noise removal process. In addition, the MPADL-LCC algorithm employs the Faster
SqueezeNet model to develop feature vectors with MPA as a hyperparameter optimizer. The DAE
system is exploited for medical image classification at the final stage. The hyperparameter tuning
process using MPA helps accomplish enhanced leukemia cancer classification performance. The series
of simulations of the MPADL-LCC algorithm is tested on the medical imaging database, and the
outcome demonstrates the best results of the MPADL-LCC technique over other recent approaches
concerning various measures. In the future, the efficiency of the MPADL-LCC method will be boosted
by hybrid DL classification models.

There are several promising avenues to integrate the Marine Predators Algorithm with Deep
Learning for Leukemia Cancer Classification on Medical Images in future endeavors. It is crucial to
enhance the algorithm’s adaptability to diverse datasets and improve its performance across various
leukemia subtypes. Exploring real-time applications in clinical settings and integrating interpretability
features into the model can heighten its practical utility. Regular updates are essential to incorporate
advancements in deep learning and medical imaging technologies, ensuring the algorithm’s relevance
in leukemia diagnosis research. Collaboration with medical experts and rigorous validation through
extensive clinical trials will solidify its applicability and facilitate seamless integration into healthcare
systems.
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