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1Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, 07058, Turkey
2Department of Mathematics, Faculty of Basic Science, Gebze Technical University, Kocaeli, 41400, Turkey
3Department of Mathematics, Faculty of Science, Bartın University, Bartın, 74100, Turkey
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ABSTRACT

In this study, a numerical method based on the Pell-Lucas polynomials (PLPs) is developed to solve the fractional
order HIV/AIDS epidemic model with a treatment compartment. The HIV/AIDS mathematical model with a
treatment compartment is divided into five classes, namely, susceptible patients (S), HIV-positive individuals
(I), individuals with full-blown AIDS but not receiving ARV treatment (A), individuals being treated (T), and
individuals who have changed their sexual habits sufficiently (R). According to the method, by utilizing the
PLPs and the collocation points, we convert the fractional order HIV/AIDS epidemic model with a treatment
compartment into a nonlinear system of the algebraic equations. Also, the error analysis is presented for the Pell-
Lucas approximation method. The aim of this study is to observe the behavior of five populations after 200 days
when drug treatment is applied to HIV-infectious and full-blown AIDS people. To demonstrate the usefulness of
this method, the applications are made on the numerical example with the help of MATLAB. In addition, four
cases of the fractional order derivative (p = 1, p = 0.95, p = 0.9, p = 0.85) are examined in the range [0, 200].
Owing to applications, we figured out that the outcomes have quite decent errors. Also, we understand that the
errors decrease when the value of N increases. The figures in this study are created in MATLAB. The outcomes
indicate that the presented method is reasonably sufficient and correct.
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1 Introduction

Fractional differential equations are quite popular among scientists in order to model various stable
physical phenomena. Recently, fractional order derivatives have attracted great attention due to their
numerous applications in nonlinear complex systems arising in fluid mechanics, damping laws, elec-
trical networks, signal processing, diffusion-reaction processes, relaxation processes, electrochemistry,
mathematical biology, physics and various important phenomena in other branches of science and
engineering. Fractional derivatives provide more precise models of real-life problems than integer
order derivatives. Because some systems exhibit memory, history, or non-local effects that may be
difficult to model with the help of integer order derivatives, many natural phenomenon problems
are modeled utilizing fractional calculus. In recent years, different types of powerful techniques such
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as the generalized differential transformation method [1], the Adomian decomposition method [2],
the homotopy analysis method [3], the homotopy analysis transformation method [4], the modified
Laplace transform method [5] and the homotopy perturbation transform method [6,7] have been
introduced to find the approximate solution of the fractional model of this type of differential
equations.

Fractional differential equations are frequently used in mathematical modeling. Mathematical
modeling can provide an understanding of the mechanisms underlying the transmission and spread
of disease, help identify key factors in the disease transmission process, recommend effective control
and preventive measures, and provide an estimate of the severity and potential scale of the epidemic.
Mathematical biology is a multidisciplinary field of study. Mathematical biology is also used as an
important tool in medicine, as well as in differential equations, basic sciences, and many fields of
engineering such as genetic engineering, biomedical engineering, and clinical engineering. Lately,
mathematical biology has been successfully applied to several important fields in medicine including
epidemiology, genetics, drug design and discovery, biofluids, cardiovascular diseases, immunology,
microbiology, neuroscience, oncology, virology, and more. Thus, medical phenomena are better
understood, and practical action paths are found. The improvements in healthcare and quality of life
are achieved because there are important contributions such as early diagnosis, effective medicines, and
control of epidemics. From past to present, many models such as the logistic equation and the Lotka-
Volterra equations based on prey and predator populations [8], HIV (human immunodeficiency virus)
infection model [9–12], SIR model (Susceptible-Infected-Removed) and COVID-19 model [13], etc.,
have been developed in the field of medicine using mathematical biology.

Recently, the studies on mathematical modeling of human immunodeficiency virus (HIV) have
become very popular. HIV, which causes the acquired immunodeficiency syndrome (AIDS), devastates
the human body’s skill to fight infections. This disease is very hazardous and can be mortal if
left untreated. The first AIDS case was detected in 1981 [14]. In 2017, the US Center for Disease
Control and Prevention (CDC) [15] declared that if HIV/AIDS is not treated with antiretroviral
drugs, HIV infection progresses in several phases. According to some official reports, it is observed
that between 2000 and 2016, HIV-related deaths in Africa decreased by one-third thanks to ART
(Antiretroviral Therapy) [16]. There are many methods such as the exponential collocation method
(ECM) [17], the Bessel collocation method (BCM) [18], the differential transform method (DTM)
[19], the optimization method [20], the Galerkin-like method [21], Laplace Adomian decomposition
method (LADM) [22], homotopy perturbation method (HPM) [23], variational iteration method
(VIM) [24] for solving the HIV infection model. In addition, there are many methods such as
homotopy perturbation method, variational iteration method and the Adomian decomposition
method (ADM) [25], the fourth kind Chebyshev wavelet method [26], shifted Legendre collocation
method [27], the homotopy analysis method [28], LADM [29,30], the Legendre wavelet approach
[31], the septic B-spline scheme [32], the fractional approximation method [33] for solving fractional
order HIV models. On the other hand, there are some studies conducted for the HIV/AIDS epidemic
model with antiretroviral therapy (ART). Luo et al. [34] gave the global stability of disease-free
equilibrium and the endemic equilibrium, investigated the long-time stochastic dynamic of the model,
and gave some numerical simulations. Wang et al. [35] presented the optimal control problem and
conducted numerical simulations. Chen et al. [36] developed a type-2 fuzzy logic controller for
antiretroviral therapy of HIV infection and performed simulations for two strategies. Ali et al. [37]
constructed the existence and uniqueness conditions of the HIV/AIDS model by utilizing Schaefer
and Banachtype fixed point theorems. The model’s qualitative analysis investigated, determined the
existence/uniqueness of the solution to the HIV/AIDS model [38], established the stability results
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for the system by incorporating the Ulam-Hyers method, and applied Newton’s polynomial and the
Toufik-Atangana numerical method.

Spectral methods are one of the common methods used for solving mathematical models because
they are extremely sensitive. Inasmuch as it uses linear combinations of the orthogonal polynomials
as basis functions, these methods lead to accurate approximate solutions [39,40]. Basically, three
types of these methods can be identified. These are Tau [41], collocation [42,43] and Galerkin [44]
and these are based on orthogonal systems such as Bernstein polynomials, Bessel polynomials,
Chebyshev polynomials, Hermite polynomials, Legendre polynomials, Laguerre polynomials, Pell-
Lucas polynomials, etc. Compared to other approximation methods, the presented method requires
fewer calculations. With the presented method, an approximate solution can be achieved with small
N values selected for problems that do not have an exact solution. However, in some methods in the
literature, more iterations are required to obtain approximate solutions for systems of the nonlinear
equation or even nonlinear equations [45].

On the other hand, there are many methods based on the Pell-Lucas polynomials (PLPs) on the
solutions of Fredholm-type delay integro-differential equations [46], functional differential equations
[47], population models [8], Fredholm-Volterra integro-differential equations [48], parabolic-type
partial integro-differential equations [49], nonlinear Lane-Emden pantograph differential equations
[50] and an SIR model on the spread of the novel coronavirus (nCoV-2019) pandemic [13] and very
effective results have been obtained from these methods. However, there is no method based on the
Pell-Lucas polynomial solutions of the fractional order HIV/AIDS epidemic model with a treatment
compartment (FHEMTC) in the literature. This reveals the importance and novelty of this study. For
this reason, this study is also important as it is a new application of the method by developing it for
fractional problems. In this paper, we consider the following FHEMTC [14,15]:
CD(p)

t S(t) = � − βS(t)I(t) − μ1S(t) − dS(t)
CD(p)

t I(t) = βS(t)I(t) + α1T(t) − dI(t) − k1I(t) − k2I(t)
CD(p)

t A(t) = k1I(t) − (δ1 + d)A(t) + α2T(t)
CD(p)

t T(t) = k2I(t) − α1T(t) − (d + δ2 + α2)T(t)
CD(p)

t R(t) = μ1S(t) − dR(t)

S(0) = S0, I(0) = I0, A(0) = A0, T(0) = T0, R(0) = R0.

(1)

Representations of parameters and variables in (1) are given in Table 1.

Table 1: Representations of the parameters and the variables in model (1)

Parameter/
Variable

Explanation

S(t) The number of susceptible patients
I(t) The number of HIV-positive individuals who are infectious (i.e., who are not

receiving antiretroviral ARV treatment or for whom the treatment is not effective)
A(t) The number of individuals with full-blown AIDS who are not receiving ARV

treatment or for whom the treatment is not effective

(Continued)
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Table 1 (continued)

Parameter/
Variable

Explanation

T(t) The total number of individuals being treated with ARV and for whom the treatment
is effective

R(t) The number of individuals who have changed their sexual habits sufficiently so that
they are immune to HIV infection by sexual contact

P(t) Total population and P = S(t) + I(t) + A(t) + T(t) + R(t)
� The recruitment rate of susceptible people into the population
β The contact rate between the susceptible and the infectious people
μ1 The rate at which susceptible individuals change their sexual habits per unit time
d the natural death rate
α1 The rate at which treated individuals leave compartment T(t) and return to the

infectious compartment
k1 The rate at which individuals leave the infectious class and become individuals with

full-blown AIDS
k1 The rate at which individuals with HIV receive treatment
δ1 The disease-induced death rates for individuals in compartments A(t)
δ2 The disease-induced death rates for individuals in compartments I(t)
α2 The rate at which treated individuals leave the treated class and enter the AIDS

compartment A(t)
0 < p ≤ 1 fractional order derivative

In this study, we examine the approximate solutions based on PLPs of (1):

SN(t) = ∑N

j=0 c1,jQj(t),

IN(t) = ∑N

j=0 c2,jQj(t),

AN(t) = ∑N

j=0 c3,jQj(t),

TN(t) = ∑N

j=0 c4,jQj(t),

RN(t) = ∑N

j=0 c5,jQj(t).

(2)

Here, ci,j (i = 1, 2, 3, 4, 5) are the unknown coefficients, N > 0 and Qj(t) are PLPs and these
polynomials are defined by [51,52]

Qj(t) =
�i/2�∑
p=0

2j−2p j
j − p

(
j − p

p

)
tj−2p. (3)

Please see [51,52] to learn more about PLPs.

The flow of this paper is created as follows: In Section 2, the required matrix relations of the
method are presented. In Section 3, the numerical method for FHEMTC is presented. In Section 4, the
error analysis is given. In Section 5, the parameters and initial conditions in the HIV/AIDS epidemic
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model are determined and Pell-Lucas collocation method (PLCM) is applied to the obtained model.
In Section 6, a brief conclusion of the article is presented.

2 Preliminaries and Matrix Relations

In this section, we define the fundamental facts on fractional derivatives and then we express the
terms of FHEMTC (1) in matrix form.

Lemma 2.1. PLPs (3) are written the following matrix form [50]:

QN(t) = FN(t)KN, (4)

where, QN(t) = [
Q0(t) Q1(t) · · · QN(t)

]
, FN(t) = [

1 t t2 · · · tN
]
. When N is even and odd,

we can, respectively, write the matrix KT
N as follows:

KT
N =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 · · · 0
0 21 1

1

(
1

0

)
0 · · · 0

20 2
1

(
1

1

)
0 22 2

2

(
2

0

) · · · 0
...

...
...

. . .
...

20 N
N
2

(N
2
N
2

)
0 22 N

N+2
2

(N+2
2

N−2
2

) · · · 2N N
N

(
N

0

)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and

KT
N =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 · · · 0
0 21 1

1

(
1

0

)
0 · · · 0

20 2
1

(
1

1

)
0 22 2

2

(
2

0

) · · · 0
...

...
...

. . .
...

0 21 N
N+1

2

(N+1
2

N−1
2

)
0 · · · 2N N

N

(
N

0

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Proof. If the vector FN(t) is multiplied by KN from the right side, then (4) is obtained. �
Lemma 2.2. The assumed solution forms (2) can also be written in matrix form as

SN(t) = FN(t)KNC1,N,

IN(t) = FN(t)KNC2,N,

AN(t) = FN(t)KNC3,N,

TN(t) = FN(t)KNC4,N,

RN(t) = FN(t)KNC5,N,

(5)

where, Ck,N = [
ck,0 ck,1 · · · ck,N

]T
(k = 1, 2, 3, 4, 5) and other matrices are as in Lemma 2.1.

Proof. If QN(t) = FN(t)KN is multiplied, separately, by C1,N, C2,N, C3,N, C4,N and C5,N from the right,
we have (5). �

Definition 2.1. Using [53], we describe the fractional derivative of h(t) in the Caputo sense as

CD(p)

t h(t) = Jm−pDmh(t) = 1
�(m − p)

∫ t

0

(t − x)m−p−1h(m)(x)dx,

for m − 1 < p < m, m ∈ N, t > 0, h ∈ Cm
−1 where D = d

dx
. When h(t) equals tη, the Caputo fractional

derivative of h(t) can be written as [54]
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CD(p)

t tη =
⎧⎨
⎩

0, for η ∈ N0 and η < �p�
�(η + 1)

�(η + 1 − p)
tη−p, for η ∈ N0 and η ≥ �p� or η /∈ N0 and η > �p� (6)

Here, if c is constant, then CD(p)

t c = 0.
Lemma 2.3. The matrix forms of the p-th order fractional derivatives of the assumed solution forms

(2) in (1) become

S(p)

N (t) = F(p)

N (t)KNC1,N,

I (p)

N (t) = F(p)

N (t)KNC2,N,

A(p)

N (t) = F(p)

N (t)KNC3,N,

T (p)

N (t) = F(p)

N (t)KNC4,N,

R(p)

N (t) = F(p)

N (t)KNC5,N.

(7)

Here,

F(p)

N (t) =
[

0
�(2)

�(2 − p)
t1−p

�(3)

�(3 − p)
t2−p · · · �(N + 1)

�(N + 1 − p)
tN−p

]
(8)

and other matrices are given in Lemma 2.2.

Proof. The p-th order fractional derivative of FN(t) can be written as in (8) with the help of (6).
Then, the p-th order fractional derivative of the assumed solution form (2) is taken. The proof is
completed by using (8) in the derived terms. �

Lemma 2.4. The nonlinear term in (1) can be expressed the following matrix form:

SN(t)IN(t) = (
FN(t)KNC1,N

) (
FN(t)KNC2,N

)
. (9)

Here, all matrices are as in Lemma 2.2.

Proof. Through Lemma 2.2, we write SN(t) = FN(t)KNC1,N and IN(t) = FN(t)KNC2,N. Conse-
quently, the matrix multiplication of these two terms gives us the proof of Lemma. �

Lemma 2.5. The initial conditions in (1) can be written with matrix relations

LNC1,N = S0,

LNC2,N = I0,

LNC3,N = A0,

LNC4,N = T0,

LNC5,N = R0.

(10)

Here, LN = FN(0)KN. Also, other matrices are given in Lemma 2.2.

Proof. By substituting t → 0 in (5), the proof is completed. Let’s note that we denote the matrix
product FN(0)KN by LN. �

3 Numerical Method

In this part, PLCM is given for the approximate solution of FHEMTC (1) by utilizing collocation
points.



CMES, 2024, vol.141, no.1 287

Theorem 3.1. Supposed that the approximate solutions of the HIV/AIDS epidemic model (1) are
in form (2), then, the following matrix relations are obtained:

F(p)

N (t)KNC1,N = � − β
(
FN(t)KNC1,NFN(t)KNC2,N

) − μ1FN(t)KNC1,N − dFN(t)KNC1,N

F(p)

N (t)KNC2,N = β
(
FN(t)KNC1,NFN(t)KNC2,N

) + α1FN(t)KNC4,N − dFN(t)KNC2,N − k1FN(t)KNC2,N

−k2FN(t)KNC2,N

F(p)

N (t)KNC3,N = k1FN(t)KNC2,N − (δ1 + d)FN(t)KNC3,N + α2FN(t)KNC4,N

F(p)

N (t)KNC4,N = k2FN(t)KNC2,N − α1FN(t)KNC4,N − (d + δ2 + α2)FN(t)KNC4,N

F(p)

N (t)KNC5,N = μ1FN(t)KNC1,N − dFN(t)KNC5,N.

(11)

Here, all matrices are given in Lemmas 2.2–2.4.

Proof. Firstly, Eq. (7) are written instead of fractional-order derivative terms in model (1), Eq. (9)
is written instead of nonlinear term in model (1) and Eq. (5) are written instead of solution forms in
the model (1). Hence, the system (11) is obtained, so the proof is completed. �

Definition 3.1. The collocation points in interval [0, h] are defined by

tk = h
N

k, k = 0, 1, . . . , N. (12)

Theorem 3.2. Assume that the approximate solutions of (1) are given in (5). In that case, FHEMTC
(1) becomes as follows:

G0C1,N + D1,0C2,N + (μ1 + d)M0C1,N = �,

G0C2,N + D2,0C2,N − α1M0C4,N = 0,

G0C3,N − k1M0C2,N + (δ1 + d)M0C3,N − α2M0C4,N = 0,

G0C4,N − k2M0C2,N + (α1 + d + δ2 + α2)M0C4,N = 0,

G0C5,N − μ1M0C1,N + dM0C5,N = 0,

G1C1,N + D1,1C2,N + (μ1 + d)M1C1,N = �,

G1C2,N + D2,1C2,N − α1M1C4,N = 0,

G1C3,N − k1M1C2,N + (δ1 + d)M1C3,N − α2M1C4,N = 0,

G1C4,N − k2M1C2,N + (α1 + d + δ2 + α2)M1C4,N = 0,

G1C5,N − μ1M1C1,N + dM1C5,N = 0,

...

GNC1,N + D1,NC2,N + (μ1 + d)MNC1,N = �,

GNC2,N + D2,NC2,N − α1MNC4,N = 0,

GNC3,N − k1MNC2,N + (δ1 + d)MNC3,N − α2MNC4,N = 0,

GNC4,N − k2MNC2,N + (α1 + d + δ2 + α2)MNC4,N = 0,

GNC5,N − μ1MNC1,N + dMNC5,N = 0,

LNC1,N = S0,

LNC2,N = I0,

LNC3,N = A0,

LNC4,N = T0,

LNC5,N = R0

(13)
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where,

Gi = F(p)

N (ti)KN,

D1,i = βFN(ti)KNC1,NFN(ti)KN,

D2,i = −βFN(ti)KNC1,NFN(ti)KN + (d + k1 + k2)FN(ti)KN,

Mi = FN(ti)KN.

(14)

Also, other matrices are given in Theorem 3.1. and Lemma 2.5.

Proof. The collocation points (12) are substituted into (11) and thus the following system of
algebraic equations is obtained:

F(p)

N (t0)KNC1,N = � − β
(
FN(t0)KNC1,NFN(t0)KNC2,N

) − μ1FN(t0)KNC1,N − dFN(t0)KNC1,N

F(p)

N (t0)KNC2,N = β
(
FN(t0)KNC1,NFN(t0)KNC2,N

) + α1FN(t0)KNC4,N − dFN(t0)KNC2,N − k1FN(t0)KNC2,N

−k2FN(t0)KNC2,N

F(p)

N (t0)KNC3,N = k1FN(t0)KNC2,N − (δ1 + d)FN(t0)KNC3,N + α2FN(t0)KNC4,N

F(p)

N (t0)KNC4,N = k2FN(t0)KNC2,N − α1FN(t0)KNC4,N − (d + δ2 + α2)FN(t0)KNC4,N

F(p)

N (t0)KNC5,N = μ1FN(t0)KNC1,N − dFN(t0)KNC5,N

F(p)

N (t1)KNC1,N = � − β
(
FN(t1)KNC1,NFN(t1)KNC2,N

) − μ1FN(t1)KNC1,N − dFN(t1)KNC1,N

F(p)

N (t1)KNC2,N = β
(
FN(t1)KNC1,NFN(t1)KNC2,N

) + α1FN(t1)KNC4,N − dFN(t1)KNC2,N − k1FN(t1)KNC2,N

−k2FN(t1)KNC2,N

F(p)

N (t1)KNC3,N = k1FN(t1)KNC2,N − (δ1 + d)FN(t1)KNC3,N + α2FN(t1)KNC4,N

F(p)

N (t1)KNC4,N = k2FN(t1)KNC2,N − α1FN(t1)KNC4,N − (d + δ2 + α2)FN(t1)KNC4,N

F(p)

N (t1)KNC5,N = μ1FN(t1)KNC1,N − dFN(t1)KNC5,N

...

F(p)

N (tN)KNC1,N = � − β
(
FN(tN)KNC1,NFN(tN)KNC2,N

) − μ1FN(tN)KNC1,N − dFN(tN)KNC1,N

F(p)

N (tN)KNC2,N = β
(
FN(tN)KNC1,NFN(tN)KNC2,N

) + α1FN(tN)KNC4,N − dFN(tN)KNC2,N − k1FN(tN)KNC2,N

−k2FN(tN)KNC2,N

F(p)

N (tN)KNC3,N = k1FN(tN)KNC2,N − (δ1 + d)FN(tN)KNC3,N + α2FN(tN)KNC4,N

F(p)

N (tN)KNC4,N = k2FN(tN)KNC2,N − α1FN(tN)KNC4,N − (d + δ2 + α2)FN(tN)KNC4,N

F(p)

N (tN)KNC5,N = μ1FN(tN)KNC1,N − dFN(tN)KNC5,N.

(15)

Now, the relations in (14) are used in the system (15). Then, by writing this system and conditions
(10) as a single system, we obtain (13), which completes proof. �

Corollary 3.1. When nonlinear algebraic system (13) is solved through MATLAB, the unknown
coefficients Ci,N (i = 1, 2, 3, 4, 5) in (5) are calculated. Thus, the approximate solutions of FHEMTC
(1) are obtained.
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4 Error Analysis

This section has two purposes. The first purpose is to get an error bound for the presented method.
The second purpose is to create an error estimation method. Let S(t), I(t), A(t), T(t), R(t) be the
exact solutions and SN(t), IN(t), AN(t), TN(t), RN(t) be the approximate solutions based on PLPs of
FHEMTC (1).

Theorem 4.1. (Upper Boundary of Errors) Assume that the generalized Maclaurin series are
represented by SMac

N (t) = FN(t)C̃1,N, IMac
N (t) = FN(t)C̃2,N, AMac

N (t) = FN(t)C̃3,N, TMac
N (t) = FN(t)C̃4,N,

RMac
N (t) = FN(t)C̃5,N. Then, the errors of the approximate solutions based on PLPs of (1) are bounded

by

‖S(t) − SN(t)‖∞ ≤ λN(‖C̃1,N‖∞ + ‖KN‖∞‖C1,N‖∞) + hN+1

(N + 1)!
‖S(N+1)(ct)‖∞,

‖I(t) − IN(t)‖∞ ≤ λN(‖C̃2,N‖∞ + ‖KN‖∞‖C2,N‖∞) + hN+1

(N + 1)!
‖I (N+1)(ct)‖∞,

‖A(t) − AN(t)‖∞ ≤ λN(‖C̃3,N‖∞ + ‖KN‖∞‖C3,N‖∞) + hN+1

(N + 1)!
‖A(N+1)(ct)‖∞,

‖T(t) − TN(t)‖∞ ≤ λN(‖C̃4,N‖∞ + ‖KN‖∞‖C4,N‖∞) + hN+1

(N + 1)!
‖T (N+1)(ct)‖∞,

‖R(t) − RN(t)‖∞ ≤ λN(‖C̃5,N‖∞ + ‖KN‖∞‖C5,N‖∞) + hN+1

(N + 1)!
‖R(N+1)(ct)‖∞.

(16)

Here, ‖FN(t)‖∞ ≤ max {hN, 1} := λN, �Ci,N = ‖Ci,N+1‖∞ − ‖Ci,N‖∞ (i = 1, 2, 3, 4, 5). Also,
the coefficient matrices of SMac

N (t), IMac
N (t), AMac

N (t), TMac
N (t), RMac

N (t) are indicated by C̃i,N (i = 1, 2,
3, 4, 5), respectively.

Proof. Firstly, using the triangle inequality, we can write

‖S(t) − SN(t)‖∞ ≤ ‖S(t) − SMac
N (t)‖∞ + ‖SMac

N (t) − SN(t)‖∞,

‖I(t) − IN(t)‖∞ ≤ ‖I(t) − IMac
N (t)‖∞ + ‖IMac

N (t) − IN(t)‖∞,

‖A(t) − AN(t)‖∞ ≤ ‖A(t) − AMac
N (t)‖∞ + ‖AMac

N (t) − AN(t)‖∞,

‖T(t) − TN(t)‖∞ ≤ ‖T(t) − TMac
N (t)‖∞ + ‖TMac

N (t) − TN(t)‖∞,

‖R(t) − RN(t)‖∞ ≤ ‖R(t) − RMac
N (t)‖∞ + ‖RMac

N (t) − RN(t)‖∞.

(17)

Secondly, using Lemma 2.2, we know the matrix representations of the Pell-Lucas polynomial
solutions from Lemma 2.2. Therefore, we have

‖SMac
N (t) − SN(t)‖∞ = ‖FN(t)(C̃1,N − KNC1,N)‖∞ ≤ ‖FN(t)‖∞

(‖C̃1,N‖∞ + ‖KN‖∞‖C1,N‖∞
)

,

‖IMac
N (t) − IN(t)‖∞ = ‖FN(t)(C̃2,N − KNC2,N)‖∞ ≤ ‖FN(t)‖∞

(‖C̃2,N‖∞ + ‖KN‖∞‖C2,N‖∞
)

,

‖AMac
N (t) − AN(t)‖∞ = ‖FN(t)(C̃3,N − KNC3,N)‖∞ ≤ ‖FN(t)‖∞

(‖C̃3,N‖∞ + ‖KN‖∞‖C3,N‖∞
)

,

‖TMac
N (t) − TN(t)‖∞ = ‖FN(t)(C̃4,N − KNC4,N)‖∞ ≤ ‖FN(t)‖∞

(‖C̃4,N‖∞ + ‖KN‖∞‖C4,N‖∞
)

,

‖RMac
N (t) − RN(t)‖∞ = ‖FN(t)(C̃5,N − KNC5,N)‖∞ ≤ ‖FN(t)‖∞

(‖C̃5,N‖∞ + ‖KN‖∞‖C5,N‖∞
)

.

(18)

Owing to 0 ≤ t ≤ h, the term ‖FN(t)‖∞ can be written as follows:

‖FN(t)‖∞ ≤ max {hN, 1} := λN. (19)
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Substituting (19) into (18), the following inequalities are obtained:

‖SMac
N (t) − SN(t)‖∞ ≤ λN

(‖C̃1,N‖∞ + ‖KN‖∞‖C1,N‖∞
)

,

‖IMac
N (t) − IN(t)‖∞ ≤ λN

(‖C̃2,N‖∞ + ‖KN‖∞‖C2,N‖∞
)

,

‖AMac
N (t) − AN(t)‖∞ ≤ λN

(‖C̃3,N‖∞ + ‖KN‖∞‖C3,N‖∞
)

,

‖TMac
N (t) − TN(t)‖∞ ≤ λN

(‖C̃4,N‖∞ + ‖KN‖∞‖C4,N‖∞
)

,

‖RMac
N (t) − RN(t)‖∞ ≤ λN

(‖C̃5,N‖∞ + ‖KN‖∞‖C5,N‖∞
)

.

(20)

On the other hand, we can write the remainder terms of the Maclaurin series for 0 ≤ t ≤ h

tN+1

(N + 1)!
S(N+1)(ct),

tN+1

(N + 1)!
I (N+1)(ct),

tN+1

(N + 1)!
A(N+1)(ct),

tN+1

(N + 1)!
T (N+1)(ct),

tN+1

(N + 1)!
R(N+1)(ct).

(21)

Hence, the following inequalites can be written:

‖S(t) − SMac
N (t)‖∞ ≤ hN+1

(N + 1)!
‖S(N+1)(ct)‖∞,

‖I(t) − IMac
N (t)‖∞ ≤ hN+1

(N + 1)!
‖I (N+1)(ct)‖∞,

‖A(t) − AMac
N (t)‖∞ ≤ hN+1

(N + 1)!
‖A(N+1)(ct)‖∞,

‖T(t) − TMac
N (t)‖∞ ≤ hN+1

(N + 1)!
‖T (N+1)(ct)‖∞,

‖R(t) − RMac
N (t)‖∞ ≤ hN+1

(N + 1)!
‖R(N+1)(ct)‖∞.

(22)

Combining the inequalities (20) and (22) in (17), the inequalities (16) are obtained. So, the proof
is completed. �

Theorem 4.2. (Error Estimation) Assume that the residual functions of FHEMTC (1) for the
approximate solutions based on PLPs (2) are represented by Rei,N(t) (i = 1, 2, 3, 4, 5). According
to this, the error problem is obtained as
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CD(p)

t e1,N(t) − � + β
(
e1,N(t)e2,N(t) + IN(t)e1,N(t) + SN(t)e2,N(t)

) + μ1e1,N(t) + de1,N(t) = −Re1,N(t)
CD(p)

t e2,N(t) − β
(
e1,N(t)e2,N(t) + IN(t)e1,N(t) + SN(t)e2,N(t)

) − α1e4,N(t) + de2,N(t) + k1e2,N(t) + k2e2,N(t)

= −Re2,N(t)
CD(p)

t e3,N(t) − k1e2,N(t) + (δ1 + d)e3,N(t) − α2e4,N(t) = −Re3,N(t)
CD(p)

t e4,N(t) − k2e2,N(t) + α1e4,N(t) + (d + δ2 + α2)e4,N(t) = −Re4,N(t)
CD(p)

t e5,N(t) − μ1e1,N(t) + de5,N(t) = −Re5,N(t)

ei,N(0) = 0, (i = 1, 2, 3, 4, 5)

(23)

where,

e1,N(t) = S(t) − SN(t)

e2,N(t) = I(t) − IN(t)

e3,N(t) = A(t) − AN(t)

e4,N(t) = T(t) − TN(t)

e5,N(t) = R(t) − RN(t).

(24)

Proof. Inasmuch as the approximate solutions based on PLPs (2) satisfy FHEMTC (1), the proof
begins by writing
CD(p)

t SN(t) − � + βSN(t)IN(t) + μ1SN(t) + dSN(t) = Re1,N(t)
CD(p)

t IN(t) − βSN(t)IN(t) − α1TN(t) + dIN(t) + k1IN(t) + k2IN(t) = Re2,N(t)
CD(p)

t AN(t) − k1IN(t) + (δ1 + d)AN(t) − α2TN(t) = Re3,N(t)
CD(p)

t TN(t) − k2IN(t) + α1TN(t) + (d + δ2 + α2)TN(t) = Re4,N(t)
CD(p)

t RN(t) − μ1SN(t) + dRN(t) = Re5,N(t)

SN(0) = S0, IN(0) = I0, AN(0) = A0, TN(0) = T0, RN(0) = R0.

(25)

When system (25) is subtracted from model (1) and the relations in (24) are used, we gain (23).
Hence, the proof is completed. �

Corollary 4.1. If the problem (23) is solved using PLCM in Section 3 for M > 0, then the estimated
error functions are calculated.

5 Application Results

The aim of this section is to show the accuracy and efficiency of the proposed matrix approaches.
For this purpose, some numerical computations for FHEMTC (1) are performed. The parameters and
initial conditions are determined according to references in [15,37,38] for simulations and these values
are given in Table 2. The figures in this study are created in MATLAB.
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Table 2: The values of variables of FHEMTC (1)

Parameters Values References

� 0.55 [15]
β 0.03 [15]
d 0.0196 [15]
k1 0.15 [15]
k2 0.35 [15]
α1 0.08 [15]
α2 0.03 [15]
δ1 0.0909 [15]
δ2 0.0667 [15]
μ1 0.03 [15]
Initial conditions Values References
S0 35 [15]
I0 24 [15]
A0 15 [15]
T0 8 [15]
R0 0 [15]

According to the selected parameters, FHEMTC (1) becomes
CD(p)

t S(t) = 0.55 − 0.03S(t)I(t) − 0.03S(t) − 0.0196S(t)
CD(p)

t I(t) = 0.03S(t)I(t) + 0.08T(t) − 0.0196I(t) − 0.15I(t) − 0.35I(t)
CD(p)

t A(t) = 0.15I(t) − (0.0909 + 0.0196)A(t) + 0.03T(t)
CD(p)

t T(t) = 0.35I(t) − 0.08T(t) − (0.0196 + 0.0667 + 0.03)T(t)
CD(p)

t R(t) = 0.03S(t) − 0.0196R(t)

S(0) = 35, I(0) = 24, A(0) = 15, T(0) = 8, R(0) = 0.

(26)

When PLCM is applied to the model (26) for N = 4, the solution forms are written as

S4(t) = ∑4

n=0 c1,nQn(t),

I4(t) = ∑4

n=0 c2,nQn(t),

A4(t) = ∑4

n=0 c3,nQn(t),

T4(t) = ∑4

n=0 c4,nQn(t),

R4(t) = ∑4

n=0 c5,nQn(t).

(27)
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Using Lemma 2.2, the expression (27) is expressed as follows:

S4(t) = F4(t)K4C1,4,

I4(t) = F4(t)K4C2,4,

A4(t) = F4(t)K4C3,4,

T4(t) = F4(t)K4C4,4,

R4(t) = F4(t)K4C5,4.

(28)

Here, F4(t) =
[

1 t t2 t3 t4
]

, Ci,4 =
[

ci,0 ci,1 ci,2 ci,3 ci,4

]T

, (i = 1, 2, 3, 4, 5),

K4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 0 2 0 2

0 2 0 6 0

0 0 4 0 16

0 0 0 8 0

0 0 0 0 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

For range [0, 200], the collocation points become t0 = 0, t1 = 50, t2 = 100, t3 = 150, t4 = 200 using
(12). Thus, we arrive

G0C1,4 + D1,0C2,4 + (0.03 + 0.0196)M0C1,4 = 0.55,

G0C2,4 + D2,0C2,4 − 0.08M0C4,4 = 0,

G0C3,4 − 0.15M0C2,4 + (0.0909 + 0.0196)M0C3,4 − 0.03M0C4,4 = 0,

G0C4,4 − 0.35M0C2,4 + (0.08 + 0.0196 + 0.0667 + 0.03)M0C4,4 = 0,

G0C5,4 − 0.03M0C1,4 + 0.0196M0C5,4 = 0,

G1C1,4 + D1,1C2,4 + (0.03 + 0.0196)M1C1,4 = 0.55,

G1C2,4 + D2,1C2,4 − 0.08M1C4,4 = 0,

G1C3,4 − 0.15M1C2,4 + (0.0909 + 0.0196)M1C3,4 − 0.03M1C4,4 = 0,

G1C4,4 − 0.35M1C2,4 + (0.08 + 0.0196 + 0.0667 + 0.03)M1C4,4 = 0,

G1C5,4 − 0.03M1C1,4 + 0.0196M1C5,4 = 0,

...

G4C1,4 + D1,4C2,4 + (0.03 + 0.0196)M4C1,4 = 0.55,

GNC2,N + D2,4C2,4 − 0.08M4C4,4 = 0,

G4C3,4 − 0.15M4C2,4 + (0.0909 + 0.0196)M4C3,4 − 0.03M4C4,4 = 0,

G4C4,4 − 0.35M4C2,4 + (0.08 + 0.0196 + 0.0667 + 0.03)M4C4,4 = 0,

G4C5,4 − 0.03M4C1,4 + 0.0196M4C5,4 = 0,

(29)
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where,

Gi = F(p)

4 (ti)K4,

D1,i = 0.03F4(ti)K4C1,4F4(ti)K4,

D2,i = −0.03F4(ti)K4C1,4F4(ti)K4 + (0.0196 + 0.15 + 0.35)F4(ti)K4,

Mi = F4(ti)K4.

F4(0) =
[
1 0 0 0 0

]
, F4(50) =

[
1 50 502 503 504

]
,

F4(100) =
[
1 100 1002 1003 1004

]
,

F4(150) =
[
1 150 1502 1503 1504

]
, F4(200) =

[
1 200 2002 2003 2004

]
,

F(p)

4 (ti) =
[

0
�(2)

�(2 − p)
t1−p

i

�(3)

�(3 − p)
t2−p

i · · · �(5)

�(5 − p)
t4−p

i

]
, F(1)

4 (ti) =
[
0 1 2ti 3t2

i 4t3
i

]
,

F(0.95)

4 (ti) =
[
0 1.0272e + 00t0.05

i 1.9566e + 00t1.05
i 2.8633e + 00t2.05

i 3.7552e + 00t3.05
i

]
,

F(0.85)

4 (ti) =
[
0 1.0718e + 00t0.15

i 1.8639e + 00t1.15
i 2.6008e + 00t2.15

i 3.3027e + 00t3.15
i

]
.

When the relations (10) are used, we have

L4C1,4 = S0,

L4C2,4 = I0,

L4C3,4 = A0,

L4C4,4 = T0,

L4C5,4 = R0.

(30)

Here, L4 = F4(0)K4. If systems (29) and (30) are solved using MATLAB, approximate solutions
are calculated according to various p values.

Graphical solutions have a lot of importance. For example, thanks to graphical solutions, we can
easily understand the behavior of the function, examine the properties of the function, see how it
changes for different values of the function, and predict how it changes for different values of the
function. Additionally, since we can examine more than one function on the same graph, we can
compare the behavior of the functions. In this study, graphical solutions are used since the comparisons
are made for different values of the parameter representing the fractional order derivative and for
different values of the selected number N.

Fig. 1 shows the graph of functions S3(t), I3(t), A3(t), T3(t), R3(t) for various fractional orders on
interval t ∈ [0, 200]. It is concluded from this plot that the curves of various values of p have similar
tendencies. Nevertheless, their values are slightly different.

Fig. 2 demonstrates the graph of solution functions for N = 3, N = 4, N = 5 and the fractional
order p = 1. Figs. 3–5 indicate the graph of solution functions, respectively, for the fractional orders
p = 0.95, p = 0.9 and p = 0.85. When the 200-day oncoming alteration is investigated, it is
examined that first 4 population, firstly, decrease, then increase, then increase again, that is, they have
an oscillatory behavior. As for the behavior of RN(t), it can be said that it tends to increase. Also, it can
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be observed that the number of IN(t), AN(t) and TN(t) going towards zero as t → ∞. Namely, there
are no patients needing treatment since HIV-infectious and full-blown AIDS people eventually vanish
from population.
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Figure 1: Graph of functions S3(t), I3(t), A3(t), T3(t), R3(t) of (26) when p = 1, p = 0.95, p = 0.9,
p = 0.85

(26)
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Figure 2: Graph of solution functions of (26) when p = 1 for N = 3, N = 4, N = 5
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Figure 3: Graph of solution functions of (26) when p = 0.95 for N = 3, N = 4, N = 5
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Figure 4: Graph of solution functions of (26) when p = 0.9 for N = 3, N = 4
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Figure 5: Graph of solution functions of (26) when p = 0.85 for N = 3, N = 4



300 CMES, 2024, vol.141, no.1

Figs. 6–9 show the graph of the estimated error functions, respectively, for various fractional
orders (p = 1, p = 0.95, p = 0.9 and p = 0.85). According to these figures, we observe that outcomes
have quite decent errors. Besides, we understand that errors reduce when values of N rise. Fig. 10
visualizes the estimated error functions of (26) when (N, M) = (4, 5) for p = 1, p = 0.95, p = 0.9,
p = 0.85. Although very close results are obtained according to this figure, we can say that the best
result with a very small difference is obtained when p = 0.85. Consequently, the results demonstrate
influence of our method in reaching decent accuracy.
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Figure 6: Graph of the estimated errors of (26) when p = 1 for (N, M) = (3, 4), (N, M) =
(4, 5), (N, M) = (5, 6)
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Figure 7: Graph of the estimated errors of (26) when p = 0.95 for (N, M) = (3, 4), (N, M) =
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Figure 8: Graph of the estimated errors of (26) when p = 0.9 for (N, M) = (3, 4), (N, M) = (4, 5)
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Figure 9: Graph of the estimated errors of (26) when p = 0.85 for (N, M) = (3, 4), (N, M) = (4, 5)
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Figure 10: Graph of the estimated errors of (26) when (N, M) = (4, 5) for p = 1, p = 0.95, p = 0.9,
p = 0.85
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Moreover, Table 3 gives the values at some t points of the estimated absolute errors of (26) when
(N, M) = (4, 5) for p = 1, p = 0.95, p = 0.9, p = 0.85. Accordingly, we observe that similar results
are obtained for different values of p.

Table 3: The values at some t points of the estimated absolute errors of (26) when (N, M) = (4, 5) for
p = 1, p = 0.95, p = 0.9, p = 0.85

|e1,4,5(t)|
ti p = 1 p = 0.95 p = 0.9 p = 0.85

50 2.3910e−03 8.9747e−03 1.1728e−02 1.3258e−02
100 4.6649e−04 5.8821e−03 7.0330e−03 7.2184e−03
150 1.1080e−02 4.9688e−03 4.3317e−03 4.4549e−03
200 2.2611e−02 1.2819e−02 1.0739e−02 1.0339e−02

|e2,4,5(t)|
ti p = 1 p = 0.95 p = 0.9 p = 0.85

50 1.2554e−02 1.1874e−02 1.1486e−02 1.1163e−02
100 5.6864e−03 3.8995e−03 3.0726e−03 2.4172e−03
150 3.7843e−03 3.6982e−03 3.2702e−03 2.8712e−03
200 5.5861e−03 6.0612e−03 5.3999e−03 4.6093e−03

|e3,4,5(t)|
ti p = 1 p = 0.95 p = 0.9 p = 0.85

50 1.2902e−02 9.8565e−03 7.4432e−03 5.2558e−03
100 2.6405e−03 6.9235e−04 2.3717e−03 3.4575e−03
150 8.5115e−04 1.2712e−04 4.1735e−04 6.2026e−04
200 1.6922e−03 5.7311e−04 1.3729e−03 2.2816e−03

|e4,4,5(t)|
ti p = 1 p = 0.95 p = 0.9 p = 0.85

50 1.0120e−02 8.0145e−03 6.3914e−03 4.8049e−03
100 3.4014e−03 8.7960e−05 1.6239e−03 2.9369e−03
150 1.3768e−04 3.1038e−04 3.6835e−04 9.7087e−04
200 1.0134e−03 1.7429e−03 3.3990e−04 1.2625e−03

|e5,4,5(t)|
ti p = 1 p = 0.95 p = 0.9 p = 0.85

50 1.4633e−02 6.2005e−03 3.5017e−03 1.9163e−03
100 5.7269e−03 3.3905e−03 1.9278e−03 9.7569e−04
150 5.5190e−03 1.9385e−03 2.5161e−03 2.0500e−03
200 3.7243e−03 2.2333e−03 8.7976e−04 1.8643e−04
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An advantage of the method is that it is prone to computer programming language. Thus, the
desired changes can be made to the method easily at any time. For example, the results can be obtained
quickly by changing the p value, which represents the fractional order derivative, on the same code.
Another advantage of the method is that the results can be obtained in a short time thanks to the code
created in MATLAB. Even if the selected N value is very small (like 3), successful results are obtained
from the method. This is an important advantage of the presented method. The biggest advantage of
the method is the ease of handling nonlinear terms. The method has another important advantage.
Thanks to the error estimation method presented in Section 4, information can be obtained about the
error in the presented method. Because the exact solution of the model is unknown and there is no
study in the literature that clearly gives the results of the application of this model. For this reason,
it can be observed from the estimated error functions that the results of the method are effective.
However, the method also has some disadvantages, such as making mistakes when entering data into
the code. Another disadvantage of the method is that if the N value is chosen large in the method, the
complexity of the operations in the MATLAB algorithm increases and the large size of the matrices
is the reason for calculation errors. However, since small N values such as 3, 4 and 5 are chosen in
applications, such a situation is not encountered. Since there are many parameters and variables in
the presented model, it is necessary to be very careful when creating code in MATLAB. This can be
given as an example of the difficulty of the method. As a result of this article, we observe that ARV
treatment is a good treatment method for people with HIV infection and full-blown AIDS. Since the
discussed model can be developed for different epidemic models, both existing and that may emerge in
the future, this study makes a great contribution to the literature. As a result of the study, it contributes
to the quality of life of people, as the behavior of the disease can be understood and a solution can
be found by applying treatment. On the other hand, thanks to the results obtained from this article,
this study can guide many scientists who continue their research today, and thus the method becomes
usable and applicable, making a great contribution to both science and humanity.

6 Conclusions

In this article, the PLCM is presented to solve FHEMTC. This method is based on Pell-Lucas
functions and the collocation method. The fractional derivative is defined in the Caputo type, and
the fractional differentiation matrices are derived for PLPs. An error analysis is investigated for the
presented method. The error estimation technique is constituted by using residual function. This
technique is important because it is possible to comment on the error when an exact solution for
the system is not known. In addition, to show the method’s accuracy and efficiency, we analyze four
cases of the fractional order derivative within the range [0, 200]. Owing to applications, we figure
out that the outcomes have quite decent errors. Also, there are no patients needing treatment since
HIV-infectious and full-blown AIDS people eventually vanish from the population. Additionally, we
understand that the errors decrease when values of N increase. The results demonstrate the influence
of our method in reaching decent righteousness. The results can be quickly obtained by adjusting
the p-value, which represents the fractional order derivative, within the same code. The reason for this
efficiency is the optimized code developed for MATLAB. Even if the selected N value is very small (like
3), successful results are obtained from the method. These two situations are the important advantages
of the presented method. The main advantage of the collocation method compared to other methods
is that the structure of the method is simple and the computational cost is low. It also provides an
easier and simpler procedure for solving various problems involving differential equations that model
real-world phenomena. According to the results, we deduce that the application of this method can be
very straightforward for similar epidemic models.
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