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ABSTRACT

In this study, we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov
(EFK) problem. The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson
scheme. Following temporal discretization, the generalized finite difference method (GFDM) with supplementary
nodes is utilized to address the nonlinear boundary value problems at each time node. These supplementary nodes
are distributed along the boundary to match the number of boundary nodes. By incorporating supplementary
nodes, the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary
conditions of the EFK equation. To demonstrate the efficacy of our approach, we present three numerical examples
showcasing its performance in solving this nonlinear problem.
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1 Introduction

The extended Fisher-Kolmogorov (EFK) nonlinear equation has widely physical applications
including traveling waves in reaction-diffusion systems [1] and propagation of domain walls in liquid
crystals [2]. The two-dimensional (2D) EFK equation with a bounded domain Ω ∈ R2 with the
boundary Γ is considered as follows:

∂u (x, t)
∂t

+γ Δ2u (x, t) − Δu (x, t) + u3 (x, t) − u (x, t) = G (x, t), x = (x, y) ∈ Ω, t ≥ 0. (1)

Two groups of boundary conditions in this problem are implemented as follows:

u (x, t) = g1 (x, t),
∂u (x, t)

∂n
= g2 (x, t), x ∈ Γ,, t ≥ 0, (2)

or

u (x, t) = g3 (x, t), �u (x, t) = g4 (x,t), x ∈ Γ, t ≥ 0. (3)
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The corresponding initial condition is

u (x, 0) = u0 (x), x ∈ Ω, (4)

in which γ denotes a positive constant, Δ signifies Laplace operator, u0, gj (j = 1, 2, 3, 4), and G are all
known functions. Here, Ω ∈ R2 represents a geometric bounded domain, and Γ signifies its boundary.

Various numerical approaches have been utilized for simulating the EFK equation, including the
finite difference method (FDM) [3–6], the boundary integral equation (BIE) method [7,8], the finite
element method (FEM) [9], and the meshless method [10–12]. Compared to traditional mesh-based
methods, the meshless method has been regarded as a competitive technique for numerical analysis
in science and engineering applications [13–16]. The method discretizes the problem domain using
nodes rather than generating an explicit mesh. These nodes can be irregularly distributed, allowing for
greater flexibility and adaptability in handling complex geometries and dynamically changing domains
[17–21]. Many efforts for designing and developing highly accurate meshless approaches have been
implemented [22–26]. Recently, several meshless methods have been proposed and developed. These
methods offer the advantage of generating sparse matrices, making them particularly suitable for
large-scale numerical simulations [27]. These methods include the generalized finite difference method
(GFDM) [28–32], the localized method of fundamental solutions (LMFS) [33–35], and the localized
Chebyshev collocation method (LCCM) [36], though they are not limited to these methods.

This work focuses on extended applications of the GFDM. Lizska and Orkisz [37,38] pioneered
the development of the GFDM, where they approximated the partial derivatives of functions in gov-
erning equations. The implementation of GFDM involves the integration of Taylor series expansions
with moving-least squares (MLS) approximations, thus effectively expressing these derivatives. Due to
its exceptional accuracy and efficiency, numerous researchers have employed the GFDM in numerical
simulations of various physical problems, which involve the thin plate bending problems [39], the
fracture mechanics analysis [40], the nonlinear water waves [41], the nonlinear equal-width equation
[42], the transient heat conduction analysis [43], and the anomalous diffusion on surfaces [44].

In this study, we utilize the meshless GFDM to investigate the 2D nonlinear EFK problems. The
Crank-Nicolson scheme is employed to discretize the temporal derivative in the EFK equation. The
GFDM with Newton iterative method is subsequently employed to address these nonlinear boundary
value problems resulting from the temporal discretization. In this implementation, an equal number
of supplementary nodes as boundary nodes are imposed on the geometric domain boundary. These
supplementary nodes serve the purpose of ensuring a well-determined nonlinear system of equations.
Unlike the method in [45], which places supplementary nodes outside the boundary, the primary
contribution of the approach developed in this work is the direct placement of supplementary nodes
on the boundary. This treatment has the advantage of eliminating the need to manually set the
distance parameter between the supplementary nodes and the boundary in the original approach,
thereby enhancing the stability of the developed method. The distance parameter is influenced by
the size of the geometric domain and the density of the collocation nodes. To validate the efficiency
of our proposed approach, several numerical examples with various initial-boundary conditions and
complicated computational domains are presented.
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2 The Discretization Process of the Nonlinear EFK Equation

The detailed description of the discretization process for both the temporal and spatial domains
of the nonlinear EFK equation is provided in this section. This involves the application of the Crank-
Nicolson scheme to discretize the temporal domain to generate a system of nonlinear boundary value
problems, followed by the utilization of the GFDM for solving the system.

2.1 The Crank-Nicolson Scheme
The n + 1 time nodes {t1 = 0, t2, · · · , tn = T} are employed to divide the computational time

interval [0, T ] into n time intervals. Through employing the Crank-Nicolson (CN) scheme, the EFK
Eq. (1) is recast as

u (x, ti+1) − u (x, ti)

�t
= 1

2

[−γ�2u (x, ti+1) + �u (x, i+1) − u3 (x, ti+1) + u (x, ti+1) + G (x, ti+1)

−γ�2u (x, ti) + �u (x, ti) − u3 (x, ti) + u (x, ti) + G (x, ti)
]

, i = 1, 2, . . . , n − 1,
(5)

where Δt = ti + 1 − ti is the time step size. By rearranging terms, Eq. (5) is simplified as

γ�2u (x, ti+1)−�u (x, ti+1) + u3 (x, ti+1)+
(

2
�t

− 1
)

u (x, ti+1) = �(x, ti, ti+1), i = 1, 2, . . . , n−1, (6)

where

�(x, ti, ti+1) = −γ�2u (x, ti)+�u (x, ti)−u3 (x, ti)+
(

2
�t

+ 1
)

u (x, ti)+G (x, ti+1)+G (x, ti) . (7)

Following the temporal discretization process, the EFK equation is transformed into the subse-
quent nonlinear stationary problem at each time node ti+1.

γΔ2u (x) − Δu (x) + u3 (x) +
(

2
�t

− 1
)

u (x) = Φ (x), (8)

with two groups of boundary conditions

u (x) = g1 (x),
∂u (x)

∂n
= g2 (x), (9)

or

u (x) = g3 (x), �u (x) = g4 (x). (10)

where gj (x) = gj (x, ti+1) (j = 1, 2, 3, 4), u (x) = u (x, ti+1), and �(x) = �(x, ti, ti+1).

2.2 The GFDM with Supplementary Nodes
Next, the solutions of Eq. (8) with different group of boundary conditions are obtained by

employing the GFDM with supplementary nodes. We first distribute some collocation nodes in
the geometric domain. As illustrated in Fig. 1, collocation nodes include three different types:
supplementary nodes, boundary nodes, and interior nodes. It is crucial to highlight that the quantity
of supplementary nodes along the geometric boundary corresponds to that of boundary nodes. The
purpose of introducing supplementary nodes will be elaborated as follows. For the previous GFDM
presented in [45], original supplementary nodes were placed outside the boundary as shown in Fig. 1.
We need to manually set the distance parameter between the supplementary nodes and the boundary.
The choice of this distance parameter affects the accuracy of the GFDM. In the present GFDM,
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the supplementary nodes are directly distributed on the boundary (namely the midpoint between two
adjacent boundary collocation nodes). This treatment has the advantage of eliminating the setting of
the distance parameter between the supplementary nodes and the boundary in the traditional GFDM,
thereby enhancing the stability of the developed method.

Figure 1: The collocation nodes within the geometric domain, including a local star centered on node x0

Some definitions related with the GFDM are also given to establish the system of equations. A
set named as a star is formed for each interior or boundary node x0 = (x0, y0) by selecting x0 and its
m nearest nodes xj = (

xj, yj

)
(j = 1, 2, · · · , m) in all collocation nodes. There is no requirement to

establish the star for supplementary nodes. The m nearest nodes centered on node x0 in the local star
are referred to as supporting nodes.

For the physical quantities u
(
xj

)
at node xj, one can expand them as the following Taylor series

at x0 in each star:

u
(
xj

) =
∞∑

l=0

1
l!

(
λ1

j

∂

∂x
+ λ2

j

∂

∂y

)l

u (x0), j = 1, 2, . . . , m. (11)

where λ1
j = xj − x0, and λ2

j = yj − y0. Based on the above Taylor series, a residual function �(u) for
fourth-order Taylor series expansion is constructed as

� (u) =
m∑

j=1

{[
4∑

l=0

1
l!

(
λ1

j

∂

∂x
+ λ2

j

∂

∂y

)l

u (x0) − u
(
xj

)]
ςj

}2

, (12)

with the weighting function ςj as

ςj = e−(rj )
2 − e−(rmax)2

1 − e−(rmax)2
, j = 1, 2, · · · , m, (13)

where rj = ∣∣xj − x0

∣∣, and rmax = max
1≤j≤m

(
rj

)
. Some optional weighting functions are available as referenced

in [43].
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By involving all partial derivatives in Eq. (12), a vector P is formed as

P =
[
∂u (x0)

∂x
,
∂u (x0)

∂y
,
∂2u (x0)

∂x2
,
∂2u (x0)

∂y2
,
∂2u (x0)

∂x∂y
. . . ,

∂4u (x0)

∂x∂y3

]T

. (14)

Based on
∂� (u)

∂ {P} = 0, a corresponding linear system of equations with coefficients of elements in

vector P is derived as

AP = BU , (15)

in which U = [u (x0), u (x1), . . . , u (xm)]T , A and B are both matrices related with λ1
j , λ2

j , and ςj.
Interested readers can be referred to [46] for the explicit expressions of matrix A and matrix B. As
a result, the partial derivative vector P are derived as linear combinations of u

(
xj

)
(j = 0, 1, · · · , m)

by rewriting Eq. (15) as

P = A−1BU . (16)

After the above implementation, we can obtain the similar form of Eq. (16) for each colloca-
tion node.

Substituting the relevant partial derivatives of Eqs. (16) into (8), a system of the nonlinear equation
at interior node x0 is derived as

γΔ2u (x0)−Δu (x0)+ u3 (x0)+
(

2
�t

− 1
)

u (x0) = m0u (x0)+
m∑

j=1

mju
(
xj

)+ u3 (x0)+
(

2
�t

− 1
)

u (x0),

(17)

in which the coefficients mi (i = 0, 1, · · · , m) can be determined based on Eq. (16). The above process is
also employed for the partial derivatives in boundary conditions (9) or (10) on the geometric boundary,
a nonlinear algebraic equation system is finally derived. Here, the coefficient matrix of this nonlinear
system is (N1 + 2N2) × (N1 + 2N2) dimension (N1 and N2 denote interior node number and boundary
node number, respectively). N1 + 2N2 is also the number of unknown quantities u at all collocation
nodes in the nonlinear system. We utilize the “fsolve” solver in MATLAB to solve this system during
the implementation. The “fsolve” solver can be regarded as a variant of the Newton-Raphson method.
The details of the “fsolve” solver can be found in the URL: https://www.mathworks.com/help/optim/
ug/fsolve.html (accessed on 20 January 2024).

Recently, the GFDM based on Taylor series expansions of arbitrary orders was been presented
[47], which is slightly more complex to implement numerically. Using higher-order Taylor series
expansions can improve the accuracy of the GFDM, but it will also reduce computational efficiency.

3 Numerical Experiments

The proposed method is utilized to simulate three numerical cases in this section. To access the
precision of this method, two types of errors are calculated by

https://www.mathworks.com/help/optim/ug/fsolve.html
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Ge =
(

N∑
k=1

(
ũk − uk

)2
/

N∑
k=1

(uk)
2

)1/2

, and Me = max
1≤k≤N

{∣∣∣∣ ũk − uk

uk

∣∣∣∣
}

, (18)

in which Ge represents the global error, Me signifies the maximum relative error, uk and ũk respectively
represent the analytical and numerical results, N signifies the collocation node number. The conver-
gence rate (CA) in space direction is calculated by the formula as

CA = − ln (E2/E1)

ln
(√

N2/
√

N1

) , (19)

in which Ni (i = 1, 2) are the number of two different distribution of collocation nodes, and
Ei (i = 1, 2) = Ge or Me represent the corresponding errors of Ni (i = 1, 2).

A reference formulation was provided for setting the supporting node number in the local star
[47]. Based on this formula, choosing the supporting node number within a relatively large range has
minimal impact on the numerical results of the algorithm. Thus, the supporting node number m = 50
is applied in a star unless otherwise specified. For all numerical examples, we start by using Hypermesh
software to generate the mesh for regions and boundaries. Subsequently, we use only the coordinates
of the mesh nodes as collocation nodes for the GFDM.

3.1 Case 1: A Circle Domain
In this case, EFK equation in a circle domain with its center (0, 0) and radius R = 0.5 is

considered. The boundary conditions are selected as

u (x, y, t) = ex+y sin (at), �u (x, y, t) = 2ex+y sin (at), (20)

and the initial condition is

u (x, y, 0) = 0, (21)

in which a > 0 is a constant. The function G is

G (x, y, t) = [a cos (at) + (4γ − 3) sin (at)] ex+y + [sin (at) ex+y]3 . (22)

The corresponding analytical solution is derived by boundary conditions and source function.
The constants are set to be γ = 2 and a = 0.1, respectively. The computational time interval is [0, 6] s.

In Fig. 2, 139 collocation nodes are distributed throughout the computational domain, with a time
step size Δt = 0.03 s chosen for the simulation process. Fig. 3 exhibits the variation curves for two types
of the errors of u. Notably, the maximum relative error Me and global error Ge remain relatively stable
with time. Fig. 4 displays the relative errors at final time are obtained by the presented approach with
collocation nodes number N = 96, 112, 139 in the circle domain. It is noteworthy that two kinds of
errors efficiently decline as collocation nodes number N increasing in Fig. 4.

3.2 Case 2: A Gear Model
The EFK equation is simulated in a gear model, and its corresponding dimension is exhibited in

Fig. 5a. The boundary conditions are utilized in this case as

u (x, y, t) = e−t cos (x) cos (y) + b, �u (x, y, t) = −2e−t cos (x) cos (y), (23)

and the initial condition is

u (x, y, 0) = cos (x) cos (y) + b. (24)
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Figure 2: 139 collocation nodes distributed in a circle domain

Figure 3: Two types of the errors of u

The source function G is denoted as

G (x, y, t) = 4γ e−t cos (x) cos (y) + (
e−t cos (x) cos (y) + b

)3 − b (25)

The function u (x, y, t) = e−t cos (x) cos (y)+ b is then determined as the analytical solution. The
parameters are set to γ = 2, b = 3. The time span is [0, 3] s in the process of numerical simulation.
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Figure 4: The relative errors of u at collocation nodes number (a) N = 96, (b) N = 112, (c) N = 139

Figure 5: The gear domain (a) and the distribution of 1662 collocation nodes (b)

In Fig. 5b, 1662 collocation nodes are placed within the geometric domain. In this case, the
time step size is designated as Δt = 0.02 s. Fig. 6 describes two kinds of errors curves of u with
time. Significantly, the maximum relative error and global error are respectively less than 8.0E-04 and
2.5E-04, respectively. Fig. 7 provides the relative errors of physical quantity u with time t = 1 s, 2 s, 3 s
in the gear domain. It is evident from Fig. 7 that the numerical errors highlight the outstanding
performance of this method in simulating the EFK equation.
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Figure 6: Two types of the errors of u

Figure 7: Relative errors of u in the geometric domain for three different time (a) t = 1, (b) t = 2,
(c) t = 3

Next, we analyze the spatial convergence rate of the proposed method with the size of time step
Δt = 0.03, which is determined by utilizing Eq. (19). Table 1 displays the convergence rate of the max
relative error (Me) and the global error (Ge) obtained by the present approach. It is demonstrated that
the proposed numerical approach exhibits good performance of convergence.

Table 1: The rate of convergence of the GFDM in space direction

Collocation node number N Ge Rate Me Rate

150 7.23E-04 — 4.27E-03 —
388 1.10E-04 3.96 7.99E-04 3.53
732 3.00E-05 4.09 2.70E-04 3.42
1662 1.37E-05 1.91 6.02E-05 3.66
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3.3 Case 3: A Sawtooth Domain
The sawtooth model is considered as a computational domain to simulate the EFK equation. The

dimension of the sawtooth is shown in Fig. 8a. The boundary conditions are employed in this case as

u (x, y, t) = esin(t) cos (x + y) + c,
∂u (x, y, t)

∂n
= −esin(t) sin (x + y) (n1 + n2), (26)

and the initial condition is utilized as

u (x, y, 0) = cos (x + y) + c, (27)

where n = (n1, n2). The source function G is denoted as

G (x, y, t) = (cos (t) + 4γ + 1) esin(t) cos (x + y) + (
esin(t) cos (x + y) + c

)3 − c (28)

The positive constants in the EFK equation are γ = 2, c = 1.

As shown in Fig. 8b, 398 collection nodes distribution are displayed. Fig. 9 plots the relative errors
of u in this sawtooth model at time t = 15 s with three different time step size Δt = 0.75 s, 0.5 s, 0.3 s. We
can distinctly find that, as gradually reducing �t, the relative errors of u also decrease. This indicates
the good convergence of the present approach.

Figure 8: The sawtooth domain (a) and 398 collocation nodes (b)
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Figure 9: Relative errors of u with (a) Δt = 0.75, (b) Δt = 0.5, (c) Δt = 0.3

4 Conclusions

This study introduces a numerical approach that integrates the GFDM and the Crank-Nicolson
scheme for simulating the nonlinear EFK equations under various initial-boundary conditions and
complex computational domains. The Crank-Nicolson scheme is employed for discretizing the first-
order time derivative in the governing equation. The GFDM that imposes supplementary nodes on the
geometric boundary is applied to address the nonlinear boundary value problems after the temporal
discretization. The incorporation of supplementary nodes facilitates the efficient establishment of the
nonlinear system of equations. The numerical results obtained in three numerical simulations showcase
the method’s robust accuracy and convergence when applied to nonlinear EFK equations.
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