
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.052107

ARTICLE

Optimizing Connections: Applied Shortest Path Algorithms for MANETs

Ibrahim Alameri1,*, Jitka Komarkova2, Tawfik Al-Hadhrami3, Abdulsamad Ebrahim Yahya4 and
Atef Gharbi5

1Faculty of Medical Sciences, Jabir Ibn Hayyan Medical University, Alkufa, Najaf, 54001, Iraq
2Faculty of Economics and Administration, University of Pardubice, Studentska, Pardubice, 53210, Czech Republic
3Computer Science Department, School of Science and Technology, Nottingham Trent University, Nottingham, NG118NS, UK
4Department of Information Technology, College of Computing and Information Technology, Northern Border University, Arar,
91431, Saudi Arabia
5Department of Information System, College of Computing and Information Technology, Northern Border University, Arar,
91431, Saudi Arabia

*Corresponding Author: Ibrahim Alameri. Email: ib.alameri@jmu.edu.iq

Received: 23 March 2024 Accepted: 13 June 2024 Published: 20 August 2024

ABSTRACT

This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks (MANETs) from
dynamic topologies that pose great challenges because of the mobility of nodes. The main objective was to delve
into and refine the application of the Dijkstra’s algorithm in this context, a method conventionally esteemed for its
efficiency in static networks. Thus, this paper has carried out a comparative theoretical analysis with the Bellman-
Ford algorithm, considering adaptation to the dynamic network conditions that are typical for MANETs. This paper
has shown through detailed algorithmic analysis that Dijkstra’s algorithm, when adapted for dynamic updates,
yields a very workable solution to the problem of real-time routing in MANETs. The results indicate that with
these changes, Dijkstra’s algorithm performs much better computationally and 30% better in routing optimization
than Bellman-Ford when working with configurations of sparse networks. The theoretical framework adapted,
with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies, is novel in this work
and quite different from any traditional application. The adaptation should offer more efficient routing and less
computational overhead, most apt in the limited resource environment of MANETs. Thus, from these findings,
one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice
of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and
further that the proposed method offers a marked improvement over traditional methods. This paper, therefore,
operationalizes the theoretical model into practical scenarios and also further research with empirical simulations
to understand more about its operational effectiveness.

KEYWORDS
Dijkstra’s algorithm optimization; complexity analysis; shortest path first; comparative algorithm analysis;
nondeterministic polynomial (NP)-complete

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.052107
https://www.techscience.com/doi/10.32604/cmes.2024.052107
mailto:ib.alameri@jmu.edu.iq

788 CMES, 2024, vol.141, no.1

1 Introduction

Information theory has laid the genesis of information technology (IT). From the inception of
telephone networks to the recent development of 5th generation (5G) and 6th generation (6G) wireless
networks, the rate of development has been unprecedented [1,2]. Following infrastructure, wireless
networks are divided into two large categories: infrastructure-based networks and infrastructure-less,
or Ad Hoc Networks [3,4]. The idea of Ad Hoc supposes that communicating nodes act without
direct, centralized control and communicate directly without dynamical connectivity. Mobile Ad
Hoc Networks (MANETs) and the like-Wireless Mesh Networks (WMNs), that is to say, real-world
infrastructures-work in exactly this way. One of the points of concern of such networks lies in their
decentralized nature and hence poses challenges for security and privacy [5]. MANETs belong to the
type Ad Hoc Networks and are part of more mature and stable technologies.

MANET performance is determined by a set of performance factors that include throughput,
delay, packet loss, and scalability. Each one of these and others will be routing protocol dependent. The
network should be designed such that it is an energy-saver as every device in the network has to work
on battery power. These are the new routing techniques for SDN-enabled Wireless Sensor Networks
(WSNs) to enhance network efficiency and flexibility. The fuzzy Dijkstra routing will be a version of
Dijkstra adapted with fuzzy logic to enhance the routing decisions as defined by AI-Hubaishi et al. [6].

There must be a reasonable analysis and planning of transportation costs, costs of fueling vehicles,
and the route network of urban cars shown [7]. They suggested analyzing urban vehicle routes using
the Dijkstra’s algorithm optimization. Clustering routing algorithms are valuable in MANETs due to
their low power consumption and scalable nature. In a clustering system, nodes are organized into
clusters, and a leader is appointed to oversee each cluster, as shown in Fig. 1. When the cluster heads
have been chosen, the other nodes will form a backbone network that gathers, consolidates, and sends
data to the base station along the path that uses the least energy (cost). Using this method increases
the network’s longevity significantly.

Figure 1: Clustered network topology in MANETs

Fig. 1 describes two main types of communication in the MANET cluster: single-hop and multi-
hop. Direct communication is applicable, in which case, possibly better transmission rates can be
acquired since communications will be direct, and hence the latency incurred will be lower than in

CMES, 2024, vol.141, no.1 789

the case of multi-hop communication. On the other hand, multi-hop communication means that the
data passes through at least one intermediary node on its way to the final destination, further delaying
the data and extending the scope of the network from the radio range of individual nodes. This is
the very fundamental characteristic of MANETs since it can support any kind of flexible network
configuration and to conform to node mobility without central infrastructure [8].

Authors in [9,10] devised a new way to choose the cluster head. Node weight in the cluster is
calculated using a weighted sum approach, which is subsequently compared to the average weight
for that particular cluster. Each connection in a cluster is given a weight function based on a fuzzy
membership function and the communication cost between clusters in this approach. Dijkstra’s
method uses the whole system with less energy by choosing the path with the least weight.

Liu et al. introduced a multi-hop routing mechanism based on a local competitive and Dijkstra
(MRBCD) algorithm in [10]. Cluster Heads (CHs) are elected in MRBCD through a local competitive
process, and once elected, they transmit data to the base station employing the path with the lowest
overall energy cost. The inter-cluster routing strategy can help to keep inter-cluster connection energy
consumption to a minimum. By integrating the two methods, the MRBCD algorithm can balance
energy consumption and enhance energy efficiency, thus prolonging the lifespan of wireless sensor
networks. One of the most significant and critical challenges in this paper has always been making
networks last longer while only using a limited amount of energy. MANETs belong to a category
of dynamic networks that are normally not characterized by fixed infrastructure; hence, a very highly
dynamic network topology normally ensues. In most cases, efficient routing algorithms, like Dijkstra’s,
Bellman-Ford, Open Shortest Path First (OSPF), are considered the backbone to the performance of
MANETs, where the shortest path between nodes is determined. While it is the most popular solution
for determining the shortest path between nodes, the efficiency of Dijkstra’s algorithm within the
dynamic and decentralized nature of MANETs is not always the best. This literature review focuses
on shortest-path algorithms proposed for MANETs.

The study of [11] discussed various algorithms and methods used in path planning for robots
and Unmanned Aerial Vehicles (UAVs), including A∗ search algorithm, Dijkstra’s algorithm, ant
algorithms, and particle swarm optimization. It also covers applications in different fields, such as
robotics, UAV path planning, and feature subset selection. The paper presents an analysis of three
different shortest path-finding algorithms: A∗ Search, Ant Colony Optimization (ACO), and Dijkstra.
The paper lacks a comprehensive and in-depth analysis to thoroughly understand how the algorithms
perform in finding the shortest path, particularly in the context of MANETs. The study fails to provide
realistic solutions or insights due to limitations such as the restricted grid size and the simplistic
heuristic calculations employed. Further studies are needed to delve deeper into the performance of
these algorithms in MANET environments.

One gap in this paper would be elaborating the number of nodes and its effect on the performance
of routing protocols. This is because the scalability of the protocols might be different from each other
since it is based on the number of nodes that might take place in the network. Understanding how
the protocols behave under a bigger network would be fruitful to make sure the effectiveness of the
protocols in practical life, where the number of bode is far more than in a small example. We may also
evaluate the effect of the node numbers to obtain the perfect protocol for different network scales,
ensuring the efficient and safe run of the communication work in various deployment scenarios. Also,
the short path algorithm fails to address finding the short path [12].

The author in [13] did not delve into the scalability of these algorithms for handling large datasets
or graphs. Scalability is indispensable for any real-life application, above all in fields like network

790 CMES, 2024, vol.141, no.1

optimization, artificial intelligence, and big data analytics, which may need to be applied to very large-
sized data sets. Without discussing the scalability issue, this could be a big gap since it does apply a
limit on any practical application of the paper results in real-world scenarios, where data has volume
but is also in motion and complex. This would include studying the way these algorithms scale up with
the volume and complexity increase of data, computation complexity, memory usage, and execution
time. It would be worth mentioning what optimization techniques are or what alternative algorithms
are there that offer better scaling for larger-scale applications. This would make the paper more useful
for understanding the practicality and limitations of the algorithms in real life.

It is a weak point of the paper [13], in the sense that it does not go further into analyzing which
exact scenarios or conditions Dijkstra’s algorithm will present better performance in comparison to the
Bellman-Ford algorithm for many nodes. The paper concludes that for the few nodes in the network,
the Bellman-Ford algorithm is efficient, while for many nodes, Dijkstra’s algorithm is efficient and
that the causes that would affect this performance need a more comprehensive, all-round analysis. A
more detailed examination of graph characteristics is needed. Furthermore, if it has been discussed
and turned into real-world applications and situations of common use to those algorithms, it would
give practical relevance to this kind of comparison. This paper might also be further improved if the
author discussed the limits and assumptions being made during the analysis.

First and foremost, the paper of [14] focuses mainly on comparing A∗ with the Dijkstra algorithm,
but it never discusses the dependency of A∗ on heuristic choices or the dynamic environment
performance of A∗, its resource consumption and scalability. A much broader review, therefore, is
missing, putting into consideration other pathfinding algorithms and, further, practical applications
that would underpin the possible limits and strengths of A∗ in practical, real scenarios.

The author in [15] reviewed various studies on hierarchical scale-free networks, small-world
properties, and community structure on large networks. It identifies a new class of hierarchical
networks with scale-free and fractal features utilized in the structural analyses, such as the average
degree, density, clustering coefficient, degree distribution, and average path length. The second
complex network aspect of the study on a hierarchical multi-fractal network model is the structural
features, including degree distribution, local clustering coefficient, and the average path length. These
network properties’ mathematical formulations and proofs are further provided and discussed. Next,
the paper cites the known statements on the scaling laws in random and scale-free networks. Finally,
some of the aspects in which this model proves what is already known include scaling in random
networks, scale-free and fractal structures in hierarchical networks, the small-world effect together
with the scale-free property in latter networks with fractal features, as well as the fractal nature and
self-similarity in real networks.

The paper of [16] made a critical analysis of the fractal six-star networks used in modeling
cellular mobile communication networks with special reference to mean first-passage time (MFPT)
and network robustness. The authors introduce an original way of structuring the network that could
represent realistic communication systems more correctly. It is mostly involved in the relationship
between MFPT and network structure, in which analytical expressions are given to find these times
based on the architecture of the network. This part is very crucial since it will help to estimate the
efficiency of the signal’s transmission in the whole network, more so in cases of failure in the network.
These do reveal that MFPT and the average path length are directly related to the iteration steps of
the network and that they relate directly to the size and complexity of the network. A further part of
the paper goes into great detail about robustness analysis. In it, the authors define robustness as the
ability of the network to carry out work even when some of its nodes are not working. The research

CMES, 2024, vol.141, no.1 791

will make a study about how it changes with density and concludes high densities generally improve
the stability and robustness of the network against failure.

This study proposal, therefore, brings a new way of looking into the performance analysis of
Dijkstra’s algorithm in MANETs, indicating that this algorithm outperforms others in sparse graph
representations and thus gives tremendous in-depth information well applicable for enhancing routing
protocols within dynamic network topologies. The presented paper researches the efficiency and
complexity of the Dijkstra’s algorithm within the unique context of MANETs. The value of this contri-
bution is in the long-standing literature gap that presented an obstacle to the deepening understanding
of algorithmic adaptability and potential optimizations within the environments characterized by
fluctuating and decentralized network structures. It would contribute to further development in the
underlying theoretical framework and, at the same time, lay the foundation for practical applications
in developing more robust and efficient solutions for network designers and researchers working under
different dynamic networking scenarios.

This paper aims to increase the complexity of the algorithm that runs behind the routing protocol.
Researchers from many fields have come up with many routing methods to make networks use less
energy and last longer.

Therefore, this paper aims to apply the Dijkstra’s algorithm to MANETs, focusing on analyzing
its complexity and performance, particularly in sparse graph representations, which are characteristic
of MANETs.

The structure of the paper is crafted to navigate through a comprehensive analysis of the subject
matter. Section 2 probes into the computational complexity inherent to these algorithms, while
Section 3 introduces the theoretical underpinnings of computational complexity classes, specifically
polynomial (P) and nondeterministic polynomial (NP). Advancing to application, Section 4 highlights
innovative routing methodologies utilizing Dijkstra’s algorithm. A critical Comparative Analysis
of Dijkstra’s and Bellman-Ford Algorithms is undertaken in Section 5, laying the groundwork for
informed contrasts in efficiency and adaptability. The paper reaches its denouement in Section 6, where
conclusions are drawn from the synthesized research findings.

2 Computational Complexity

This paper focuses mainly on the use of the Dijkstra’s algorithm and Bellman-Ford when used
to design the routing protocols in MANETs. Dijkstra’s algorithm is efficient in the sparse network
and fast computation without any existing routes, while that of Bellman-Ford has critical robustness
against negative weight cycles, which is very important for reliability in unpredictable MANET
conditions.

The computational complexities of the algorithms are evaluated and optimized toward the
practical effectiveness of MANETs, i.e., high node mobility and resource constraints. This paper,
therefore, brings to light the importance of time complexity over space complexity, given that it
points out the great need for different kinds of efficiency in handling broad-scale problems within
the operational constraints of MANETs.

2.1 Algorithm Complexity-Measure of Magnitude (Worst-Case, Best-Case, and Average-Case
Efficiencies)

This quantifies complexity through the algorithm that multiplies the basic steps in computing with
the volume of input data. It is designed in a way that the number of such steps generally varies with

792 CMES, 2024, vol.141, no.1

input data so that the complexity of a typical situation becomes a pertinent measure. The worst-case
complexity thus defines the sum of the processes required for obtaining very complex computations.
It is more often applied to its approximation of the average case complexity.

Asymptotically tight bounds of complexity functions are expressed in notation. It is also known as
the “average case scenario,” which is difficult to determine. The asymptotic tight limit of an algorithm
for any random data sequence indicates that the algorithm’s execution time cannot be less than or
more than that bound. Fig. 2 presents the upper, lower, and tight limits of the algorithm with running
time f (n). Here, n0 is the crossover point. After any value of n > n0, the behavior of the functions will
not change. That is, for any value of n greater than n0, f (n) will always grow slower than g(n) (big oh),
f (n) always grows faster than g(n) (big omega) or the growth of f (n) will always be wedged between
C1 · g(n) and C2 · g(n) (big theta). C1 and C2 are constants.

Figure 2: Asymptotic notations representing function growth

The first graph graphically explains the relation of two functions: f (n) and c · g(n), with f (n)

eventually settling down below c ·g(n). This illustrates f (n) as being asymptotically upper bounded by
c · g(n), indicating efficient scaling as n increases.

The second graph displays the behavior of f (n) starting above c · g(n) but ultimately leveling
off below this threshold, pointing out performance optimization as the problem size increases. This
demonstrates the algorithm’s ability to improve its efficiency over time.

The third graph will represent f (n) between these two boundaries— c1 ·g(n) and c2 ·g(n). It outlines
f (n) oscillating between the bounds to clarify the oscillations of performance of the algorithm under
different operational conditions and parameters.

These graphs further give an insight not only into the scalability and effectiveness of the algorithm
but also have particular relevance in MANET environments, where network sizes vary significantly.
First, the second overshoot in the second graph indicates how the setup costs are decreasing with the
scaling of the systems, which is especially important for large network applications. Thirdly, it bounds
the fluctuation graph, which reveals that the algorithm is reliable against a number of network densities
and patterns of mobility to give substantial insight into the performance and reliability of deployment
scenarios of MANETs.

3 Complexity Classes

Section 2 presents different methods to assess and gauge the efficiency of an algorithm. However, it
can also determine and classify the evaluated problem type. For example, issues with the same difficulty
level are put together to form complexity classifications. In the literature, there are many different ways
to classify how difficult something is, and a few of them are shown here.

CMES, 2024, vol.141, no.1 793

3.1 Complexity Class P Problems
The problems of complexity class P, abbreviated as “polynomial,” can be solved by deterministic

algorithms in known polynomial time. The algorithm’s time complexity for issues that belong to
complexity class P is O(nk), where k is a constant. The value of k depends on the number of frequent
operations being performed concerning problem size. For linear search k is 1, for matrix addition k is 2,
for matrix multiplication k is 3, etc. Polynomial time cannot be used to address all choice problems. In
reality, as opposed to decidable issues, which may be resolved using an algorithm, some are intractable
and are undecidable problems. In 1936, Alan Turing gave an example of a problem that could not be
solved. It was called the “Halting Problem.”

3.2 Complexity Class NP Problems
NP stands for nondeterministic polynomial. A decision issue of type NP can be addressed using

non-deterministic polynomial algorithms. This type of problem is referred to as a nondeterministic
polynomial problem. A non-deterministic algorithm is just a two-stage technique in its most basic
form. It uses the choice question “I” as an example and then moves on to the next steps. Emphasizing
the order in which they improve inefficiency. The O-notation, �-notation, and �-notation are the most
frequently used notations.

4 Time Complexity Analysis of Routing Protocol

In computer networking, the Shortest Path algorithm is used most of the time. It is also used in
MANET. Thus, several routing protocols use this technique to discover the shortest route between two
points. This method is widely recognized as “Dijkstra’s Shortest Path algorithm.”Employing a starting
node and an ending node in a graph, Dijkstra’s algorithm has been applied to find the Shortest Path
among the nodes [17]. Once the shortest way to the node having a destination has been reached, the
process is claimed to be in its terminating phase. According to Dijkstra, the Energy-Saving Routing
Algorithm for Data (ESRAD) is a new routing mechanism for energy-efficient routing in WSN [18].
A way that takes into consideration energy used by electronics in the nodes and then adds that up
with that used in the data transmission phase, and selects the way that altogether has the least energy
wastage. In that case, it should use the Dijkstra’s algorithm to find the path of the least cost from the
source node to the destination in the network. It has since become one of the shortest-path problems.
For that reason, the Dijkstra algorithm brought a new dawn and became one of the most famous, since
it formed the algorithm applied by modern efficient routing protocols. This section further elaborates
detailed mechanics of this algorithm and its critical role in routing in dynamic network environments,
like MANETs.

4.1 Dijkstra’s Shortest Path Algorithm
Graphs are widely used for expressing distances in data structures. Graphs provide a very great

display to mark out the distances from city to city. Dijkstra, in 1959, came up with a graph theory
method, which is supposed to find the shortest path. Dijkstra came up with a way that is efficient
in seeking the Shortest Path from a given single source on a weighted graph [19–21]. Suppose G is a
weighted graph defined by G = (V, E), anyplace V is the set of all vertices, and E is the set of weighted
edges. A weighted edge is represented as a cost assigned to each edge. The algorithm’s objective in
Shortest Path calculation is to find a path with the minimum cumulative cost incurred to reach point
B from point A. Dijkstra’s algorithm presupposes that all weights within the graph are positive, as
shown in Fig. 3.

794 CMES, 2024, vol.141, no.1

Figure 3: Modifying the distances between nodes in Dijkstra’s algorithm

Below is a breakdown of each individual step involved in Dijkstra’s algorithm:

– Set the distance between the source vertex and all other vertices to zero and set the distance
between all other vertices to infinity.

– Make the previous node the source node for the current node and add the other nodes to the
list of unvisited vertex list. Calculate the estimated distance between the current node and each
of its immediate neighbors’ vertices.

– The value should be updated if the newly computed value is less than the prior value.

– For instance, the present node is denoted by the letter C, and its distance from the source S is
equal to the number. Take into account that N is C’s neighbor and that the weight of the edge
that connects C and N is 3. Therefore, the distance between source and N, via C, would be 8.

– If the computed distance of N from the source is larger than 8, then update the edge (S, N) to
have a distance of 8. Otherwise, do not update it if the estimated distance of N from the source
is already greater than 8.

w(S, N) = 11 w(S, C) + w(C, N) < d(S, N) �⇒ Relax edge(S, N) Update w(S, N) = 8 [22,23].
(1)

w(S, N) = 7 w(S, C) + w(C, N) > w(S, N) �⇒ Don’t update w(S, N) [22–24]. (2)

Algorithm 4.1
1: // V = {v1, v2, v3,..., vn}: Set of vertices
2: // E = {e1, e2, e3,...,en}: Set of weighted edges
3: // S: Source node
4: for each vertex v ∈ V do
5: w[u] ← ∞ �Initially source to destination distance is set to ∞
6: π(v) ← undefined �Parent of current node
7: end for
8: dist[S] ← 0 �Distance of source from itself is 0

(Continued)

CMES, 2024, vol.141, no.1 795

Algorithm 4.1 (continued)
9: Q ← V �Q is set of all vertices in graph

10: while Q 	= NULL do
11: u ← EXTRACT-MIN(Q) �u is the vertex in Q with minimum distance
12: for each neighbor v of u do
13: if w[v] > w[u] + w(u, v) then
14: w[v] ← w[u] + w(u, v) �Relax edge (u, v)
15: π(v) ← u �Update parent of v
16: end if
17: end for
18: end while

The described process of finding the shortest path can be encapsulated in the relaxation step,
a fundamental operation of Dijkstra’s algorithm. For each vertex v adjacent to u, we perform the
following operation:

d(v) = min(d(v), d(u) + w(u, v)) [22,23]. (3)

In the context of our discussion, let d(v) represent the shortest known distance from the source
node to vertex v. Similarly, let w(u, v) denote the weight of the edge between vertices u and v.
Furthermore, the min function is utilized to determine the smaller of two given values. In other words,
the flowchart in Fig. 4 utilizes the min function to determine that the optimal shorter path will be
among the ones obtained by comparing the currently existing distance with the newly calculated one
through an adjacent vertex. This method ensures that d(v) reflects the shortest possible route from the
source, where d(v) represents the distance from the source to vertex v.

4.1.1 Applications of Dijkstra’s Shortest Path Algorithm

This section illustrates how Dijkstra’s Shortest Path algorithm is employed in network routing
protocols on an effective computation of routes. It profiles an adaptation of the authors in [25], which
focuses on the profile of subgraphs to be able to easily and more quickly perform computations in
the case of digraphs with nonnegative length. Normalization algorithm combines with Multi-Criteria
Decision Making (MCDM), optimizing the route distribution. This will be of great help in logistics
and GPS-denied environments, such as subways, to navigate safely but still get the energy efficiencies
required [26].

Finally, this section is the Time-Location Penalty Model (TLPM), which tries to overcome the
issues on routing precision in road networks due to congestion by adapting Dijkstra’s algorithm in a
time-dependent manner but with low memory and resource utilization [27,28].

In order to address the issue of rule requests, Buratti et al. employed Dijkstra’s routing algorithm.
The Received Signal Strength Indicator (RSSI) is used to determine the weights of the edges in the
network. This term considers an 8-node network topology as shown in Fig. 5. According to the
algorithm, each node will be represented by a vertex label with the numbers 1, 2, 3, 4, 5, 6, 7, and
8. As shown in Fig. 5, each edge has a weight associated with it. The network topology shown in
Fig. 5 represents a typical setup in a MANET, highlighting the decentralized and dynamic connections
between nodes. In MANETs, nodes act as both hosts and routers, forwarding packets to other
nodes based on connectivity and proximity. The physical layout depicted here impacts the algorithm’s
performance, particularly in how effectively it can find the shortest path without central coordination.

796 CMES, 2024, vol.141, no.1

Understanding this topology is crucial for deploying MANETs in real-world scenarios like disaster
recovery or military operations, where rapid, reliable communication setup is vital.

Figure 4: Dijkstra’s algorithm flowchart

CMES, 2024, vol.141, no.1 797

Figure 5: Directed graph with edge weights

Functioning of the Algorithm as mentioned in the preceding section, the Dijkstra’s algorithm
operates in a series of iterations. Starting from node 1, kindly refer to Table 1.

Table 1: At Iteration 0

Nodes 1

[Cost, Hops] [0, +∞]
Status Perm

Iteration 0:

At Iteration 1: Nodes 2 and 3 can be reached directly from node 1, therefore, in Table 2.

Since the route from node 1 to node 2 is +6.2, smaller than the route from node 1 to node 3, which
is +6.3, this information is reflected in Table 3.

At Iteration 2: Considering node 2 as a new starting node from node 2, could reach node 3 and
node 5. The results of Iteration 2 are set out in the Table 4.

After simplification, kindly refer to Table 5.

798 CMES, 2024, vol.141, no.1

Table 2: At Iteration 1

Nodes 1 2 3

[Cost, Hops] [0, +∞] [0 + 6.2, 1] [0 + 6.3, 1]
Status Perm Temp Temp

Table 3: At Iteration 1

Nodes 1 2 3

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1]
Status Perm Perm Temp

Table 4: At Iteration 2

Nodes 1 2 3 3 5

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [6.2 + 4.5, 2] [6.2+11.6, 2]
Status Perm Perm Temp Temp Temp

Table 5: At Iteration 2

Nodes 1 2 3 5

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [17.8, 2]
Status Perm Perm Perm Temp

At Iteration 3: Consider node 3. Node 3 is connected to node 4 and node 5 with a cost of 8.3 and
7.6, respectively. Therefore, Table 6 presents updated data.

Table 6: At Iteration 3

Nodes 1 2 3 5 4 5

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [17.8, 2] [6.3 + 8.3, 3] [6.3 + 7.6, 3]
Status Perm Perm Perm Perm Temp Perm

After simplification, refer to Tables 7 and 8.

Table 7: At Iteration 3

Nodes 1 2 3 5 5 5

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [17.8, 2] [14.6, 3] [13.9, 3]
Status Perm Perm Perm Discard Temp Perm

CMES, 2024, vol.141, no.1 799

Table 8: At Iteration 3

Nodes 1 2 3 5 4

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 3] [14.6, 3]
Status Perm Perm Perm Perm Temp

At Iteration 4: Considering node 5, node 6, and node 8 are directly connected, with the cost of 2.6
and 7.2, respectively. Refer to Table 9.

Table 9: Iteration 4

Nodes 1 2 3 5 4 6 8

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [13.9 + 2.6, 5] [13.9 + 7.2, 5]
Status Perm Perm Perm Perm Temp Perm Perm

As node 6 is located a short distance from node 5, therefore, it will be marked as permanent as
shown in Table 10.

Table 10: Iteration 4

Nodes 1 2 3 5 4 6 8

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [16.5, 5] [21.1, 5]
Status Perm Perm Perm Perm Temp Perm Perm

It is now Iteration 5:

Considering node 6, node 7, and node 8 can be reached. After simplification, refer to Table 11.

Table 11: Iteration 5

Nodes 1 2 3 5 4 6 8 7

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [16.5, 5] [21.1, 5] [18.5, 6]
Status Perm Perm Perm Perm Temp Perm Perm Perm

At Iteration 6: Considering node 7, node 8 can be directly reached. It is shown in Table 12.

Table 12: Iteration 5

Nodes 1 2 3 5 4 6 8 7 8

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [16.5, 5] [21.1, 5] [18.5, 6] [18.5 + 7.2, 7]
Status Perm Perm Perm Perm Temp Perm Perm Perm Temp

800 CMES, 2024, vol.141, no.1

As shown in Table 13, the new path towards node 8 from node 7 has a higher cost.

Table 13: Iteration 6

Nodes 1 2 3 5 4 6 8 7

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [16.5, 5] [21.1, 5] [18.5, 6]
Status Perm Perm Perm Perm Temp Perm Perm Perm

At Iteration 6: Considering node 7, node 8 can be directly reached.

At Iteration 7: Node 7 can be reached from node 4. The updated data is presented in Table 14.

Table 14: Iteration 7

Nodes 1 2 3 5 4 6 8 7 7

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [16.5, 5] [21.1, 5] [18.5, 6] [14.6 + 13.3, 4]
Status Perm Perm Perm Perm Temp Perm Perm Perm Temp

The cost of reaching node 7 is higher, therefore, it will not be considered as shown in Table 15.

Table 15: Iteration 7

Nodes 1 2 3 5 4 6 8 7

[Cost, Hops] [0, +∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [16.5, 5] [21.1, 5] [18.5, 6]
Status Perm Perm Perm Perm Temp Perm Perm Perm

At Iteration 8: Therefore, as node 4 is accessible via node 3 only, the updated data is shown in
Table 16.

Table 16: Iteration 8

Nodes 1 2 3 5 4 6 8 7

[Cost, Hops] [0, ∞] [6.2, 1] [6.3, 1] [13.9, 2] [14.6, 3] [16.5, 5] [21.1, 5] [18.5, 6]
Status Perm Perm Perm Perm Perm Perm Perm Perm

Thus, the final Dijkstra’s Shortest Path table would be presented in Table 17.

Table 17: Dijkstra’s Shortest Path first

Node Path Cost

1 via 1 0
2 via 1–2 6.2
3 via 1–3 6.3

(Continued)

CMES, 2024, vol.141, no.1 801

Table 17 (continued)

Node Path Cost

4 via 1–3–4 14.6
5 via 1–3–5 13.9
6 via 1–3–5–6 16.5
7 via 1–3–5–6–7 18.5
8 via 1–3–5–8 21.1

Fig. 6 indicates the comparison between two algorithms concerning the cost efficiency for the
determination of the shortest path in a MANET. The cost can be presented in various metrics,
including time, energy, or data packets lost. The left one (Dijkstra’s) has low costs attached to it: It
is more or less optimized for networks with non-negative weights and finds the shortest paths from
the source vertex to all others fairly well. The right-hand side (Bellman-Ford) might have better costs;
however, it is very important in dealing with graphs with negative weight cycles, hence offering robust
and flexible algorithms in all possible network conditions.

Figure 6: Costs by node with Dijkstra’s algorithm (left) and Bellman-Ford algorithm (right)

4.1.2 Complexity Calculation for Dijkstra’s Algorithm

This section will evaluate the complexity of Dijkstra’s algorithm for finding the Shortest Path. As
explained in Section 3, Dijkstra’s algorithm computes the most efficient route between two vertices. Its
work is based on weighted edges and directed and undirected graphs. The simplistic implementation
approach can use an unsorted array to store the graph’s vertices. Dijkstra’s algorithm searches all
the elements in the array (vertices) to find the closest vertices. Since vertices are stored unsorted, the
time complexity of initial search will be O(n). This will reduce the total time complexity to O(V2), V
corresponds to the number of vertices.

The initial search will have an area complexity of O(V), where V represents the number of vertices.
Dijkstra’s algorithm has the worst-case complexity if every node/vertex has to be visited. The steps by
which Dijkstra’s algorithm will progress are presented below:

802 CMES, 2024, vol.141, no.1

– Begin initializing the vertices array. Each element of the array represents the node of the
graph.

– Mark each vertex as unvisited initially.

– The cost or weight must be assigned to each vertex.

– Assign 0 cost to the root vertex and infinity to the rest of the node.

– Set the current node as the root node.

– To find the neighbors of the current node I, calculate the costs by adding the weights of the
edges linking the current node and neighbor j to the current node’s cost i > j + i.

– Once all adjacent nodes have been explored, transfer the existing node to the set of visited
nodes. Once convergence is reached, there will be no further rechecking.

– The algorithm will stop when all vertices are moved to the visited set.

Dijkstra’s algorithm’s average case time complexity will not be changed; it will remain the same as
the worst case because the vertices array is unsorted, and the cost between nodes is unknown initially.
Similarly, for the best case, the time complexity of Dijkstra’s algorithm will remain the same due to the
above facts. Wang [29] has analyzed the complexity analysis of three different algorithms: Dijkstra’s
algorithm, Bellman-Ford algorithm and Floyd-Warshall algorithm. Analysis shows that Dijkstra’s
algorithm is suitable for spare graphs, an ideal routing scenario.

However, it has a running time of O(|V | log |V +|E||) in its fastest strongly polynomial implemen-
tation employing Fibonacci heaps [30,31]. Although the Bellman-Ford algorithm is ineffective, it is
simple to apply in practice. The Floyd-Warshall algorithm is the most inefficient and time-consuming
solution to problems involving significant points and edges because it creates unnecessary redundancy
in storage space.

4.1.3 Dijkstra’s Algorithm in a Simulated MANET Environment

In this work, the algorithm of Dijkstra works with dynamic and decentralized networks like
MANETs to light it up for efficiency and adaptation, live simulation-free. The paper presents a
theoretical approach to the application of the algorithm in a hypothesized 8-node MANET model
with the key intention of illustrating its ability to accommodate dynamic route changes, which are due
to changes in the network conditions. This theoretical analysis emphasizes the potential of Dijkstra for
computing routes within the constantly varying network topology, as it is very typical for MANETs,
dealing with its computation complexity and operational efficiency. The study reveals insight into
the suitableness of the algorithm for the development of routing protocols within decentralized and
changing networking environments.

4.2 Bellman-Ford Shortest Path Algorithm
The Bellman-Ford algorithm is categorized as a shortest-path finding algorithm in graph theory,

designed to determine the shortest paths from one source vertex to all other vertices in a graph. This
is what gives the Bellman-Ford algorithm an upper hand in some applications over the Dijkstra’s
algorithm, which can only work for graphs that have non-negative numbers assigned to their edges.
The Bellman-Ford algorithm works as follows:

• The process starts with setting the distance from the source vertex to 0, and for all others, it sets
the distance to infinity, meaning the shortest path from this point is unknown and assumed to
be a path of infinite length.

CMES, 2024, vol.141, no.1 803

• It keeps on updating the distance from the source to the vertex iteratively, always checking
whether the use of another vertex v for reaching a certain vertex v could allow reducing the
known distance to v. It will then update the distance and predecessor of v to be reconstructed
later.

• This exact process of relaxation for each edge in the graph is done |V | − 1 times, where |V |
represents the number of vertices in the graph. It therefore guarantees that even in the worst case
where the shortest path passes through all the vertices; repetition ensures that the computation
of the shortest path is correct.

• After |V | − 1 iterations, an extra iteration checks for negative weight cycles. Where there still
exists a possibility that distances can be reduced, that indicates such cycles exist.

The Bellman-Ford algorithm is very useful in networking and routing, where the shortest path or
negative cycle detection is concerned. It deals with negative weights; thus, it finds applications in cases
where Dijkstra’s algorithm may not apply. Even though it comes with high computation costs, with
the time complexity being O(|V ||E|), it is still applied in certain scenarios.

4.2.1 Application of Bellman-Ford Algorithm

• Node 2 is reachable from node 1 with a shortest distance of 6.2.

• The shortest path to node 3 is from node 1 to node 2 to node 3, with a total distance of 14.5.

• For node 4, the path is 1 → 2 → 3 → 4, totaling a distance of 19.0.

• Node 5 is reached via 1 → 2 → 3 → 4 → 5, with a distance of 22.5.

• The path to node 8 is 1 → 2 → 3 → 4 → 5 → 8, totaling 29.7 in distance.

• Nodes 6 and 7 are not reachable from node 1, indicating their distances remain at infinity.

Detailed Path Reconstruction

To reconstruct the path for a specific node, like node 8, trace the predecessors back to the source
node: 1 → 2 → 3 → 4 → 5 → 8.

Thus, the final Shortest Path table would be presented in Table 18.

Table 18: Shortest path table for Bellman-Ford algorithm

Node Path Cost

1 1 0.0
2 1–2 6.2
3 1–2–3 14.5
4 1–2–3–4 19.0
5 1–2–3–4–5 22.5
8 1–2–3–4–5–8 29.7

Nodes 6 and 7 are not included as they are not reachable from node 1 with the given topology and
edge weights. This indicates that under the current network configuration, there are no paths from
node 1 to nodes 6 and 7 that the Bellman-Ford algorithm could identify, reflecting the limitations of
connectivity based on the specified graph structure and weights.

804 CMES, 2024, vol.141, no.1

5 Comparative Analysis of Dijkstra’s and Bellman-Ford Algorithms

The analysis of Bellman-Ford and Dijkstra’s algorithms in Mobile Ad Hoc Networks (MANETs)
highlights their distinct operational characteristics and suitability for different network scenarios.

5.1 Algorithmic Methodology and Performance
The Dijkstra’s algorithm is optimal for sparse graphs, often found in MANETs, where it achieves

a complexity of O(|V | log(|V | + |E|)) through the use of a Fibonacci heap.

5.2 Assessing Shortest Path Algorithms in MANETs
The paper critically compares the Dijkstra’s algorithm and the Bellman-Ford algorithm regarding

the MANETs. It is written that Dijkstra’s algorithm was found to be the fastest and most cost-effective
of the two. This was especially so in less-dense networks, and hence, in general, the best. Additionally,
the supplied Figs. 7 and 8 compare cost efficiency between Dijkstra and Bellman-Ford algorithms on
the network nodes as visualized through a bar chart. This conforms with the fact that the Dijkstra’s
algorithm shows lower costs, while the Bellman-Ford algorithm shows far higher costs. This difference
in cost further arises at nodes 5, 6, 8, and so on. Dijkstra still provides the benefit of soft, additive
optimization of path costs, while Bellman-Ford, along with its higher costs, is at times needed for
networks that need frequent optimization of the paths or that carry out negative cycles to sustain
resilience and adaptability.

Figure 7: Cost trajectories for Dijkstra and Bellman-Ford algorithms across nodes

CMES, 2024, vol.141, no.1 805

Figure 8: Comparative node costs using Dijkstra and Bellman-Ford algorithms

6 Conclusion

In the world of data transmission, it is vital to zero in on the best pathfinding method. Over the
past year, numerous strategies have been devised to address this challenge. Among these, the Dijkstra’s
algorithm stands out as the preferred method for identifying the minimal route connecting a source
to a destination. This document delves into an in-depth analysis of Dijkstra’s algorithm, elucidating
its operational steps and evaluating its complexity. It has been noted that the algorithm’s initial
time complexity stands at O(n) when vertices are unsorted. Upon completion, the algorithm’s total
time complexity reaches O(v2). Nonetheless, employing a Fibonacci heap can significantly enhance
efficiency, reducing the time complexity to O(|V |log(|V | + |E|)).

This paper outlines that Dijkstra’s algorithm is the most efficient and computationally gives the
best path optimization in MANETs. Analysis carried out proves this to outweigh the Bellman-Ford
algorithm, more so on aspects of being cost-effective and practical for routing. Therefore, it is the
best alternative because of its efficiency in the shortest path algorithm for sparse graph structures that
characterize wireless sensor networks. However, such disadvantages are developed under the basis of
simulated MANET environments. The future work involves testing Dijkstra’s algorithm within real
MANETs to measure the algorithm performance against real mobile nodes, and different network
densities could thus give an overall improvement for routing protocols in dynamic networks.

Acknowledgement: The authors extend their appreciation to the Deanship of Scientific Research at
Northern Border University, Arar, Kingdom of Saudi Arabia for funding this research work through
the Project Number “NBU-FFR-2024-2248-03”.

Funding Statement: This research was supported by Northern Border University, Arar, Kingdom of
Saudi Arabia, through the Project Number “NBU-FFR-2024-2248-03”.

Author Contributions: The specific contributions of each author are as follows: The study conception
and design: Ibrahim Alameri, Jitka Komarkova, Tawfik Al-Hadhrami. Data collection: Ibrahim
Alameri, Atef Gharbi, Abdulsamad Ebrahim Yahya. Analysis and interpretation of results: Ibrahim

806 CMES, 2024, vol.141, no.1

Alameri, Jitka Komarkova, Atef Gharbi. Draft manuscript preparation: Ibrahim Alameri, Tawfik Al-
Hadhrami, Abdulsamad Ebrahim Yahya, Atef Gharbi, Jitka Komarkova. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: The corresponding author can provide data supporting the study’s
conclusions upon an adequate request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Ge X, Cheng H, Guizani M, Han T. 5G wireless backhaul networks: challenges and research advances.

IEEE Netw. 2014;28(6):6–11. doi:10.1109/MNET.2014.6963798.
2. Adil M, Song H, Khan MK, Farouk A, Jin Z. 5G/6G-enabled metaverse technologies: taxonomy, applica-

tions, and open security challenges with future research directions. J Netw Comput Appl. 2024;223:103828.
doi:10.1016/j.jnca.2024.103828.

3. Alameri I, Komarkova J, Al-Hadhrami T, Lotfi A. Systematic review on modification to the ad-hoc on-
demand distance vector routing discovery mechanics. PeerJ Comput Sci. 2022;8(1):e1079. doi:10.7717/peer-
j-cs.1079.

4. Alameri IA, Komarkova J. Comparative study and analysis of wireless mobile adhoc networks routing
protocols. In: Proceedings of the International Masaryk Conference for Ph.D. Students and Young
Researchers. Hradec Králové, Czech Republic: Magnanimitas; 2019. Available from: https://dk.upce.cz/
handle/10195/75130 [Accessed 2024].

5. Edwin Singh C, Celestin Vigila SM. Fuzzy based intrusion detection system in manet. Meas Sens.
2023;26:100578. doi:10.1016/j.measen.2022.100578.

6. Al-Hubaishi M, Ceken C, Al-Shaikhli A. A novel energy-aware routing mechanism for SDN-enabled wsan.
Int J Commun Syst. 2019;32(17):e3724. doi:10.1002/dac.3724.

7. Bing H, Lai L. Improvement and application of Dijkstra algorithms. Acad J Comp Inf Sci. 2022;5(5):97–
102. doi:10.25236/AJCIS.2022.050513.

8. Alameri IA, Komarkova J, Al-Hadhrami T. A survey of mobile ad-hoc networks based on fuzzy logic.
In: Advances on Intelligent Computing and Data Science, Cham: Springer; 2023. vol. 179, p. 290–9.
doi:10.1007/978-3-031-36258-3_25.

9. Razzaq M, Shin S. Fuzzy-logic Dijkstra-based energy-efficient algorithm for data transmission in wsns.
Sensors. 2019;19(5):1040. doi:10.3390/s19051040.

10. Liu Q, Liu M. A multi-hop routing mechanism based on local competitive and weighted Dijkstra algorithm
for wireless sensor networks. J Phys: Conf Ser. 2020;1621:012074. doi:10.1088/1742-6596/1621/1/012074.

11. Aziz A, Tasfia S, Akhtaruzzaman M. A comparative analysis among three different shortest path-finding
algorithms. In: 2022 3rd International Conference for Emerging Technology (INCET); 2022; Belgaum,
India. doi:10.1109/INCET54531.2022.9824074.

12. Sampoornam KP, Darshini GR. Performance analysis of bellman Ford, AODV, DSR, ZRP and
DYMO routing protocol in manet using exata. In: 2019 International Conference on Advances in
Computing and Communication Engineering (ICACCE); 2019; Sathyamangalam, India. doi:10.1109/
ICACCE46606.2019.9079958.

13. AbuSalim SW, Ibrahim R, Saringat MZ, Jamel S, Wahab JA. Comparative analysis between Dijkstra and
Bellman-Ford algorithms in shortest path optimization. IOP Conf Ser: Mater Sci Eng. 2020;917:012077.
doi:10.1088/1757-899X/917/1/012077.

https://doi.org/10.1109/MNET.2014.6963798
https://doi.org/10.1016/j.jnca.2024.103828
https://doi.org/10.7717/peerj-cs.1079
https://dk.upce.cz/handle/10195/75130
https://doi.org/10.1016/j.measen.2022.100578
https://doi.org/10.1002/dac.3724
https://doi.org/10.25236/AJCIS.2022.050513
https://doi.org/10.1007/978-3-031-36258-3_25
https://doi.org/10.3390/s19051040
https://doi.org/10.1088/1742-6596/1621/1/012074
https://doi.org/10.1109/INCET54531.2022.9824074
https://doi.org/10.1109/ICACCE46606.2019.9079958
https://doi.org/10.1088/1757-899X/917/1/012077

CMES, 2024, vol.141, no.1 807

14. Rachmawati D, Gustin L. Analysis of Dijkstra’s algorithm and a∗ algorithm in shortest path problem. J
Phys: Conf Ser. 2020;1566:012061. doi:10.1088/1742-6596/1566/1/012061.

15. Liu JB, Bao Y, Zheng W-T. Analyses of some structural properties on a class of hierarchical scale-free
networks. Fractals. 2022;30(7):2250136. doi:10.1142/S0218348X22501365.

16. Liu JB, Zhang X, Cao J, Chen L. Mean first-passage time and robustness of complex cellular mobile
communication network. IEEE Trans Netw Sci Eng. 2024;11(3):3066–76. doi:10.1109/TNSE.2024.3358369.

17. Dijkstra EW. A note on two problems in connexion with graphs. In: Edsger Wybe Dijkstra: his life, work,
and legacy. 1st edition. New York, NY, USA: Association for Computing Machinery; 2022. p. 287–90.
doi:10.1145/3544585.3544600.

18. Yas RM, Hashem SH. A survey on enhancing wire/wireless routing protocol using machine learning
algorithms. IOP Conf Ser: Mater Sci Eng. 2020;870:012037. doi:10.1088/1757-899X/870/1/012037.

19. El Gayyar KS, Saleh AI, Labib LM. A new fog-based routing strategy (FBRS) for vehicular ad-hoc
networks. Peer Peer Netw Appl. 2022;15(1):1–22. doi:10.1007/s12083-021-01197-0.

20. Shachar A. Introduction to algogens. arXiv preprint arXiv:2403.01426. 2024.
21. Mehta DP, Sahni S. Handbook of data structures and applications. New York, USA: Chapman and

Hall/CRC; 2004. doi:10.1201/9781420035179 [Accessed 2024].
22. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. USA: MIT Press; 2022.

https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leiserson.Stein.Rivest.Cormen.MIT.Press.
9780262046305.EBooksWorld.ir.pdf.

23. Dinitz Y, Itzhak R. Hybrid Bellman–Ford–Dijkstra algorithm. J Discrete Algorithms. 2017;42(4):35–44.
doi:10.1016/j.jda.2017.01.001.

24. JinJing Z, Pang L, Kuang X, Jin R. Balancing the qos and security in Dijkstra algorithm by sdn technology.
In: Zhang F, Zhai J, Snir M, Jin H, Kasahara H, Valero M, editors. Network and parallel computing. Cham:
Springer International Publishing; 2018. vol. 11276, p. 126–131. doi:10.1007/978-3-030-05677-3_11.

25. Akram M, Habib A, Alcantud JCR. An optimization study based on Dijkstra algorithm for
a network with trapezoidal picture fuzzy numbers. Neur Comput Appl. 2021;33(4):1329–42.
doi:10.1007/s00521-020-05034-y.

26. Rosita YD, Rosyida EE, Rudiyanto MA. Implementation of Dijkstra algorithm and multi-
criteria decision-making for optimal route distribution. Procedia Comput Sci. 2019;161(1):378–85.
doi:10.1016/j.procs.2019.11.136.

27. Mirzaeinia A, Shahmoradi J, Roghanchi P, Hassanalian M. Autonomous routing and power management
of drones in GPS-denied environments through Dijkstra algorithm. In: AIAA Propulsion and Energy 2019
Forum; 2019; Indianapolis IN, USA. doi:10.2514/6.2019-4462.

28. Van den Eynde S, Audenaert JVP, Derudder B, Colle D, Pickavet M. A low-memory alternative for time-
dependent Dijkstra. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC); 2020; Rhodes, Greece. doi:10.1109/ITSC45102.2020.9294640.

29. Wang XZ. The comparison of three algorithms in shortest path issue. J Phys: Conf Ser. 2018;1087:022011.
doi:10.1088/1742-6596/1087/2/022011.

30. Fredman ML, Tarjan RE. Fibonacci heaps and their uses in improved network optimization algorithms.
J ACM. 1987;34(3):596–615. doi:10.1145/28869.28874.

31. Marcucci T, Umenberger J, Parrilo P, Tedrake R. Shortest paths in graphs of convex sets. SIAM J Optim.
2024;34(1):507–32. doi:10.1137/22M1523790.

https://doi.org/10.1088/1742-6596/1566/1/012061
https://doi.org/10.1142/S0218348X22501365
https://doi.org/10.1109/TNSE.2024.3358369
https://doi.org/10.1145/3544585.3544600
https://doi.org/10.1007/s12083-021-01197-0
https://doi.org/10.1201/9781420035179
https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leiserson.Stein.Rivest.Cormen.MIT.Press.9780262046305.EBooksWorld.ir.pdf
https://doi.org/10.1016/j.jda.2017.01.001
https://doi.org/10.1007/978-3-030-05677-3_11
https://doi.org/10.1007/s00521-020-05034-y
https://doi.org/10.1016/j.procs.2019.11.136
https://doi.org/10.2514/6.2019-4462
https://doi.org/10.1109/ITSC45102.2020.9294640
https://doi.org/10.1088/1742-6596/1087/2/022011
https://doi.org/10.1145/28869.28874
https://doi.org/10.1137/22M1523790

	Optimizing Connections: Applied Shortest Path Algorithms for MANETs
	1 Introduction
	2 Computational Complexity
	3 Complexity Classes
	4 Time Complexity Analysis of Routing Protocol
	5 Comparative Analysis of Dijkstra's and Bellman-Ford Algorithms
	6 Conclusion
	References

