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ABSTRACT

This work develops a Hermitian C? differential reproducing kernel interpolation meshless (DRKIM) method
within the consistent couple stress theory (CCST) framework to study the three-dimensional (3D) microstructure-
dependent static flexural behavior of a functionally graded (FG) microplate subjected to mechanical loads and
placed under full simple supports. In the formulation, we select the transverse stress and displacement components
and their first- and second-order derivatives as primary variables. Then, we set up the differential reproducing
conditions (DRCs) to obtain the shape functions of the Hermitian C? differential reproducing kernel (DRK)
interpolant’s derivatives without using direct differentiation. The interpolant’s shape function is combined with a
primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.
As a result, the primary variables and their first- and second-order derivatives satisty the nodal interpolation
properties. Subsequently, incorporating our Hermitian C> DRK interpolant into the strong form of the 3D CCST, we
develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.
The Hermitian C?> DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing
the solutions it produces with the relevant 3D solutions available in the literature. Finally, the impact of essential
factors on the transverse stresses, in-plane stresses, displacements, and couple stresses that are induced in the loaded
microplate is examined. These factors include the length-to-thickness ratio, the material length-scale parameter,
and the inhomogeneity index, which appear to be significant.

KEYWORDS

Consistent/modified couple stress theory; differential reproducing kernel methods; microplates; point collocation
methods; static flexural; 3D microstructure-dependent analysis

1 Introduction

With the increasing demand for microstructures in industry and the rapid progress in material
manufacturing technology, functionally graded (FG) structures have gradually shrunk from the macro
scale to the micron scale. FG microstructures are gradually being used in cutting-edge technology
fields, including thin films [1,2], micro-electro-mechanical systems [3,4], and atomic force microscopes
[5,6]. Thus, developing an effective computational method to investigate the mechanical behavior of
these microstructures has attracted considerable attention.
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It is well-known that the mechanical behavior of FG macrostructures will be changed as their
dimensions shrink from the macro-scale to the micro-scale [7]. The existing shell, plate, and beam
theories based on the classical continuum mechanics (CCM) are inappropriate for use to ana-
lyze the dynamic and static responses of FG microshells, microplates, and microbeams due to the
microstructure-dependent effect becoming significant. As a result, some non-CCM-based theoretical
methods accounting for the microstructure-dependent impact have been proposed to investigate the
mechanical behavior of microstructures. These theoretical methods include the couple stress theory
(CST)[8,9], the strain gradient theory (SGT) [10,11], the doublet mechanics theory [12], the micropolar
elasticity theory [13,14], and the nonlocal elasticity theory [15].

Hadjesfandiari et al. [16,17] and Yang et al. [18] established the consistent CST (CCST) and
the modified CST (MCST) by assuming the couple-stress tensor is skew-symmetric and symmetric,
respectively. As a result, instead of two material length-scale coefficients, which are required to study
an elastic isotropic body’s mechanical behavior when the original CST is employed, only one material
length-scale coefficient is needed when the MCST/CCST is employed. This facilitates their future
application.

Within the CCST/MCST framework, some two-dimensional (2D) shear deformation theories
for investigating the microstructure-dependent mechanical behavior of FG microplates/microshells
have been developed by assuming particular kinematics models a priori. Beni et al. [19] presented
a microstructure-dependent classical shell theory on the basis of the MCST to determine an FG
circular cylindrical microshell’s smallest natural frequency and its corresponding wave number pair.
Incorporating Mindlin’s kinematics model into the MCST, Ma et al. [20] established a microstructure-
dependent first-order shear deformation theory (FOSDT) to analyze a homogeneous isotropic
microplate’s flexural and free vibration behaviors. Arefi et al. [21] developed a novel shear deformation
theory on the basis of the MCST to examine a three-layered microplate’s stress and displacement, for
which the microplate of interest consists of an exponentially graded (EG) core and two piezomagnetic
face sheets. Based on Hamilton’s principle combined with Reddy’s kinematics model, Lei et al. [22] and
Thai et al. [23] presented a microstructure-dependent refined shear deformation theory (RSDT) on the
basis of the MCST to conduct an FG microplate’s microstructure-dependent deformation and natural
frequency behavior analyses. Kim et al. [24] developed a microstructure-dependent and MCSD-based
third-order shear deformation theory (TOSDT) to investigate an FG microplate’s static buckling,
static flexural, and free vibration behaviors. Thai et al. [25] developed a microstructure-dependent
sinusoidal shear deformation theory (SSDT) on the basis of the MCST to examine an FG microplate’s
static flexural and free vibration behaviors. Sobhy et al. [26] presented a microstructure-dependent
and MCST-based trigonometric shear deformation theory (TSDT) with four primary variables for
modeling an EG microplate’s static buckling, static flexural, and free vibration characteristics resting
on Pasternak’s foundation.

Unlike these 2D microstructure-dependent and MCST-based shear deformation theories men-
tioned above, Wu et al. [27] established the unified microstructure-dependent shear deformation
theories based on the CCST to study an FG/EG elastic microplate’s mechanical behavior. Their results
showed that the CCST and MCST solutions of deformation and natural frequency associated with
out-of-plane vibration modes are almost identical when setting the value of MCST’s material length-
scale parameter at twice that of CCST’s material length-scale parameter. However, their solutions of
natural frequency associated with the in-plane vibration modes are slightly different.

Instead of the CCST and MCST, other non-CCM-based analytical and numerical methods,
including the SGT, the differential quadrature method (DQM), the iso-geometric analysis technique
(IGAT), etc., have also been employed to study an FG microplate’s mechanical behavior. Incorporating
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Kirchhoff-Love’s kinematics model into the SGT, Deng et al. [28] established a non-CCM-based
theory to determine an FG microplate’s smallest natural frequency with variable thickness. Within
the SGT framework, Balobanov et al. [29] presented a microstructure-dependent classical thin shell
theory to investigate a circular cylindrical microscale shell’s static flexural behavior. Integrating the
advantages of the finite element method (FEM) and the DQM, Zhang et al. [30] developed a Hermi-
tian C' four-node quadrilateral element for conducting a moderately thick microplate’s mechanical
behavior analysis. Integrating the MCST and the IGAT, Thanh et al. [31] established a seventh-
order shear deformation theory for analyzing a porous FG microplate’s microstructure-dependent
nonlinear thermal stability behavior. Nguyen et al. [32] developed a computational approach for
analyzing an FG microplate’s geometrically nonlinear behavior on the basis of the IGAT and the
RSDT. In conjunction with a modified nonlocal CST and the IGAT, Pham et al. [33] conducted an FG
microplate’s static flexural and free vibration characteristics analyses, where the microplate rested on
an elastic foundation. Based on the CCST, Wu and his colleagues [34,35] established a semi-analytical
Hermitian C" FEM to conduct elastic and piezoelectric microscale plates’/shells’ microstructure-
dependent static and dynamic behavior analyses.

Meshless methods have also been employed to investigate a microscale structure’s mechanical
behavior. Incorporating Mindlin’s kinematics model and radial basis functions into the MCST,
Roque et al. [36] proposed a point collocation method for analyzing a homogeneous isotropic
microplate’s static flexural behavior. Incorporating HSDT’s kinematics model into the MCST,
Tran et al. [37] and Thai et al. [38] presented a moving Kriging interpolation meshless method
to investigate an FG sandwich microplate’s static buckling, static flexural, and free vibration
characteristics. Nguyen et al. [39] incorporated a four-variable kinematics model into the MCST to
develop a non-uniform rational B-splines (NURBS) meshless method, which was used to investigate an
FG microplate’s microstructure-dependent static buckling, static flexural, and free vibration behaviors.
Finally, Thai et al. [40] employed the NURBS meshless method to conduct an FG microplate’s static
buckling and free vibration behavior analyses.

In their series of papers, Liet al. [41], Simkins et al. [42], Liu et al. [43], and Lu et al. [44] established
the reproducing kernel element method to solve Galerkin weak forms of a system of higher order
partial differential equations which are associated with Dirichlet boundary conditions.

Chen et al. [45] and Wang et al. [46] established the Hermitian C' and Lagrange C° differential
reproducing kernel interpolation meshless (DRKIM) methods, respectively, for investigating lami-
nated composite and FG macroscale structures’ mechanical behavior. The novelty of these DRKIM
methods is that the shape functions of the differential reproducing kernel (DRK) interpolant’s
derivatives are obtained by setting up the differential reproducing conditions (DRCs) without using
direct differentiation, as is necessary for the conventional reproducing kernel interpolation and
approximation methods [47]. It has been shown that the solutions obtained using these DRKIM
methods closely agree with the available 3D solutions of macroscale plates, rather than those of
microplates.

As we see in the strong form of the 3D CCST, the primary variables’ highest order derivative
is the third order for microplates, which differs from the first order designation for macroscale
plates. This situation will reduce the accuracy of the early proposed Hermitian C' and Lagrangian
C’ DRKIM methods and slow down their convergence rate. To enhance these DRKIM methods’
accuracy and speed up their convergence rate, in this paper, we aim to establish a Hermitian C?
DRKIM method by making some modifications: the Hermitian C> DRK interpolant should satisfy
the nodal interpolation properties and the continuity conditions up to primary variables’ second-order
derivatives at each sampling node. Moreover, we also aim to establish the Hermitian C> DRKIM
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method, which is a point collocation method, by incorporating our Hermitian C* DRK interpolant
into the strong form of the 3D CCST to carry out an FG microplate’s 3D microstructure-dependent
static flexural analysis. After validating the Hermitian C> DRKIM’s accuracy using the relevant 3D
solutions reported in the literature, we will carry out a parametric study for the FG microplate’s
3D microstructure-dependent static flexural behavior to examine how the impact of essential factors
affects the induced deformations, in-plane stresses, transverse stresses, and couple stresses, including
the length-to-thickness ratio, the material length-scale parameter, and the inhomogeneity index.

2 The Hermitian C> DRKIM Method
2.1 The Hermitian C* DRK Interpolant

We consider n, discrete sampling nodes placed at § = &, &, ---, §,,, respectively, in a natural
coordinate system &, the values of which are § = -1, &, = 1, and the others are randomly
selected between —1 and 1. The Hermitian C*> DRK interpolant f” (¢§) and its first- and second-
order derivatives, df" (¢§)/d& and d*f" (§)/d&? (i.e., 0" (§) and k" (£€)), are required to satisfy the nodal
interpolation properties. Thus, it is defined as

np

F© = [NE+N©0+N @ «]

=1

=> B ©+n @+ [d©+h©]6+[6@ + 7, @]x], M

where N, (£), N, €),and N, (&) (I=1,2,..., n,) denote the Hermitian C> DRK interpolant’s shape
functions at & = &;; f,, 0,, and k, are the nodal values of /" (¢), 6" (¢), and «" (§) at & = &, respectively.
v, (§), ¥, (§), and ¥, (&) (I=1,2,..., n) are the primitive functions for /" (¢), 0" (¢), and «" (£),
respectively, which are selected to satisfy the Kronecker delta properties. The primitive functions

chosen in this article are ¥, (§) = w, (€), ¥ () = (€ —&)w, (&), and ¥, (§) = (¢ — &) w, (§)/2,

in which w, (&) is defined as a normalized eighth-degree (octic) polynomial with the support size
a, = (0.99)min (|§ — &, |& — &), such that these primitive functions and their first- and
second-derivatives satisfy the Kronecker delta properties (i.e, ¥, (&) = du, Ay, (&) /dE = 5,
&Y, (&) /dE = bp, ¥ (&) = Y, (&) = 0, dy,(&)/déE = dyr,(&)/dé = 0, and d*V, (§)/dE> =
d*y, (&)/de* = 0). The symbols ¢, (£), & (§), and ¢, (&) (I =1, 2,..., n) are defined as the
enrichment functions for f* (&), 6" (&), and «" (¢), respectively, which are determined by setting
up the nth-order DRCs. In our Hermitian C*> DRK interpolant, the enrichment functions are

arranged as ¢, (§) = w, (¢ —&)P" (& —&)bT (), ¢ (&) = w, (€ — &) P’ (6 —&) by’ (§),and ¢, (§) =
w, (& — &) P & —-¢&) bgf (&), in which b(‘f (&) and w, (§ — &) denote the undetermined function vector
and a Gaussian function, respectively, and

PT(E—S/)Z{I & -8 (5_51)2 (S—é‘/)"}, (2)
P € —&) = (—1)dP" (¢ —&)/d (E — &) = dP" (€ — &)/dE

={0,—1,—2(5—51),—3(5—51)2, a_n(s_gl)nil}’ (3)
P (-8 =(—1'dP (—&/dE—&) =dP (& — £)/dg;

= {0a0a2a6('§ _Sl)a ) n(n— 1) (S _SI)’Z_2}~ (4)
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In order to determine the undetermined function vector b (z), we select the complete nth-order
polynomials as the basis functions that are to be reproduced and set up (n + 1) DRCs as follows:

np

S e@+vi@g + 6@+ i@ me +[6,© +,©]m m-1ng) =g

I1=1

m:O,l,---,n. (5)

Eq. (5) can be rearranged in the following explicit forms:

np

m=0. S E+vE]=1= Ii¢,(s>=1—§pw,<s>, (©6)

=1
np

m=1: D6 @+ vn©la+ D [ © + @] =¢

=1

ﬂp

SO E-EGE+D (DHE == E—E vE - D (=D @), @)

m=2 X+ 0@+ X [h O+ h©] ) +X[FO T o]0 =¢
ST E 8N O I (D E -8 $© X2, ®)
=S E-EYE - X DE-5) YE - 2,6,

m=n: SO @1+ X [HO P O] 06 + X [H1© + T, @] [rn -1 7] = ¢
= é E—&)" ¢ (5) + é (—n) (6 —&)"" ¢ (&) + é (n) (n—1)(E —&)" 2@, (&) 9)

np

= - l_zl E—&)" Y (&) — l_zl (—n) (€ —&)" "y &) — ;_Zl ) (n—1)E—&)"2Y, ).
We rewrite Egs. (6)—(9) in matrix form as follows:
SPE-E) G E+DPE-8) b E+DPE-E) 6 &)
=1 =1 =1

" w o A W . (10)
=P(0)—ZP(§—§1) v (5)—21)(5 —&) ¥ (5)—21)(5 —&) ¥, ),
whereP(0)=[1 0 0 --- O]T.

We substitute the enrichment functions into the DRC:s to yield the following expression for the
undetermined function vector b{f &):

b3 () = A (©) [P O—-D PE-E) Y- PE-&) Vi ®-D PE—&) ¥, (5)} , (1D
=1 =1 =1

np

where As (§) = D[P~ &) w,E—&) P E—&) +PE—E)w E—&) P ¢ -5 +PE-&)

I=1

w, (€ —&) P (& —§)]
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We substitute Eq. (11) into Eq. (1) to yield the shape functions of the Hermitrian C*> DRK
interpolant as follows:

NE=apE+v ¢ (=1,2,...,n), (12)
NE=¢g@E+0@E) (=1,2,...,n), (13)
Nl (S) = 5/ (E) +EI (S) (l = 1929' .. 7np B (14)

where ¢, (&) = w, (& — &) P (£ — £) b7 (&),
b () =w, E —E)P (E —£)b (&),
b)) =w,(E—E)P (& —E)DZ(E).

_ Eq.(11) shows that the enrichment functions vanish at all the sampling points (i.e., ¢, (§;) =
¢ &) =¢, (&) =0,forall/and k=1,2, ..., n,). When we select the primitive functions mentioned
above for " (&), such that ¥, (&) = &y, 1/}1 (&) =0, and ¥, (&) = 0 a priori, the shape functions will
satisfy the Kronecher delta properties, which are N, (§,) = d,, Nl (&)=0,and N, (§,) =0

2.2 The Hermitian C2 DRK Interpolant’s Derivatives
The Hermitian C?* DRK interpolant f* (¢§) in Eq. (1) has the first-order derivative with respect
to &:

arr €
dse

> [V @n+ A ©o+ N ©n)

= Z [ (@7 &+ v ®) fi+ (A;” &)+ y0 (s)) 0, + (5;” E+ 7 (5)) K,] , (15)

where N (£), NV (£) , and N;l) (¢) (I=1,2,...,n,) are the shape functions of the Hermitian C> DRK
interpolant’s first-order derivative at the node & = &, which satisfy the Kronecker delta properties;

&), ¥V (&), and W;l) () (I =1, 2,..., n,) are primitive functions’ first-order derivatives (i.e.,

V(&) = do (§)/dE, §" (€) = djy (§)/dE, and T, (&) = d ¥, (€)/dE); and ¢ (), ¢ (£), and

551) (¢) (! =1, 2,..., n,) denote enrichment functions’ first-order derivatives, which are obtained

by imposing the nth-order DRCs, and are expressed as ¢, (§) = w, (€ —&)P' (€ — &) b7 (§),
(&) =w,(E—E)P (£ —&) b7 (&), and 5;1) € =w,E-EP (-8 by’ (£) , for which b{? (§) is

the undetermined function vector.
In order to determine the undetermined functions bjz (&) in Eq. (15), again, we select the complete
nth-order polynomials as the basis functions to be reproduced and set up (z 4+ 1) DRCs as follows:

np

>l ©+ v @+ [0 © + 00 @ me +[6) © + 9" @ |m on - D)

=1

=mé", (16)

wherem =0,1,2, ---, n.
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We rearrange Eq. (16) in the explicit forms as follows:

p

m=0: > ["E@+y"®]=0 =D ¢V E) =-> v e, (17)

m=1: [0 ©+v" ©] &+ [$" © +9" ©] =1

np np

=D E-8¢"E+D DG =-1-D E-V"E - D (=D @),
=1 =1 I=1 =1 (18)

m=2: Y [P ©O+v @] g+ 2[4 ©+i"©®] car+ > [6 @ +9" ©] @ =2

=1 =1

np

np np

5D E-8 0O+, (DE-8 F O+ 28 ©

= > E-YEO-D DE-HIE-D. DV, ©), (19)

I=1

n

m=n: > [¢f" ©+v"®] &+ [6 @ +9" @] ng + D [0 © + T ©] n =g

=1 =1 =1

)

Tp Tp Tp
—ne > - eV O+ ) E- 3 O +D - E -5 25 @)
=1 =1 I=1
np . np - ﬂl, 7(1)
=—> E-a"vO-D mE-"" P E =D nm-DE-&"Y @). (20)
=1 I=1 =1

We rewrite the above Eqs. (17)—(20) in matrix form as follows:

>PE—6) o) ©O+XPE-8 ¢ O+XPE-8 3 ©
=1 A " =1 by =1 A w » (21)

=PO-XPE-& v EO-ZPE-8 IO -XPE—& ¥, ©.
where P (0) = dP (0)/dg,=[0 —1 0 --- 0],

We substitute the enrichment functions into the DRCs to yield the undetermined function vector
b (£) as follows:

b2 (&) = AL (©) [f) O->Pe-&) v E©-> Pe—&) i"©-D> Pe—&) 7, (5)] . (22)
=1

=1 =1

We substitute Eq. (22) into Eq. (15) to obtain the shape functions of the Hermitian C* DRK
interpolant’s first-order derivatives as follows:

NV €)= &) + v () (I=12,....n), (23)
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FO© =0 @©+70© (=12, o
N ©=8 ©+V,® (=12...n), >

— ()

where ¢ (&) = w,E—&)P E—&)DTE), "¢ = w,(E—8&) P - b (©), ¢, (&) =
w, (& —E)P (€ — E)b) (&),

From Egs. (23)—(25), it can be seen that the values of the enrichment functions’ first-order
derivatives at all sampling nodes are zero (i.e., ¢V (&) = ¢ (&) = 551) (&) = 0). Subsequently,
suppose we select the first-order primitive functions for df” (£)/d€ such that v (&) = 0, ¥ (&) =
S, and E;” (&) = 0, a priori. Finally, the above shape functions satisfy the Kronecker delta properties
(e, NV () =0, N (&) = 85, and N,” (5) = 0).

Similarly, the above derivation procedure can proceed to the rth-order derivative of the Hermitian
C? DRK interpolant f/” (&), which is thus expressed in Appendix A.

2.3 Weight Functions and Primitive Functions
In implementing our Hermitian C> DRKIM method, we must select the weight function and
the primitive function in advance. This work uses the normalized Gaussian function as the weight
function, which is expressed as follows [47]:
o6l _ o=/e)?
Normalized Gaussian function: w, (s) = { | _ g-a/@? for s<1 (26)
0 for s> 1,

where s = |& — &|/a,, in which @, denotes the support size at the reference sampling point /, and the
value of « is set at « = 0.3.

As mentioned above, we define the primitive functions for the Hermitian C*> DRK interpolant as

Vi (8) = w, (§), ¥ (§) = (6 —E)w, (), and ¥, (€) = (€ — &) w, (€)/2, respectively, for which w, (£)

is a normalized eighth-degree (octic) polynomial, which is given as follows [47]:

358 +8°—6s*+1 for s<1
Wy (8) = {0 for s > 1 (27)
where s = |& —&|/a,, in which a, is defined as ¢, = (0.99)min (|§ —&ul, 1&—=&.D to

ensure the Kronecker delta properties are satisfied (i.e., ¥, (§ = &) = i, dv¥, (§)/dsE = 8y, and
dz‘ﬂ/ (Sk)/dfz = 3/k)-

It is noticed that for a meshless method, the support size g, for the selected weight function w, (£)
will not be a very small value, often resulting in numerical errors; whereas, it also has to be small
enough to preserve the meshless method’s local character due to an increase in the support size also
resulting in numerical errors. Chen et al. [45] and Wang et al. [46] thus recommended a compromise
range of the value of g, to ensure the Hermitian C' and Lagrange C° DRKIM methods’ accuracy
and convergence rate. It has been recommended as follows: In the case of a uniform sampling node
distribution, the appropriate value of g, is @, = (n+ 0.1) A&, where A& denotes the spacing between
the adjacent nodes, and the value of ¢, is constant for each node. In the case of a randomly scattered
node distribution, the appropriate value of g, is selected to include (2 + 1) nodes and the value of ¢
is variable for each node. This guidance is adopted in this paper.

To have a clear picture related to how the values of these shape functions vary in the natural
coordinate, in Fig. la—c, we consider a case of 11 sampling nodes with uniform spacing and present the
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distributions of the enrichment function (y, (§)), the primitive function (¢, (§)), and the shape function
(Ns (§)) of node 6 along the natural coordinate axis, respectively, for which Ny (§) = ¢ (§) + 6 () . It
can be seen in Fig. la—c that the Kronecker delta properties, ¥ (§;) = 8, and N (&) =68, (i =1—11),
are satisfied, and ¢ (§) = 0 (i = 1 — 11) . Furthermore, in Fig. 2, we present the distribution of each
sampling node’s shape function along the natural coordinate axis, i.e., N; (§) ( = 1 — 11). Again, each
shape function is shown to satisfy the Kronecker delta properties and localize in a region of the
support size.

(a) (b)
1.5 1.5
1 1
¢6(€) 0.5 Pe(€) 0.5
2 VaVa e 0
-0.5 -0.5
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
£ £
© 1.5
1
Ng(€) 0.5
0.
-0.5
-1 -0.5 0 0.5 1
13

Figure 1: Distributions of (a) the enrichment function, (b) the primitive function, and (c) the shape
function of node 6 in the natural coordinate in the case of n, = 11 with uniform spacing

(a) v

3 1.5
- =Ny (8)
-------------- N, ()

N3(€) !

N;(§) 0.5

0

. 0.5

1 05 0 05 1 ! e 1
: 3

Figure 2: (Continued)
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()
1.5
- = =--Ny(§)
""""""" N1 (§)
1 I PR
' “
Nz(&) 0.5 : '!'
F
0 et
-0.5 -0.5
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
3 3

Figure 2: Distributions of the shape functions (a) (i = 1-3), (b) (i = 4-6), (¢) (i=7-9), and (d) (i = 10
and 11), in the natural coordinate in the case of np = 11 with uniform spacing

3 3D Microstructure-Dependent Static Flexural Analysis of FG/EG Microplates
3.1 The Quasi-State Space Equations of the CCST

This work considers the 3D microstructure-dependent static flexural problem of a simply-
supported FG microplate under either a sinusoidally distributed load or a uniform load, and the
former loading case is shown in Fig. 3. The symbols 4, L,, and L, represent the microplate’s height,
length, and width, respectively. A Cartesian coordinate system (x, y and z) is oriented so that the
xy-plane is the microplate’s mid-plane.

Figure 3: An FG microplate of interest that is subjected to a sinusoidally distributed load

The displacement vector u of the deformed microplate is expressed as u = u, i+ u, j + u. k, where
i, j, and k represent the unit basis vectors in the x, y, and z directions, respectively.

The strain tensor € is symmetric, and its relationships with the displacement tensor in Cartesian
coordinates are expressed as
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Eax = Upsy s (28a)
£, = Uy,,, (28b)
£ = U, (28¢)
Vie = 2800 = Uy Fs (28d)
Ve =26, = U,,. L., , (28e)
Vi = 28, = Uy, +U,,,, (28f)

where the commas represent the partial derivative of the suffix variable.

The rotation tensor € is skew-symmetric, and its relationship with the displacement tensor in
Cartesian coordinates is expressed as follows:

0, =06., = (1/2) (., —u,.. ) , (29a)
0, =0.=(/2) (Ue,: —t,) (29b)
6. =6, = (1/2) (o —thr, ) - (29¢)

The symmetric part of the curvature tensor x-the rotation tensor 6 relationship in Cartesian
coordinates is expressed as follows:

Xox = O (30a)
Xy = Ory 5 (30b)
Xz = 0., (30c)
Xo: = (1/2) (0- +0.,) (30d)
X- = (1/2) (6,..+6.., ), (30e)
Xo = (1/2) (0., +6,.. ) - (30f)

The skew-symmetric part of the curvature tensor «-the rotation tensor # relationship in Cartesian
coordinates is expressed as follows:

o=k, = (1/2) (6., =6,..). (31a)
Ky =K. = (1/2) (93(9: _027,\') 9 (31b)
K. = ny = (1/2) (9}79,\' _ewy) . (310)

Hadjesfandiari and Dargush [16,17] indicated that in general, the force-stress tensor (o) induced
in the loaded microplate is asymmetric. Therefore, they separated it into a skew-symmetric part (oy;)
and a symmetric (o) part, and represented these two parts using brackets and parentheses that
surround a pair of indices, respectively. Subsequently, Hadjesfandiari et al. employed the principle
of virtual displacements to deduce a result that the couple-stress tensor u is skew-symmetric, such
that u, = ., = — ., 4, = oo = —fhoy, and . = p,, = —p,,. In addition, they also deduced the
force-stress tensor’s skew-symmetric part-the couple stress tensor relationship as follows:

Oy = — M) = — (1/2) (Mi,j _M/,f) . (32)
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The linear constitutive equations for a loaded orthotropic material microplate are given by

FU(m‘ _C11 ¢ ¢3 0 0 0 ] '8xx1
Oy Ch Cn ¢35 0 0 O £y
) Oz 3 0y ¢ 0 0 0 | 22
O 0 0 0 ¢ 0 O Ve (33)
Or) 0 0 0 0 ¢ O Yz
(00 | _0 0O 0 0 o0 Ces | | Vo]
i l’Lx G32 O 0 Ky
1, = (—8]2) 0 G, 0 K, (34)
l M- 0 O G21 K.

where ¢; (i, j = 1-6) are the elastic coefficients; and Gy, G;, and G, are the shear modulus associated
with the zy-, xz-, and yx-planes, respectively. The symbol / represents the microplate’s material length-
scale parameter, the determination of which refers to Tang et al. [48] and Song et al. [49].

The stress equilibrium equations of a microplate, following Hadjesfandiari and Dargush’s analysis
[16,17], are given by

O_(xx)ax +O(}'x) sy +U:xaz +O'[yx] sy = 0: (3 5)
O_(xy)ax +UU1\7) sy +Gzy:z +G[X}’]’X == 05 (36)
Oxzox +O—yzay +Uzzsz = 05 (37)

where as mentioned above, o; = 0 + oy;; and o = —oy; fori # j, and oy, = oy,

We employ the direct elimination to reduce the above equations to six partial differential equations
which are expressed in terms of six primary variables: three transverse stresses (o.,, 0.,, and o¢..) and
three displacements (u,, u,, and u.).

Substituting Eqs. (32) and (34) into the fifth equation of Eq. (33) leads to

Ueye = — Uiy +C53 O+ P (Gt /€55) (tsrnz Flyrnge —Ueyrns —Uinyy )
+ PP (G €55) (Usyye Fthsce —Upoye —Uegrs )+ P (Girae [ C55) (tnyy Hlhree —Uyyy —lesy ) (38)
Substituting Egs. (32) and (34) into the fourth equation of Eq. (33) leads to
Uyoe = = Usyy +C 0oy + P (Gt €44) (Unsys Ay — Uiy =y
+ P (Gis/€as) (—thynrye Fthyn Fthyeee =tz ) + P (Grse/ ) (o Filyo FHilyo =1y ) (39)

Substituting Eq. (28¢) into the third equation of Eq. (33) leads to
U.,. = _El3uxax _EZSM}'W +c3_3l Oz (40)
where ¢,; = ¢3/c33 (k=1 and 2).

Using the relationships of o,. = 0., + 20y, and 0,. = 0., + 20y,; and Eqs. (29), (31), and (32), we
can rewrite Eqs. (35)—(37) as follows:
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O.xsz: = —O(xx)ox _O—(Vx)ay - (1/2) /-’Lymy - (1/2) /-’Lx’yy
== _Qllux’xx _QIZMy,xy _El3gzzax _cééuxsyy _C66uyaxy

2 2
+ l G13 [ux IXXYY _uyaxxxy _uyaxy:: +u:>xyyz ] + l G32 [ux Syyyy +ux9,1fyzz _uy’xyyy —U XYYz ] s (41)

Uz;fa: = _O—(xy)m _JQf)f)’}f - (1/2) /-’anxy - (1/2) /’L}’Dx,\'
= - leux:xy _Q22u}fs}fy _C23U:zay _C66ux>xy _Cééuyaxx
2 2
+ I G32 [_uxm)gvy _uxaxy:: +uyaxxyy +uzaxxy: ] + l G13 [_uxaxxxy +uyax,\‘xx +uyaxxzz _u:>xxyz ] s (42)
O.z5: = Oy _G:}75}7 Mooz +/’Lzaxx _Myayz +/’L:5yy
= Oy — Oy A2 Gy [ty s Aty + +2PG g — Uy
- O.ysx O-;y sy 32 u,\‘axyyz uxs,\‘::: uya,\‘xy: uzaxxzz 13 an,\‘yy: uy:,\‘xyz uy syzzz uz syyzz
2
+ 2l G21 [_ux 9XXXZ _ux XYYz _uyaxxyz _uy)yyyz +u:3,\'xxx +2uzax,‘(yy +u2 SYYYYy ]
2 2
+ 21 G32>: [_ux;xyy _ux));zz +uy)xxy +u:7xx:] + 21 G13;: [ux’xyy _uyaxxy _uy:y:: +u2)yy:] ) (43)

where Q; = ¢; — (¢acs/cx) (i, j=1and2).

Egs. (38)—(43) represent the quasi-state space equations for the FG microplates’ 3D microstructure-
dependent static flexural behavior. In addition, we can reduce these equations for examining FG
microscale plates to those for examining FG macroscale plates by letting the value of / zero.

The microplate’s surface and edge boundary conditions are specified in the following forms
[16,17]:

On the top and bottom surfaces,
{azx 0., 0. [ [,Ly} = {0 0 qi 0 O} on z=+h/2, (44)
where the positive directions of g. and g, following the conventions of the 3D elasticity theory, are
defined to be downward and upward, respectively.

For simply supported boundary edges, we express the edge boundary conditions in the following
forms:

Attheedgesx=0and x = L,,
UXX = uy = ul = //L_V = M: = 0' (45a)

Attheedgesy=0andy =1L,
Uyy =Uy=U = :LLX = /J*z = 0 (45b)

3.2 Fourier Series Expansion Method
This work lets the external loads g_ (x, y) = 0 and expands g. (x, ) as a double Fourier series as
follows:

o0

g () =D gusinmx siniy, (46)

m=1 n=1

where the symbols /7 = i /L, and i = iir/L,; and the symbols /72 and 7 are the half-wave numbers.
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We also express these primary variables as the following double Fourier series:

o0

u.(x, y, z) = ZZum (2) cosmx sin iy,

m=1 n=1

o0

u,(x, y, z) = Z Z Vi (2) SiInx cosny,

m=1 n=1

u.(x, y, z) = z Z Wy (2) sinmx sin iy,

m=1 n=1

oo

O,y (xa y7 Z) - Z Z O31mi (Z) COoS }/;Zx SIH fly7

m=1 n=1

o0

o
O—zy (xa Y, Z) = Z Z O30 (Z) Sin }/;lx COos flya

m=1 n=1
0. (X, ¥, 2) = D > o (2) sin i sinfy.
=l =l
Substituting Eqgs. (47)—(52) into the quasi-state space Eqs. (38)—(43) yields
Upiin: = =W, 4 €5 1 + I (G [ €55) (—ﬁlzuﬁm,; — Y 55 I W5+ ﬁzfzzw,h;,)
+ 12 (G32/CSS) (_flzuﬁﬁt:z +uﬁ1ﬁ5::: +ﬁ1flvﬁ1ﬁ5: _’:th%u)

+ 12 (G325:/CSS) (_flzulﬂh + Uiy zz +ﬁ/lﬁvfnﬁ - ﬁ’lW,;,;,,:) 5

Visio: = —NWps + CZ41<732M + P (G /as) [—ﬁdﬁu,;,;,,; — 7 Vis: + (”hzﬁ + ’713) Wﬁxh]
+ 12 (G13/C44) (}’7’”7”/[,;,;1,: _ﬁ/lzvﬁlﬁ:z +vri1hazzz _ﬁwrﬁhazz)
+ P (Gis../Cas) (ﬁlﬁuﬁzﬁ L T —ﬁwmﬁ,:) )

~ ~ —1
Winisz: = MC13Ugn + NC;3Vin + C3 O30

Os1iioe = W Quithiy + MAQ 1V — MC 303 + T Cosl, + MiCes V5
+ PGy (7772’712%;1;1 — AUV + WiV, _ﬁ/lflzwﬁlﬁaz)
+ P G;, (ﬁ4uﬁm — U5z — TV 5 + ”7’"712Wﬁm,_-) >

s = MNQ U5 + flezzvﬁm — NCy3073355 + MNCe6Uz5 + ﬁ/lzc(,(,v,hﬁ
+ PGy, [ =i w4 Mg, A0V — I, |

2 ~3~ ~ 4 ) =0~
+ PGy [ Mt 4 1V — B Ve W55, |

(47)

(43)

(49)

(50)

(51

(52)

(33)

(54)
(55)

(56)

(57)
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Os3inin: = MO + NO355 + 21 G (—ﬁ?ﬁzumﬁ,: F e T 35 —mzwmﬁ,z)
+ 28 G (T Uiy =1 Y s A iz =TT Wi )
+ 2P Gy [— (W + mit*) usi,. — (0 + 1) Voo + (' + 2000 + 1) Wi
+ 2P Gy, (=1 U + Mt V55 — T Wi )

+ 212 Gl39 (’/hﬁzumn - m nvmn + nvmm _ﬁzwﬁzhaz) . (58)

3.3 The Hermitian C* DRKIM Method

This section develops the Hermitian C*> DRKIM method, which is a point collocation, for solving
the strong form of the 3D CCST, which is composed of the quasi-state space Eqs. (53)—(58) and their
associated boundary conditions (45a) and (45b).

First, we select n, collocation points in the thickness direction, for which n. = 3n,, and then
substitute the primary variables expressed in Eq. (1) and their relevant derivatives into the quasi-state
space Eqs. (53)—(58) at the ith-collocation point, which leads to the following algebraic equations:

np
Z {[(an,»(;) + dlzN,;'Z) + dI3N,;I) + d14Ni/) (Uii); + (dnﬁ/f) + dlzN,;'2> + dI3N;«D + d14Ni/’) (Ouini);

j=1

+(du N, +duN, +d:N, +dl4N,,) (Kum,,)] [(EZISJ\C;'>+EZ.6N5,) (v,;lﬁ)_,+(21151§f,;'> d )
)

Wi mn

(

(4
+(@sN, + dle,) (o), | + [ (AN + DN + o, ) v, + (N2 + AN +
+ (@

+ AN, + doN,) G, |+ | dioNy @), + diNy Orsian); + o, (xgglﬁm),-]} —0,
(59)

p

Z {[(&21]\7;) + gizzNg) (tii); + (gl'le;-l) + glzzNij) (Buini); + (0721N;-1) + a22ﬁi/) (Km;m)j]

[(dzgzv U BN+ dosNy + N, ) (), + (N + GNP + DN + oo, ) (6.
( zaN —|— dz4N + dzsN + d26N1]) (Kvii); ] [(aﬂN,;D + ZizsN,;l) + 5129Nij) (Wii);

( d N + dy N + d N) Oui), + + (Zi N+ dyN +d N.) (k )]
ij 28 if 294V jj winit) j 27 if 28 if 294V jj winit) j

[0, @), + dosoly Oria); + oM, (i) | | =0, (60)

Z { nglM‘j (tii); + 5131&7 (Buini); + EZBINij (Kuﬁm)j] + [gl’zzNi/ Vi), + anﬁ’ij (Byii); + glﬂﬁij (Kuii);

| S|

_ ) o ) o o
— [ N5 i, + N o), + N, o), | + [Ny @i, + Ny o), + AN R | = 0
' (61)
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{[ AN + doN, ) ), + (AN + do,) @), + (AN + AN, ) )]

o [(AoNE + dNy) Oaa), + (AN + D) @), + (A, + V) (o), |
+ I:gl4SN(l) (Wmn) + d45N(1) (enmn) + d45N (Knnm) ] I:]vl;l) (031ﬁ1ﬁ)j + Nl'(fl) (9531’;1;’)1' + N;l) (K"M’m’)j]

+ [&%N i (O33ii); + 2146]% (Oo33ii); + gl%Nij (K<733ﬁ1h)/':|} =0, (62)
Z {I:(ZZSIN D+ giszNij) (Uii); + (6751&;2) + giszzvij) (Busi); + (aSIN;-Z) + gl’szﬁg) (Km:m)j]

(AN +da,) i), + (N2 + 2V, @), + (AN, + 8N, ) )]
+ |:6155N(1 (Wmn) + dSSN(l) (enmrl) + dSSN,j (Knmn) ] I:]v,;'h (6321%h)j + N;jl) (6032r71f1)/' + N;‘l) (Kr732r71i1)/‘:|

+ GNJ/ (o‘ﬁlmn) + d56N11 (9033mn) + d56N11 (Ka3?mn) ]} (63)

E
{[(dmN Y+ dy, N + d63N(1) + dyuN, ) (Uss), + ( (” + d, N<2 + ds; N“) + dyuN, ) (Oui);
[Ny + AN + AN -+ AN, ) (30,

+ ( GINE;) + 5162N,(.j2) + 2163N;]) + gl{,4ﬁ”) (Kurhﬁ) ]
+ (g“NG) + d N(Z) + d67N(1) + d68 ) (9”,1,,) + (d65N + d66N + d67N + dsSNlj) (Kvmn) ]

+ ( N,f) + ZisloN,;l) + ZZGIINij) (Wii); + (aw]v,(f) + ZiGION,;I) + Ziélljvij) (Binin),
d

+ ( 9N + d610N + d6llNy> (Koii) ] [ﬁ’lNij (O313); + ﬁ’lNij (Oozuii); + ﬁqﬁi}‘ (Ka31/nfz)j]

- P — ~ —
+ [ AN (052i); + BNy (Op32i); + NN (K<732ﬁ1h)/':| - [N,'(,»l) (O33i); + N,«;«l) (O33ii); + N,»,» (K<733131f1)jj|} =0,
(64)
where i = 1,2,...,n.; and the relevant coefficients are given in Appendix B.

The associated surface conditions, which are five conditions on the top surface and five conditions
on the bottom surface, are given as

(O313)1 = (O = (Os3i); = (Kii)y = (Myﬁm)] =0 whenz = —4/2, (65a)
O3150) e = Onii) e = (M), = (Myr;na)m_ =0 and (0344), =¢;, Whenz =h/2. (65b)

As mentioned above, Eqs. (59)-(64) and (65a), (65b) represent a system of (6n, + 10) (i.e., 18n, +
10) algebraic equations in terms of 18n, nodal primary variables, which can be readily solved employing
the weighted least square method.
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4 Numerical Examples
4.1 Validation and Comparison Studies
This section considers a simply supported FG microplate that is subjected to either a sinusoidally

ol

distributed load or a uniform load. The former loading conditions are shown in Fig. 3.

The microplate of interest is made of alumina (Al,O;, a ceramic material) and aluminum (Al, a
metal material). The microplate’s material properties are assumed to obey the power-law distributions
for the constituents’ volume fractions, which vary in the thickness direction and are defined as follows:

Lo (2) =[(1/2) + (z/M]7, (66a)
and
[e()=1-T.(2), (66b)

where the subscripts cer and met denote the ceramic and metal materials, respectively.

The material properties of the alumina and the aluminum are given in the following form [23]:

For alumina material, E,,, = 380 GPa, v,, = 0.3,and p.., = 3800 kg/m’. (67a)

For aluminum material,

E,. =70 GPa, v,, = 0.3, and p,,., = 2702 kg/m’. (67b)

By using the rule of mixtures, we estimate the microplate’s effective material properties as follows:
Ey(2)=FE. T (@ +E,.T,..(©

=E,u+ (B — Epe)) Teor (2), (68a)

Uy (2) = 0.3. (68b)

For comparison purposes, we define the non-dimensional variables in the same way as those used
in Thai et al. [23]:

@, w) = (u,, u;) [10E,, 7’/ (q,L?)], (69a)
o, =0;h/(qL,) (i,j=x, y,andz),except o, = 0../q. (69b)

When considering a homogeneous isotropic microplate, we change E. in Eq.(69a) to the
microplate’s Young’s modulus, E,.

According to Lam et al.’s experimental results [7], this work defines the material length-scale
parameters of the MCST and the CCST, Jand/, respectively, as =2l = 17.6x 10~ m. This is because
the couple stress tensor (m;)-the curvature tensor (yx;) relationship in the MCST is m; = 2G P Xis
however, the couple stress tensor (i4;)-the curvature tensor (k;) relationship in CCST is u; = —8G Pk;;.
Thus, the relationship 1 = 21 is obtained, which can be employed to carry out a comprehensive
comparison between the solutions obtained using the MCST and the CCST.

Table 1 shows the results of the Hermitian C*> DRK meshless method for the central deflection
(i.e.,w(L./2,L,/2,0)) of a homogeneous microplate that is placed under full simple supports and is
subjected to a sinusoidally distributed load, i.e., g’ (x, y) = g,sin (wx/L,) sin (n y/Ly) andq_ (x, y) =
0. The relevant material parameters are //# = 0,0.1,0.2,0.3,0.4, and 0.5. The relevant geometric
parametersare L, = L, and L,/h = 5. In Table 1, there are three types of sampling node distributions,
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which are Types A, B, and C, used with the total number of sampling nodes (n,) being n, = 13, 17, and
21, and with the base functions’ highest order being n = 4 and 5. In the case of Type A, the sampling
nodes are uniformly distributed. In the case of Type B, distributions of the sampling nodes are selected
using a formula of roots of the Chebyshev polynomial, which is §& = —cos [(i — 1) /(n, — 1)], where
i=1,2,---, n, Inthe case of Type C, the sampling nodes are randomly scattered and have coordinates
that are randomly generated by the computer we used. The sampling node distributions of Types A,
B, and C are shown in Table 2.

Table 1: Convergence and accuracy studies for the central deflection of the homogeneous microplate
obtained using our Hermitian C*> DRKIM method with different types of sampling node distributions
and different values of the highest order of the base functions

Theories Samplingnode J/h=0 1/h=02 1/h=04 1/h=06 I1/h=0.8 I/h=1.0
distributions  (j/p = 0) (I/h = 0.1) (IIh=0.2) (Ih=0.3) (lh=0.4) (I/h=0.5)
Hermitian C2 DRK Type A 0.3367 02763  0.1963  0.1332  0.0943  0.0704
meshless method (n, = 13, Type B 0.3420 0.2887  0.1909  0.1323  0.0938  0.0700
n=4 Type C 0.3284 02606  0.1894  0.1328  0.0942  0.0703
Hermitian C2 DRK Type A 0.3366 0.2767  0.1957  0.1339  0.0948  0.0706
meshless method (7, = 17, Type B 0.3362 0.2858  0.1962  0.1335  0.0944  0.0704
n=4) Type C 03365 02777 02049  0.1365  0.0929  0.0708
Hermitian C2 DRK Type A 0.3365 0.2929 0.1977 0.1345 0.0950 0.0707
meshless method (7, =21, Type B 0.3361 0.2859  0.1993  0.1349  0.0949  0.0706
n=4) Type C 0.3308 0.2990  0.2021  0.1361  0.0944  0.0701
Hermitian C2 DRK Type A 0.3363 0.2861  0.1994  0.1351  0.0953  0.0709
meshless method (7, = 13, Type B 0.3382 0.2864  0.1994  0.1352  0.0955  0.0710
n=>3) Type C 0.3389 02758  0.1975  0.1343  0.0951  0.0708
Hermitian €2 DRK Type A 0.3353 0.2841  0.1989  0.1351  0.0953  0.0709
meshless method (n, = 17, Type B 0.3367 0.2878  0.1995  0.1352  0.0954  0.0709
n=>3) Type C 0.3363 0.2864  0.1990  0.1352  0.0954  0.0709
Hermitian C2 DRK Type A 0.3361 0.2841  0.1990  0.1350  0.0953  0.0709
meshless method (7, =21, Type B 0.3351 0.2870  0.1994  0.1351  0.0953  0.0709
n=>5) Type C 0.3385 0.2911  0.1978  0.1348  0.0954  0.0710
3D MCST [50] 0.3357 02851  0.1991  0.1351  0.0953  0.0709
3D CCST-based FEM [51] 0.3357 0.2851  0.1991  0.1351  0.0953  0.0709
MCST-based RSDT [23 0.3433 02875  0.1934  0.1251  0.0838  0.0588

Compared with the 3D solutions [50,51], Table 1 shows that the solutions obtained using our
Hermitian C* DRKIM method with n = 5 are more accurate than those with n = 4. The solutions
obtained using the Hermitian C*> DRKIM method with the sampling node distributions of Types A
and B are more precise than those with Type C sampling node distributions. For a range of the values
of the //h ratio from I/h = 0 to //h = 0.5, the maximum relative error between the solutions obtained
using the Hermitian C* DRKIM method and those obtained using the 3D MCST [50] is 0.35% and
0.67% for Type A and Type B sampling node distributions, respectively. The relative error between
the solutions obtained using 3D MCST and the 2D RSDT [23] is 2.3% in the case of //h = 0, and it
increases up to 17.1% in the case of //h = 0.5. This is because the 3D couple stress effect is significant
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when the value of the //h ratio increases. Because our Hermitian C> DRKIM method is based on the
strong form of the 3D CCST, its performance is superior to that of the 2D MCST-based microplate
theory, especially for the microplates with a higher value of the //A ratio.

Table 2: Sampling node distribution of Types A, B, and C

Sampling node n, =13 n, =17 n, =21

distributions
¢ ¢ ¢

Type A £=-1 £=1¢=-1 £=1¢£=-1 ¢=1
¢ ¢ ¢

Type B g=-1 €=1 £=-1 £=1 £=-1 £=1
¢ ¢ e

Type C £=-1 €=1 £=-1 £=1 £=-1 £=1

Table 3 shows accuracy studies for the central deflection results of a simply supported homo-
geneous microplate obtained using our Hermitian C* DRKIM method with a uniform node dis-
tribution (i.e., Type A) and different values of the support size «; and the //h ratio. The microplate
considered here is subjected to the same loads as used in Table 1. The relevant parameters are
[/h=0,0.1,0.2,0.3,0.4, and 0.5; L, = L, and L,/h = 5;n =5, n, = 21. It can be seen in Table 3 that
the solutions obtained using the current DRKIM method with the support sizes 3.5Az < @, < 6.5Az
closely agree with the 3D MCST results [50] and the CCST-based FLM results [51]. The relative errors
between the solutions obtained using the current DRKIM method and the relevant 3D solutions
increase when the support size is smaller than ¢, = 3.5Az and is larger than ¢, = 6.5Az. Among these
values of the support size @, considered in Table 3, the selection of @, = 5.1Az leads to a satisfactory
result through the range of the //h from //h = 0 to I/h = 0.5, which is consistent with the guidance
recommended by Chen et al. [45] and Wang et al. [406].

Table 3: Accuracy studies for the central deflection results of a simply supported homogeneous
microplate obtained using our Hermitian C* DRKIM method with a uniform node distribution and
different values of the support size ¢, and the I/ ratio

a I/h=0 1/h=02 1/h=04 1/h=06 1/h=08 1I1/h=10
(Ih=0) (Ih=0.1) (lh=02) (Ih=0.3) (Ih=0.4) (lh=0.5)
2.7 Az 0.32466 0.28220  0.19897  0.13506  0.09530  0.07091
2.9 Az 0.32469 0.28406  0.19857  0.13505  0.09530  0.07094
3.1 Az 0.33231 0.28518  0.19844  0.13505  0.09530  0.07092
33 Az 0.33511 0.28495  0.19891  0.13506  0.09530  0.07089
3.5 Az 0.33554 0.28146  0.19871  0.13507  0.09530  0.07090
3.7 Az 0.33560 0.28788  0.19937  0.13510  0.09531  0.07091
3.9 Az 0.33576 0.28740  0.19947  0.13513  0.09532  0.07091
4.1 Az 0.33594 0.28498  0.19901  0.13505  0.09530  0.07090
43 Az 0.33611 0.28450  0.19900  0.13504  0.09529  0.07090
45 Az 0.33617 0.28441  0.19900  0.13505  0.09529  0.07090
4.7 Az 0.33615 0.28433  0.19899  0.13504  0.09529  0.07090

(Continued)
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Table 3 (continued)

a I/h=0 1/h=02 1/h=04 1/h=06 1/h=08 1/h=10
(lh=0) (Ih=0.1) (h=02) (Ih=03) (lh=04) (/h=0.5)

4.9 Az 0.33612  0.28427  0.19898  0.13504  0.09529  0.07090
5.1 Az 0.33609 0.28411  0.19896  0.13504  0.09529  0.07090
53 Az 0.33608 0.28387  0.19893  0.13503  0.09529  0.07090
5.5 Az 0.33606 0.28376  0.19891  0.13503  0.09529  0.07090
5.7 Az 0.33603 0.28379  0.19891  0.13503  0.09529  0.07090
59 Az 0.33601 0.28387  0.19889  0.13503  0.09529  0.07090
6.1 Az 0.33600 0.28404  0.19886  0.13502  0.09529  0.07090
6.3 Az 0.33601 0.28414  0.19882  0.13501  0.09529  0.07090
6.5 Az 0.33604 0.28418  0.19879  0.13501  0.09529  0.07090
6.7 Az 0.33609 0.28425  0.19878  0.13512  0.09532  0.07090
6.9 Az 0.33613 0.28447  0.19878  0.13511  0.09532  0.07090
7.1 Az 0.33617 0.28474  0.19877  0.13508  0.09531  0.07090
7.3 Az 0.33619 0.28459  0.19874  0.13506  0.09530  0.07090
3D MCST [50] 0.3357  0.2851 0.1991 0.1351 0.0953 0.0709

3D CCST-based FEM [51] 0.3357  0.2851 0.1991 0.1351 0.0953 0.0709
MCST-based RSDT [23]  0.3433  0.2875 0.1934 0.1251 0.0838 0.0588

Table 4 shows that the comparisons of the central deflection results of a simply-supported FG
microplate obtained using our Hermitian C> DRKIM method with n, = 31 and n = 5, the 3D CCST-
based FEM [51], the refined quasi-3D IGAT [39], the MCST- and CCST-based RSDTs[23,27], and the
CCST-based CPT [27]. The relevant geometric parameters are given as L,/h =5and 20 and L, = L,.

The relevant material parameters are ?/h =0,0.2,0.4, and 0.8 and x, = 0,1, and 10.

The loading conditions considered here are sinusoidally distributed loads and uniform loads and
are expressed as follows:

For the sinusoidal type load,

g’ (x, y) = gpsin (xx/L,) sin (7y/L,), (70a)
q.(x, y) =0; (70b)
For the uniform-type load,
7 ) =q
= z’” z 16,/ (mn?), (71a)
and q. (x, y) ’n;lg), e (71b)

where in the following analysis, the convergent solutions are yielded when the values of n,;, and n; are
taken to be n; = n, = 29.

As previously mentioned, the microplate is made of Al,O; and Al materials, and their volume
fractions are given in Eqs. (66a) and (66b). Table 4 shows the Hermitian C*> DRKIM method’s results
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closely agree with those obtained using the 3D CCST-based FEM [51] and the quasi-3D IGAT [39].
It can be seen in Table 4 that the FG microplate’s central deflection decreases when the value of the
material length-scale parameter rises, indicating that an increase in the material length-scale parameter
stiffens the microscale plate, decreasing its central deflection. The central deflection increases when
the value of the inhomogeneity index («,) rises, indicating that an increase in the value «, softens the
microplate because the stiffer ceramic material’s volume fraction will decrease as compared to the
softer metal material’s volume fraction, increasing the microplate’s central deflection.

Table 5 shows the comparisons for the results of the FG microplate’s in-plane stresses and
deflections obtained using various 2D microstructure-dependent shear deformation theories on the
basis of the MCST/CCST and our Hermitian C> DRKIM method. The relevant material parameters
are k, = 1 and 10; and ?/h = 0,0.2,0.5, and 1. The relevant geometric parameters are L./h = 10
and L, = L,. It can be seen in Table 5 that the solutions obtained using our Hermitian C>* DRKIM
method closely agree with those obtained using the 3D CCST-based FEM [51] and are more accurate
than those of 2D microstructure-dependent shear deformation theories. In addition, the in-plane stress
solutions decrease when the value of / rises, indicating that an increase in the value of / stiffens the
microplate, resulting in fewer deformations and fewer in-plane stresses induced in the microplate. Due
to its excellent performance, we apply the Hermitian C>* DRKIM method to the following parametric
study.

4.2 Parametric Study

This section presents a parametric study to understand the impact of essential factors on defor-
mations, in-plane stresses, transverse stresses, and couple stresses induced in an EG microplate, which
is placed under full simple supports and is subjected to mechanical loads. The microplate considered
here is subjected to the sinusoidally distributed loads, which are g° = ¢, sin (xx/L,) sin (zr y/Ly) and
q. = 0. Material properties of the microplate are assumed to obey an exponential law, exponentially
varying in the thickness direction as follows:

E (2) = E, e+, (72a)
v(z) =0.3, (72b)

where E, = 70 Gpa. When z = /2, Eq. (72a) leads to E, = E, ¢* and k, = In &,, in which k, = E,/E,.
The symbols &, and «, are defined as the inhomogeneity index and its logarithm form. The subscripts
b and ¢ stand for the bottom and top surfaces of the microplate. When the value of &, is one (i.e., the
value of «, is zero), the FG microplate is a homogeneous plate.

The dimensionless variables used in the following study are given as

@, w) = (u., u;) [10E, 1’ /(q,L?)]; (73a)
o; =o0;h/(qL,) i,j=x,y, and {, except o, = 0. /qo; (73b)
(ﬁxa ﬁya ﬁz) = [:uv/(qOLx) ) /"Ly/(qULx) ) M[/(g()h)] . (73C)

It is important to note that using dimensionless variables in the following analysis allows for a
more comprehensive understanding of the results. For instance, when the value of the /A ratio is fixed,
like //h = d, as we change the value of / and let 4 = //d, or we change the value of /& and let [ = (hd),
we always obtain the same results. This approach enhances the robustness and applicability of our
findings.
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Fig. 4a—h shows the variations in dimensionless displacements, in-plane stresses, transverse
stresses, and couple stresses induced in an EG microplate along the thickness direction, with the values
of the inhomogeneity index (k,) being 1, 5, and 10. The relevant material parameters are //h = 0.5 and
[ = 8.8 x 10°m. The relevant geometric parameters are L,/h = 10 and L,/L, = 1. The results in
Fig. 4b show that the microplate’s overall stiffness increases when the value of «, rises, decreasing
the microplate’s deflection. The results in Fig. 4c and d show that the in-plane normal and shear
stress distributions along the thickness direction look like higher-order polynomial functions for an
EG microplate (k. # 1); however, these distributions look like linear functions for a homogeneous
microplate (¢, = 1). Fig. 4¢ and { shows that the transverse shear and normal stress distributions
along the thickness direction look like higher-order polynomial functions in an EG microplate, and
the pick value occurs in the upper half of the microplate; however, these distributions appear to be
parabolic functions in a homogeneous microplate with the pick value occurring at the microplate’s mid-
plane. Fig. 4g and h shows that the couple stress distribution along the thickness direction looks like
higher-order polynomial functions. The variations in the induced stress and deformation distributions
along the thickness direction for an FG microplate are more significant than those for a homogeneous
microplate.

Fig. Sa—h shows the variations in the dimensionless displacement, in-plane stresses, transverse
stresses, and couple stresses induced in an EG microplate along the thickness direction, with the values
of the //h ratio being 0, 0.2, and 0.4. The other material parameter is xk, = 2; and the relevant geometric
parametersare L,/L, =1, L,/h=10,and h=1 x 10~ m.
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Figure 4: (Continued)
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Figure 4: Variations in the dimensionless (a) in-plane displacement #, (b) out-of-plane displacement w,
(c) in-plane normal stress & ,,, (d) in-plane shear stress o, (€) transverse shear stress o, (f) transverse
normal stress o, (g) couple stress 1., and (h) couple stress 1z, along the thickness direction, with the
value of the inhomogeneity index being 1, 5, and 10
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Figure 5: (Continued)
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Figure 5: Variations in the dimensionless (a) in-plane displacement #, (b) out-of-plane displacement w,
(c) in-plane normal stress 7 ., (d) in-plane shear stress o, (¢) transverse shear stress o, (f) transverse
normal stress o, (g) couple stress 7z, and (h) couple stress 1t, along the thickness direction, with the
value of the //h ratio being 0, 0.2, and 0.4

It can be seen in Fig. 5b that an increase in the value of / stiffens the microplate, leading to
its deflection decrease. The results in Fig. 5c—f show that the variations in the in-plane stress and
transverse stress induced in the microplate along its thickness direction with a smaller value of /
are more significant than those induced in the microplate along the thickness direction with a more
considerable value of /. This is because an increase in the value of / stiffens the microplate, which leads
to fewer deformations and fewer stresses induced in the microplate when the magnitude of the applied
load remains constant. The results in Fig. 5¢g and h show that the variations in the couple stresses
(7, and 7x,) along the thickness coordinate look like higher-order polynomial functions.

Fig. 6a—h shows that the variations in the dimensionless deformations, in-plane stresses, transverse
stresses, and couple stresses induced in an EG microplate along the thickness direction, with the length-
to-thickness ratios being 5, 10, and 20. The relevant material parameters are //h = 0.5 and / = 8.8 x
10-* m. The dimensionless displacements are redefined as (z, w) = (ux, u;) [10E,/(g,M)]. The results in
Fig. 6a and b show that the microplate’s overall stiffness decreases when the value of the L /A ratio rises,
increasing its deflection. The results in Fig. 6¢c—f show that the variations in the in-plane stresses and
transverse stresses induced in the microplate along the thickness direction with a more considerable
value of the L,/h ratio are more significant than those induced in the microplate along the thickness
direction with a smaller value of the L /A ratio. This is because a decrease in the value of the L./A ratio
stiffens the microplate, leading to fewer deformations and fewer stresses induced in the microplate
when the magnitude of the applied load remains constant.
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Figure 6: Variations in the dimensionless (a) in-plane displacement #, (b) out-of-plane displacement w,
(c) in-plane normal stress 7 ., (d) in-plane shear stress o, (€) transverse shear stress o, (f) transverse
normal stress 7, (g) couple stress ., and (h) couple stress 1z, along the thickness direction, with the
values of the L,/h ratio being 5, 10, and 20
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5 Concluding Remarks

A Hermitian C? DRKIM method based on the strong form of the 3D CCST has been developed
for analyzing the 3D microstructure-dependent static flexural behavior of an FG/EG microplate.
The FG/EG microplate considered here was subjected to mechanical loads and placed under full
simple supports. The unique features of this Hermitian C*> DRK interpolant compared with the early
Lagrange-type reproducing kernel interpolant for analyzing macroscale plate’s mechanical behavior
are that the displacements, the transverse stresses, and their first-order and second-order derivatives
are selected as primary variables satisfying the nodal interpolation properties, and their corresponding
shape functions satisfy the Kronecker delta properties. These features make our Hermitian C> DRKIM
method suitable for analyzing the FG microplate’s mechanical behavior because the deflections and
rotations prescribed at the boundary edges of the microplate considered here can thus be directly
imposed without using the penalty method, which is necessary for the conventional reproducing
kernel point collocation method. In addition, using our Hermitian C> DRKIM method, the primary
variables’ higher-order derivatives involved in the strong form of the CCST can be effectively estimated.

In the validation and comparison study, the solutions obtained using our Hermitian C* DRKIM
method closely agree with the available 3D solutions in the literature, with a fast convergence rate.
Because the 3D couple stress effect is significant when the value of the /A ratio rises, the performance
of the Hermitian C* DRKIM method is superior to that of 2D CCST-/MCST-based shear deformation
microplate theories, especially for the microplate with a considerable value of the /A ratio. For example,
the maximum relative error between the solutions obtained using the Hermitian C> DRKIM method
and those obtained using the 3D MCST is 0.35% for a range of the value of the // ratio between I/h =
0 and I/h = 0.5, respectively; however, the relative error between the solutions obtained using the 2D
RSDT and the 3D MCST solutions is 2.3% in the case of //h = 0, and it increases up to 17.1% when
the value of the //h ratio is 0.5.

In the parametric study, we presented the displacement, in-plane stress, transverse stress, and
couple stress distributions along the thickness direction of an EG microplate using our Hermi-
tian C* DRKIM method. These distributions cannot be effectively estimated using existing 2D
microstructure-dependent shear deformation theories, especially for the transverse stress and cou-
ple stress distributions, so they have yet to be shown in public literature. Thus, the parametric
analysis results can provide a reference for assessing the accuracy of existing 2D microstructure-
dependent shear deformation theories. Furthermore, the results are also helpful for making assump-
tions about primary variable components for an advanced microstructure-dependent shear deforma-
tion microplate theory, which is to be developed.
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Appendix A: The Higher-Order Derivative of the Hermitian C>* DRK Interpolant

The rth-order derivative of the Hermitian C* DRK interpolant /” (&) with respect to & is expressed
as follows:

drf
dé

D> [ @si+ i @6+ @]

= Z [( @+ Y ®) fi+ (A,“) &) + 9 <s>) 6, + (aj” &+ v (s)) K,] : (74)

where N (¢£), N (¢), and N;w (¢) are the shape functions of Hermitian C> DRK interpolant’s
rth-order derivatives at the sampling node & = &; ¥ (§), ¥ (€), and W;m & (=12,...,m)
denote primitive functions’ rth-order derivatives (i.e., v (&) = d" ¥, (§)/dE", ¥" (€) = d" ¥, (§)/dE’,
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—(r)

and ¥,” (§) = d'¥,(§)/dg"); and ¢ (§), ¢ (§), and , (§) (I = 1, 2,..., n,) denote enrichment

functions’ rth-order derivatives, which are obtained by imposing the nth-order DRCs, and are given
X A AT . —(r

by ¢’ (&) = w.E - &P E~E) b7 ©). 6" &) = w,E-EP E—&) b7 @), and ¢ ¢) =

w, (£ —&)P (£ — &) b (), in which b” (&) is the undetermined function vector.

The undetermined functions b (¢) in Eq. (74) can be determined by selecting the complete nth-
order polynomials as the basis functions to be reproduced and set up (z + 1) DRCs as follows:

—(r)

SPE-8) ¢ ©O+XPE-8) ) ©O+LPE-8)F ©

i 75)
= d'P(O)/ds] =3 P 6 &) Vi ©) -

> PE-8) U O - PE-5 ) ©.

I=

We substitute the enrichment functions in Eq. (74) into the differential reproducing conditions in
Eq. (75). As a result, we obtain the undetermined function vector b? (£) as follows:

b (6) = A, () {d’P O)/dg =D PE—8&) v ) — D PE—&) I &)
=1 =1

-S> PE-&) v, (5)} : (76)

We substitute Eq. (76) into Eq. (74) to obtain the shape functions of Hermitian C*> DRK
interpolant’s rth-order derivatives as follows:

NP @) =¢E+Y) € (=12...n) 7
NP @ =" @+ € (=12....n,). "
N ©=9"©+¥ € (=12...n). "
where

PE = mE-OP E-NE. H'E = mE-P - E. 3 © =

w,(§ —E)P (5 —E)B](E).
Appendix B: The Relevant Coefficients Elij

The relevant coefficients &’,-j are given as follows:

dy = GoclPydyy = Gy, )P, diy = — (PG + i2G) ¢ P — 1, diy = —iP G, {1,

dis = it (Gy, — G)) ¢:) P, dyg = MG, )P, dyy = —inGycl P, diy = =Gy, ¢,

diy = (1 + i) Goycs )P — i, dyo = ¢ty doy = Wit (Gis — Giy) ¢ Py doy = it Gys,. €1,

dy = GucilP, doy = Gis,. P, dos = — (PGcy) +WGuc )P — 1, dyg = i Gy, &P, doy

= —71G3 P, dog = —i1Gys,. €3I, doy = (P71 + ) Gy P — T, dog = €3, dyy = TG,
dyy = s, dys = ¢35, diy = —iP Gl di = (P Q) + it2Ces) + (AP Grs + 1 Ga) P, diy = it Gy P,
dy = it (Q1, + ) — (71Grs + it Gyy) Podys = (—it> Gys + iit* Go) Podyg = —iné,
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dsy = MGy, dsy = it (Qps + ce6) — (it Gy, + i 71Gyy) P, dsy = —i* Gy P,

dsy = (PO + i) + (AP Gy + ' Gs) P, dss = (P71G s — iP71Gy) P, dsg = —Tics,

dy = 2MGsl, dey = 2MGy,. P, dy = [ 201> Gy, + 2007 Gyy — 2 (i1’ + iit®) G| P,

dos = [~ 200> Gao,. +2i7 G, 1 P, dgs = 211G, deg = 201Gs,. I,

dg = [2°7Gy, — 207Gy — 2 (i + i7') Goy | P, dog = [2P°71Grs,. —20P01Gyy,. ] I,

de = =2 (i Gy, + P Gyy) P, dggg = =2 [ G +iPGyo,. ] P, dgyy = 2 (i + 2071° + it*) Gy P
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