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ABSTRACT

This paper proposes a new approach to counter cyberattacks using the increasingly diverse malware in cyber
security. Traditional signature detection methods that utilize static and dynamic features face limitations due
to the continuous evolution and diversity of new malware. Recently, machine learning-based malware detection
techniques, such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), have gained
attention. While these methods demonstrate high performance by leveraging static and dynamic features, they
are limited in detecting new malware or variants because they learn based on the characteristics of existing
malware. To overcome these limitations, malware detection techniques employing One-Shot Learning and Few-
Shot Learning have been introduced. Based on this, the Siamese Network, which can effectively learn from a small
number of samples and perform predictions based on similarity rather than learning the characteristics of the
input data, enables the detection of new malware or variants. We propose a dual Siamese network-based detection
framework that utilizes byte images converted from malware binary data to grayscale, and opcode frequency-based
images generated after extracting opcodes and converting them into 2-gram frequencies. The proposed framework
integrates two independent Siamese network models, one learning from byte images and the other from opcode
frequency-based images. The detection models trained on the different kinds of images generated separately apply
the L1 distance measure to the output vectors the models generate, calculate the similarity, and then apply different
weights to each model. Our proposed framework achieved a malware detection accuracy of 95.9% and 99.83% in
the experiments using different malware datasets. The experimental results demonstrate that our malware detection
model can effectively detect malware by utilizing two different types of features and employing the dual Siamese
network-based model.
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1 Introduction

Malware poses serious security issues, including the leakage of personal information and crucial
data, as well as causing system paralysis [1]. Traditionally, signature-based detection methods based
on static and dynamic features have been used to detect such malware. Static signatures are defined by
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elements that can be extracted without executing the malware, such as hardcoded key values, string
information, file signatures, and file hash values. Dynamic signatures refer to information extracted
after executing the malware in a virtual environment, primarily including dynamically loaded API
(Application Programming Interface) and network traffic information from a Sandbox [2,3]. With the
diversification of cyber-attacks, the use of malware for attacks has increased. To mitigate the attacks
caused by malware, research utilizing machine learning has actively been conducted. The previously
introduced detection methods have proven effective in detecting malware by training machine learning
models with existing malware [4,5]. However, these methods struggle to detect new malware or variants
since they primarily learn from the features of known malware [6]. To overcome this, we designed
our detection method to analyze newly emerged malware by adapting the few-shot learning (FSL)
approach [7]. Few-shot learning (FSL) is a machine learning method that allows for rapid learning
and generalization from a small amount of data without needing large datasets. Unlike traditional
machine learning, which relies on existing data for performance evaluation, FSL enables predictions
for small or unfamiliar datasets by learning classification methods. In FSL, the dataset is divided
into a support set for training and a query set for evaluating the performance of the trained model
[8]. Among the many kinds of few-shot learning algorithms, our method utilizes a Siamese network
algorithm demonstrating excellent performance. The Siamese neural network, designed based on
few-shot learning, receives two input data and vectorizes them through the neural network. Then, it
measures the similarity between the two vectors using various distance functions such as L1 distance,
cosine distance, and L2 distance to perform classification [9].

We propose a dual Siamese network architecture that integrates two Siamese networks, each
learning from byte images and opcode frequency-based images. The framework selects a small number
of image pairs created from malware data, including opcode frequency image pairs and byte image
pairs, trains two independent models, and measures each model’s similarity before applying weights
for detection. Byte images represent binary data directly, allowing for a detailed understanding of the
file’s content and structure, while opcode frequency-based images represent the program’s instruction
set, learning specific behavior patterns of malware. Combining these two distinct features information
effectively analyzes and detects malware from multiple perspectives.

In other words, our framework enhances malware detection performance by utilizing both byte
images and opcode frequency-based images, and the framework outperformed previous studies and
other research using the same dataset. Additionally, by suggesting a method using the pre-trained
VGG16 (Visual Geometry Group-16) model, to select representative samples, we improved detection
efficiency by comparing more relevant samples.

The structure of this paper is as follows: Section 2 discusses related work on malware detec-
tion, Section 3 details the transformation of the dataset into a form usable for training, including
byte images and opcode frequency-based images, and the dual Siamese network architecture and
components. Section 4 presents the experimental results and the malware detection performance of
the proposed framework, and conducts a comparative analysis with related work to our proposed
method. Section 5 presents the conclusions, outlines future research, and discusses the limitations and
implications of this paper.

2 Related Work

This section introduces existing research related to malware detection. In the study by
Zolkiplic et al. [10], a new malware detection framework that combines signature-based detection
and Genetic Algorithm (GA) techniques was proposed to address the limitations of traditional
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signature-based methods in detecting various malware and zero-day attacks. The framework consists
of three primary components: signature-based detection, GA detection, and signature generation.
The signature-based component uses known malware signatures for identification, and the GA
component targets new and unknown malware types through learning and adaptation. The framework
operates by automatically generating signatures from detected malware and updating the database
for future reference. This integrated approach has improved the detection of newly released malware,
enhancing the effectiveness and efficiency of computer operation security. Savenko et al. [11] proposed
a dynamic signature-based malware detection method based on API call tracing to generate malware
signatures. This method analyzes the frequency and interaction patterns of critical API calls made
by malicious programs to identify and distinguish malware signatures from normal applications.
The signature captures the frequency of important API calls related to malicious activity and
their interaction characteristics to analyze malware behavior, offering a more resilient response to
obfuscation and evasion techniques used by malware authors. Santos et al. [12] suggested OPEM,
a hybrid malware detection method that combines static and dynamic analysis features to improve
malware identification accuracy. Static analysis involves inspecting executable files without execution
to capture operational codes (opcodes) sequences and frequency, while dynamic analysis operates by
executing files in a sandbox to observe system call activities and exceptions that occur. By integrating
these approaches, OPEM effectively detects malware that uses obfuscation or packing and complex
evasion techniques.

Recent studies have extensively pursued deep learning-based malware detection. Research by
Hwang et al. [13] proposed a platform-independent malware analysis method that works on both
Windows and Linux environments. This AI-based technique analyzes binary data to detect malware
without relying on the specific file formats of executable files. By extracting and classifying strings
from binary data, the method achieves effective malware detection across various platforms. Experi-
mental results showed a high accuracy of 91.77% on Windows datasets, demonstrating the method’s
capability to manage malware threats in diverse computing environments. Yoo et al. [14] proposed
a hybrid approach named AI-HydRa for malware classification, combining random forest and deep
learning techniques. The model uses both static and dynamic features to enhance detection accuracy,
employing a voting mechanism to integrate results from different classifiers. In experiments with
6,395 samples, AI-HydRa achieved an 85.1% detection rate. Jeon et al. [15] proposed HyMalD, a
hybrid malware detection model for IoT devices, integrating Bi-LSTM (Bidirectional Long Short
Term Memory) and SPP-Net (Spatial Pyramid Pooling Network). This model combines static and
dynamic analyses to detect obfuscated malware using opcode and API call sequences. HyMalD
achieved a 94.85% detection accuracy, proving effective in identifying malware within smart IoT
environments. Sara et al. [16] presented a static analysis-based approach using machine learning
and deep learning technologies to detect zero-day malware attacks in Android applications. This
approach utilized static attributes extracted from mobile apps, such as permissions, API calls, and
opcodes, and employed a Multiview DL (Deep Learning) model on various datasets composed of
real Android application functionalities to achieve high accuracy in zero-day malware scenarios.
He et al. [17] proposed utilizing machine learning (ML) technology through hardware-supported
malware detection (HMD) to overcome the limitations of conventional software-based detection
methods. This proposal includes methods applying AdaBoost ensemble learning for real-time zero-
day malware detection, a Deep-HMD approach based on deep neural networks and transfer learning,
and a Reinforced-HMD framework using reinforcement learning for cost-efficient detection, lever-
aging limited hardware performance counter (HPC) events to reduce costs and enhance detection
performance. Aslan et al. [18] suggested a hybrid architecture using a pre-trained model combining
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ResNet-50 and Alex Net to effectively address new malware variants. Chaganti et al. [19] proposed
an image-based malware detection framework utilizing the Deep Learning Model EfficientNetB1.
This framework evaluated the performance and computational efficiency of various pre-trained
Convolutional Neural Network (CNN) models to select the most suitable CNN architecture for
malware classification. The study also assessed different malware image representation methods by
varying the image width according to the file size. Results indicated that malware using a fixed-
width byte-level representation with EfficientNetB1 performed best. Acharya et al. [20] conducted
malware detection based on EfficientNetB0 and CNNs by converting malware binaries into 8-bit
grayscale images and classifying malware families using the EfficientNetB1 model. This research
not only demonstrated the efficiency and excellence of deep learning models but also suggested the
potential for model robustness evaluation against adversarial attacks and the possibility of extension
through feature fusion and multi-viewpoint learning approaches. Brown et al. [21] proposed malware
detection in a cloud environment using Automated Machine Learning (AutoML) to optimize CNN
models. This paper utilized AutoML mainly in two areas: using deep feedforward neural networks
like Multi-Layer Perceptrons (MLPs) for static malware detection and optimizing CNN models with
AutoML for malware detection on virtual machines operated in a cloud-based IaaS (Infrastructure
as a Service). Abdulazeez et al. [22] described a comprehensive methodology for utilizing pre-trained
CNN models for malware detection. The proposed approach involved converting malware images to
grayscale and extracting features using models like ResNet-50, DenseNet-201, Google Net, Alex Net,
and Squeeze Net. Classification was performed using several algorithms, including feature selection
through Principal Component Analysis (PCA), GDA (Gaussian Discriminant Analysis), KNN
(K-Neighbor Nearest), logistic SVM (Support Vector Machine), RF (Random Forest), and ensemble
learning, with the KNN classifier showing the most effective results. Zhong et al. [23] proposed a Multi-
Level Deep Learning System (MLDLS) for malware detection, organizing multiple deep learning
models in a tree structure to effectively handle complex malware data distributions and improve
scalability, demonstrating superior performance over single deep learning models, deep learning model
ensembles, and machine learning techniques.

Our proposed malware detection research similar to Siamese network-based malware detection
includes the following: Chai et al. [24] proposed the Dynamic Prototype Network based on Sample
Adaptation for few-shot malware detection (DPNSA) for zero-day malware detection using a few sam-
ples. This model efficiently detected unknown malware by dynamically adjusting model parameters
based on a small number of input samples and learning from predefined class samples. Additionally,
the introduction of a dual-sample dynamic activation function utilized the correlation between samples
to reduce the impact of irrelevant features for sophisticated detection. Almarshad et al. [25] suggested
a new approach for detecting Android Malware using the Siamese Shot Learning technique. This
study utilized Siamese networks trained through an N-way one-shot task with the Drebin dataset
to rank sample similarity and measure accuracy, integrating Siamese one-shot learning and machine
learning-based algorithms to prove high accuracy and the ability to adapt to new and unknown
malware variants. Zhu et al. [7] proposed a new malware detection approach using a Multi-Loss
Siamese Neural Network and Batch Normalization Layer. This model accurately identified unknown
new malware variants with fewer samples and optimized small sample size issues like overfitting and
vanishing gradients through batch normalization and multiple loss functions. Moreover, this paper
described converting raw binary files into grayscale images to facilitate the use of Siamese networks
by generating positive and negative pairs for effective training. Hsiao et al. [26] proposed a new
approach to malware image classification using One-Shot Learning with Siamese Networks. This
model effectively detected new malware with limited samples by converting malware samples into
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resized grayscale images and classifying them based on the average hash (aHash) within the family, then
training the Siamese Network to rank the similarity between samples. Zhu et al. [27] proposed a task-
aware meta-learning-based Siamese Neural Network to classify control flow obfuscated malware. The
model uses entropy and image-based features to enhance detection accuracy. With the VGG16 (Visual
Geometry Group-16) network integrated for feature embedding, it effectively identifies malware
variants despite obfuscation. Experimental results showed the model achieved up to 95% classification
accuracy. Asir et al. [28] proposed a method for Android-based malware detection using Siamese
Shot Learning. This approach learns fine-grained patterns and enhances the model’s generalization
ability using only a small amount of labeled data, making it effective in detecting new and varied
malware instances. Kasarapu et al. [29] proposed a malware detection framework that uses AI-based
code generation techniques to expand the dataset by generating diverse variant samples from a limited
number of malicious samples. The generated samples mimic the patterns of real malware, ensuring
practical detection performance. By leveraging Few-Shot Learning, the framework efficiently classifies
complex malware with a small number of samples. Davis et al. [30] proposed a method for malware
detection in network traffic by extracting specific fields from the IP header of network sessions in
pcap files and converting this data into 50 × 50 RGB images. Using a CNN model based on the VGG
network, their approach demonstrated high performance across various datasets. Notably, the CNN
model achieved a macro F1-Score of 97% on the MCFP (Malware Capture Facility Project) dataset
and showed excellent generalization capabilities on the USTC-TFC2016, MedBIoT, and IEEE-Mirai
datasets.

Recent research has shown that Siamese Networks have notable performance in malware detec-
tion, but most studies have the limitation of utilizing only one type of image information, reflecting
limited characteristics. To address this issue, our research proposes a model that combines byte images
and opcode frequency-based images, enabling a comprehensive analysis of both the structure of the
file and the behavior patterns of malware, thereby allowing for more versatile detection.

3 Our Proposed Method

Our proposed detection method’s processing flow can be divided into two parts, as shown in Fig. 1.
The first part is the detection model generation (model tuning) phase, which generates the dual Siamese
network-based detection model. The dual Siamese network-based detection model consists of two
Siamese networks, therefore each network should be trained separately. To train each network model,
binary files are converted into image data, and then image pairs are selected. These image pairs are
simultaneously fed into the detection model for training. It is noted that each network model utilizes
two types of image pairs: byte image pairs and opcode frequency image pairs.

The second part is the detection (model testing) phase, where query samples are input into the
detection model to analyze its maliciousness. The dual Siamese network-based detection model pro-
cesses image pairs (e.g., query sample-representative malware sample or query sample-representative
benign program sample) to produce two separate similarity scores based on different features. In other
words, in each process of a Siamese network, a query sample is compared with a set of representative
malware and benign samples. The query sample’s similarities calculated from the two different Siamese
networks are then weighted and merged into a single final similarity score to determine the query
sample’s classification. For the decision, the final similarities between the query sample and the
representative samples are compared to each other, to determine which type of representative sample
has the highest similarity. If the query sample’s similarity with a malware sample is higher than that
with the benign program samples, then the query sample is considered malware.
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Figure 1: The overall processing flow of our proposed detection framework

3.1 Feature Image Generation
3.1.1 Byte Image Generation

We define a byte image as an image created by directly using the byte values contained in a binary
to specify the image pixel values. To convert a binary file to a byte image, the byte image generation
module first loads the hex binary to memory, and then it divides the entire bit sequence of the hex
binary loaded in the memory into 8-bit (1 byte) units, and each 8-bit is considered as one-pixel value
to construct the image. Each pixel’s value is considered as a grayscale value between 0 and 255, and
the byte image is generated in the format of grayscale which is one way of representing images, using
only brightness information without color information to depict the image. In this study, the size
of the Image was set to 128 × 128. This dimension was chosen as it is appropriate for the efficient
training and processing of our proposed Siamese Network. Images larger than 128 × 128 may consume
excessive training time and computational resources. Conversely, significantly smaller images might
fail to capture critical features necessary for distinguishing between malicious and benign samples.
The detailed algorithm for the byte image generation is shown in Algorithm 1, and the examples of
the images converted from the malware samples and the benign program samples are depicted in Fig. 2.

3.1.2 Opcode Frequency-Based Image Generation

The opcode frequency-based image is generated by conducting four major steps: converting
a binary file into assembly code by disassembling, extracting the sequence of opcodes from the
disassembled code, calculating the frequency of the 2-grams extracted from the entire opcode sequence,
and converting the 2-gram frequency data into an image. Each steps are explained in Section 3.1.2.
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Figure 2: The examples of the byte image. (a) Dropper/Win32, (b) Downloader/Win32, (c) Exe
File/Win32, (d) DLL File/Win32

Algorithm 1: Converting a binary file to a byte image
Input: malware files, normal files
Output: byte image set
1. files ← malware files, normal files
2. for i ← 0 to length of files -1 do
3. raw_data ← read (files[i])
4. image_size ← length (raw_data)∧0.5
5. image_data ← reshape (raw_data, (image_size, image_size))
6. save_image (image_data, “PNG”)
7. end for

Disassembling Binary Filest

To identify the opcodes used in malicious and normal files, the binary is converted into assembly
language form. Using IDA Pro, Windows-based executable files are disassembled and transformed
into assembly language.

Opcode Sequence Extracting

After obtaining the disassembled code from the binary file, unnecessary information such as
operands in the assembly instruction sequence is first removed to retain the opcode information. Then,
opcodes are extracted while maintaining the order of instructions written in the disassembled code.

2-Gram Opcode Frequency Extracting

From the entire opcode sequence consisting of only opcodes of the disassembled code, the 2-grams
are extracted. 2-gram is a sequential data composed of two consecutive elements of a sequence. For
example, assuming there is an opcode sequence data which is made of [“mov”, “add”, “sub”, “push”,
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“pop”], the extracted 2-grams would be [[“mov”, “add”], [“add”, “sub”], [“sub”, “push”], [“push”,
“pop”]]. The frequency of 2-grams can be determined by simply counting 2-grams discovered while
the method moving sliding window of size 2.

Converting Opcode Frequency Data to an Image

To visualize the extracted 2-gram opcode frequency data as images, it is necessary to establish the
coordinate indices for the 2-gram opcodes. The opcode frequency images can vary depending on how
these coordinate indices are set. The method for setting coordinate indices can vary widely depending
on the criteria established. In our case, opcode instances are clustered first to group similar opcodes.
The opcode instance is defined as a document frequency that represents the count of how many
documents contain a specific term within a dataset. In detail, the document frequency of each opcode
is measured in a set of malware files previously collected, and it is used for conducting clustering.

The indices of the opcodes in the same cluster are positioned close to each other in the x/y
coordinate of the image. The distance function used for opcode clustering is the Pearson correlation
coefficient. The Pearson correlation coefficient, ranging from –1 to 1, indicates a strong negative
correlation when approaching –1 and a strong positive correlation as it approaches 1 [31]. A value
near 0 means there is little to no correlation [32]. Given two variables X and Y , the Pearson correlation
coefficient r is defined by the formula Eq. (1), where xi and yi represent the ith values of variables X
and Y , respectively, x and y represent the means of variables X and Y , respectively.

r =
∑

(xi − x)(yi − y)√∑
(xi − x)2

∑
(yi − y)2

(1)

After clustering opcode instances using the Pearson correlation coefficient, images are generated
based on the 2-gram opcode frequencies recorded in Section 3.1.2. If the frequencies recorded for the
sequence [[“mov”, “add”], [“add”, “sub”], [“sub”, “push”], [“push”, “pop”]] were [[“mov”, “add”]: 1,
[“add”, “sub”]: 2, [“sub”, “push”]: 3, [“push”, “pop”]: 4], then a frequency of 1 would be recorded at
the horizontal axis index matching “mov” and the vertical axis frequency for “add”. This process is
repeated for all opcode 2-grams to generate an image. The remaining processes for image creation are
identical to that of creating byte images, and the resulting images are shown in Fig. 3. (a) and (b) are
examples of malware samples converted into opcode frequency-based images, while (c) and (d) are the
examples of benign samples’ image

3.2 Selecting Image Pairs for Model Training
After all byte and opcode frequency images of malware samples and benign program samples are

generated, image pairs need to be selected for training two Siamese network models. As described in
Algorithm 2, an image is randomly selected from the entire dataset consisting of malware Images and
benign program images. Then, another image of the same class as the first selected image is randomly
chosen to form an image pair. This process is repeated until enough image pairs of the same class.
Siamese network requires not only image pairs of the same class but also image pairs of which image
belongs to different classes. Therefore, an image of a different class than the previously selected image
is also chosen at random to form an image pair of different classes. During the image pair selection
process, a duplicate removal mechanism is conducted to prevent previously selected image pairs from
being reused. It ensures that the samples composing the training data are more diverse. The examples
of image pairs are shown in Fig. 4.
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Figure 3: Examples of the opcode frequency-based image. (a) Dropper/Win32, (b) Downloader/Win32,
(c) Exe File/Win32, (d) DLL File/Win32

Figure 4: Examples of image pairs in the same class or different class. (a) Abnormal Image Pair,
(b) Normal Image Pair, (c) Normal–Abnormal Image Pair, (d) Abnormal–Normal Image Pair

Algorithm 2: Image pair selection for model training
Input: malware image data, benign image data
Output: image pair
1. images ← malware image data, benign image data
2. rand_image ← rand(images)
3. for i ← 0 to length of images -1 do
4. if class(images[i]) == class(rand_image) then
5. same_class_images ← images[i]
6. same_class_image ← rand(same_class_images)
7. image_fair ← (rand_image, same_class_image)
8. end for
9. rand_image ← rand(images)
10. for i ← 0 to length of images -1 do
11. if class(images[i]) != class(rand_image) then

(Continued)
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Algorithm 2 (continued)
12. diff_class_images ← images[i]
13. diff_class_image ← rand(diff_class_images)
14. image_pair ← (rand_image, diff_class_image)
15. end for
16. return first_pair, second_pair

3.3 Dual Siamese Network-Based Detection
3.3.1 Constructing a Siamese Network

The processing flow for training Siamese network models is depicted in Fig. 5. After all image
pairs are selected, the image pairs are labeled to train the Siamese network model. A Siamese network is
a specialized neural network used primarily for tasks that involve finding the similarity or relationship
between two inputs. The Siamese network model analyzes input data in pairs and produces an output
value representing the distance between given inputs of the pair. Therefore, the image pairs of which
images are in the same class are labeled as 1, and the pairs of which images belong to different class
are labeled as 0. After all given image pairs are labeled, then it is possible to fit the Siamese network
models using the image pairs. Dual Siamese network consists of two Siamese networks, and each
Siamese network also consists of two identical subnetworks for embedding and a merging network
for producing distance value. It is noted that the convolution and pooling layers in the subnetworks
for embedding share the weight parameters. The detailed architecture and parameter information are
described in Fig. 5 and Table 1. In addition, two subnetworks converge into a merging layer at the
end, which computes a metric or distance function to measure how similar or different the inputs are.
The L1 distance is used to assess the similarity between the two output vectors of the subnetworks.
L1 distance calculates the distance between two points marked in the coordinate space of Euclidean
geometry. If there’re two given vectors A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn), then the
L1 distance is calculated as the sum of the absolute differences of the vector components, expressed
mathematically as Eq. (2) [33].

d (A, B) =
∑n

i=1
|ai − bi| (2)

Figure 5: Processing flow of dual Siamese network-based detection
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Table 1: Parameters for Siamese network

Layer Parameter setting

2D-convolution Kernel size = (10, 10)
Number of filters = 64
Strides = (1, 1)
Activation function = Rectified linear unit (ReLU)

Max-pooling Filter size = (2, 2)
Strides = (2, 2)

2D-convolution Kernel size = (7, 7)
Number of filters = 128
Strides = (1, 1)
Activation function = Rectified linear unit (ReLU)

Max-pooling Filter size = (2, 2)
Strides = (2, 2)

2D-convolution Kernel size = (4, 4)
Number of filters = 128
Strides = (1, 1)
Activation function = Rectified linear unit (ReLU)

Max-pooling Filter size = (2, 2)
Strides = (2, 2)

2D-convolution Kernel size = (4, 4)
Number of filters = 256
Strides = (1, 1)
Activation function = Rectified linear unit (ReLU)

Fully-connected Number of units = 4096
Activation function = Sigmoid

If two images are deemed similar (in the case of an image pair from the same class), the similarity
score should be close to 1, whereas if they are considered different (in the case of an image pair from
different classes), it should be close to 0.

Therefore, when a binary file being analyzed using the dual Siamese network model, L1 distance
is converted to a similarity value by using Eq. (3), and the example of images based on similarity is
shown in Fig. 6.

S (A, B) = 1/(1 + d (A, B)) (3)

3.3.2 Selection of Representative Samples

The representative samples are used in malware detection with the trained dual Siamese network
model. To select these representative samples, each image is first input to the pre-trained VGG16 model
to transform the image data to a vector. The VGG16 model consists of consecutive convolution and
pooling layers, and fully-connected layers. Among the immediate output of layers of the VGG16, the
output of the last pooling layer is flattened to form the vector. After all images are converted to
vectors, then a malware sample and a benign sample that have the minimum Euclidean distance in
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each group are chosen as the representative malware and benign samples. The query sample, along
with the representative malware and benign samples, forms the image pairs that are input into the
dual Siamese network model.

Figure 6: The examples of images and their similarities. (a) Normal–Abnormal, (b) Abnormal–
Abnormal, (c) Normal–Abnormal, (d) Abnormal–Abnormal

3.3.3 Detection Using Dual Siamese Network

Siamese networks can only determine whether two given inputs belong to the same class or not.
Therefore, to ascertain whether a specific binary is malicious or not, one must compare the binary
file’s similarity with representative samples of both malware and benign programs. If the similarity
with the malware samples is higher, the binary file is classified as malware. Therefore, if a binary file
is given, its byte image and opcode frequency image are generated, and these images are considered
as query samples. The similarity is firstly computed using the pair of the query images and malware
images, and the similarity is also calculated using the pair of the query images and benign program
images. Then, these two similarities are compared for the final decision.

Dual Siamese Network consists of two Siamese networks which separately produce a similarity
value. Therefore, in each pairwise similarity calculation, the similarity for opcode frequency images
and the similarity for byte images are calculated by two Siamese networks, and these two similarities
are weighted and averaged to obtain a single similarity.

4 Experiment and Performance
4.1 Dataset

In the experiments of this paper, we used the data provided by the Korea Internet & Security
Agency for the 2018–2019 “AI-based malware detection” track [34]. Among the provided PE (Portable
Executable) files, we focused on codes targeting the Intel 80386 PE and excluded small-sized malware
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and normal codes with less than 500 instructions. From the remaining data, we randomly selected
10,000 Normal and 10,000 Abnormal data. Additionally, to prove the detection model’s generalization
performance, we also used 9000 malware samples collected from Vxunderground [35].

The dataset was transformed into two different formats to facilitate model learning. The first
method, Byte Image, converts the PE file binary into an 8-bit grayscale image, and the second method,
Opcode Frequency-Based Image, generates an image based on the opcode frequency of the PE file.
Using these methods, the processed dataset was divided into a Support (Training) Set and a Query
(Test) Set at an 8:2 ratio.

4.2 Experimental Environment
The system specifications used in the experiments of this paper are shown in Table 2, and the

libraries used are Python 3.10.12, PyTorch 2.1.2, and Scikit-Learn 3.10.12. The hyper-parameters of
the Dual Siamese Network are shown in Table 3 and are set to the values that performed the best in
performance comparisons.

Table 2: Environment of experiment

Component Specification

CPU I9-13900KF CPU@ 5.8 GHz
RAM 16 GB, DDR5, 2x
GPU NVDIA GeForce RTX 4080

Table 3: Hyper-parameter of our proposed framework

Hyper parameter Value

Batch size 128
Epoch 200
Learning rate 0.00006

To determine whether a combined form of two features demonstrates better performance than a
single feature in our proposed Dual Siamese Network, the similarity weight of each Siamese network
model was incremented by 10 within a range of 0 to 100 during the experiments, and the sum of the
weights of both models was set to satisfy 100. The support set consists of 16,000 images (# of the benign
samples: 8000, # of malware samples: 8000), and all possible image pairs are 127,992,200, however, in
our experiments, we conducted the evaluation using only 30,000, 60,000, 90,000 image pairs. In this
case, image pairs of the same class and image pairs of different classes are selected in a 5:5 ratio among
the set image pairs as shown in Table 4. This approach was adopted to ascertain the impact on the
performance of our proposed method as the number of image pairs increases.

4.3 Evaluation
4.3.1 Performance Metrics

In this section, performance metrics such as Accuracy, Precision, Recall, and F1-Score are
explained. To calculate each performance metrics, True Positive (TP), True Negative (TN), False
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Positive (FP), and False Negative (FN) are calculated in advance. True Positive (TP) occurs when the
true category is positive, and the predicted category is also positive. True Negative (TN) occurs when
the true category is negative, and the predicted category is also negative. A False Positive (FP) occurs
when the true category is negative, but the predicted category is positive. A False Negative (FN) occurs
when the true category is positive, but the predicted category is negative [5]. After all basic metrics such
as TP and FP are computed, then Accuracy, Precision, Recall, and F1-Score can be calculated using
the basic metric values.

Table 4: Number of image pairs

Image pair Same class Other class

30,000 15,000 15,000
60,000 30,000 30,000
90,000 45,000 45,000

Accuracy is defined as the ratio of correctly predicted results to the total number of predictions,
and it is the ratio of TP and TN to the sum of all predictions. The formula is Eq. (4). Precision is defined
as the percentage of positive predictions that are correct. It is calculated by dividing the number of TP
by the sum of TP and FP. The formula is Eq. (5). Recall is the model’s ability to correctly identify
malware. It is expressed as the number of TP divided by the total number of true cases, i.e., the sum
of FP and FN. The formula is Eq. (6). The F1-Score is the harmonic mean of Precision and Recall.
Table 5 shows the training time depending on the number of image pairs used for training. The shortest
training time was about 6 h for 30,000 image pairs and the longest training time was about 21 h for
90,000 image pairs. The formula is Eq. (7).

Accuracy = TP + TN
TP + TN + FP + FN

(4)

Precision = TP
TP + FP

(5)

Recall = TP
TP + FN

(6)

F1 − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(7)

Table 5: Time spent on training with dual Siamese network

# of image pair Training time (hh:mm:ss)

30,000 06:12:14
60,000 13:27:42
90,000 21:07:38

4.3.2 Malware Detection Performance

The experimental results regarding the effects of varying weights and image pair quantities on
model performance are presented in Table 6. The weight ratio is expressed as the Byte Image model to
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opcode frequency-based ratio. As shown in the table, a higher number of image pairs generally leads
to better performance, with the best results achieved when both features are used in equal proportions
(50:50 weight ratio). The best performance was achieved with 90,000 image pairs and a 50:50 weight
ratio. In this configuration, the model achieved an accuracy of 95.90%, precision of 96.81%, recall
of 94.60%, and F1-Score of 95.69%. Comparing the results across all metrics, the 50:50 weight ratio
consistently provides predominantly high performance in terms of accuracy, precision, recall, and F1-
Score. The precision, which measures the model’s accuracy in predicting positive samples, was highest
at 96.81%, indicating a low false positive rate. The recall, which assesses the model’s ability to identify
all relevant instances, was slightly lower at 94.60%, indicating that while the model is highly accurate,
there is still a small proportion of relevant instances not being detected. The F1-Score, which balances
precision and recall, was high at 95.69%, reflecting the overall effectiveness and robustness of the
model. The confusion matrix is shown in Fig. 7, and the results indicate that our proposed model,
which utilizes a combination of features, performs more accurate detection than models using single
features alone, and that increasing the number of image pairs has a positive impact on the model’s
detection performance.

Table 6: Malware detection performance results (datasets from [34])

Similarity weighting ratio (sim.
of byte img: sim. of op freq. img.)

# of image pairs
for training

Accuracy Precision Recall F1-Score

0:100 30,000 0.8390 0.8533 0.8229 0.8378
60,000 0.8695 0.8684 0.8640 0.8662
90,000 0.8655 0.8695 0.8635 0.8665

10:90 30,000 0.8715 0.8850 0.8579 0.8713
60,000 0.9010 0.9057 0.8967 0.9011
90,000 0.8940 0.8905 0.9027 0.8965

20:80 30,000 0.8890 0.8979 0.8681 0.8827
60,000 0.9085 0.9181 0.8991 0.9085
90,000 0.9080 0.9017 0.9210 0.9112

30 :70 30,000 0.8975 0.9071 0.8715 0.8890
60,000 0.9195 0.9236 0.9133 0.9184
90,000 0.9205 0.9097 0.9358 0.9226

40:60 30,000 0.9200 0.9185 0.9239 0.9212
60,000 0.9335 0.9374 0.9269 0.9321
90,000 0.9330 0.9249 0.9365 0.9307

50:50 30,000 0.9400 0.9465 0.9333 0.9399
60,000 0.9475 0.9616 0.9343 0.9477
90,000 0.9590 0.9681 0.9460 0.9569

60:40 30,000 0.9275 0.9298 0.9212 0.9255
60,000 0.9450 0.9407 0.9501 0.9454
90,000 0.9415 0.9485 0.9385 0.9435

70:30 30,000 0.9295 0.9397 0.9244 0.9320
60,000 0.9420 0.9371 0.9448 0.9409
90,000 0.9390 0.9432 0.9386 0.9404

(Continued)
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Table 6 (continued)

Similarity weighting ratio (sim.
of byte img: sim. of op freq. img.)

# of image pairs
for training

Accuracy Precision Recall F1-Score

80:20 30,000 0.9280 0.9312 0.9177 0.9244
60,000 0.9410 0.9418 0.9418 0.9418
90,000 0.9365 0.9284 0.9427 0.9355

90:10 30,000 0.9340 0.9383 0.9328 0.9356
60,000 0.9375 0.9371 0.9362 0.9367
90,000 0.9405 0.9395 0.9405 0.9400

100:0 30,000 0.9185 0.9202 0.9174 0.9188
60,000 0.9300 0.9370 0.9220 0.9295
90,000 0.9325 0.9317 0.9308 0.9312

Figure 7: Confusion matrix evaluated using the dataset of [34] (The similarity weight ratio is 50:50,
and 90,000 image pairs were used)

The experimental results using the additional dataset consisting of 9000 malware samples collected
from [35] are shown in Table 7, indicating that the model demonstrates a very high level of detection
performance. Specifically, in the confusion matrix in Fig. 8, both the accuracy and F1-Score are above
0.998, showing that the model performs accurate predictions in almost all cases. The precision and
recall are also close to 0.998, demonstrating that the model is highly effective not only in the accuracy
of positive predictions but also in identifying actual positive cases. These experimental results prove
that using the additional dataset has further enhanced the model’s generalization ability, significantly
increasing the model’s reliability and accuracy.
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Table 7: Malware detection performance results (datasets from [35]) (the similarity weight ratio is
50:50, and 90,000 image pairs were used)

Accuracy Precision Recall F1-Score

0.9983 0.9989 0.9978 0.9984

Figure 8: Confusion matrix evaluated using the dataset of [35] (the similarity weight ratio is 50:50, and
90,000 image pairs were used)

Additionally, to check the performance even when the training dataset is significantly reduced, we
conducted the malware detection experiment using only 800 samples consisting of 400 benign samples
and 400 malware samples of Vxunderground [35], the experimental results, shown in Table 8, achieved
a high accuracy of 99.5%. The Confusion Matrix is shown in Fig. 9.

Table 8: Malware detection performance results with the reduced training set (datasets from [35] used,
the similarity weight ratio is 50:50, and 90,000 image pairs were used)

Accuracy Precision Recall F1-Score

0.9950 0.9920 0.9977 0.9946

4.3.3 Performance Growth along Training Steps

Fig. 10 shows the change in loss per image pair for models trained on byte images and opcode
frequency-based images. Fig. 10a–c shows the loss changes for the Siamese Network tested with
30,000, 60,000, and 90,000-byte image pairs, respectively.
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Figure 9: Confusion matrix for Vxunderground sample with reduced training data

Figure 10: The growth of loss values along learning epochs (Dataset: [34]). (a) Gray Scale Image
(30,000), (b) Gray Scale (60000), (c) Gray Scale (90,000), (d) Opcode Frequency-Based Image (30,000),
(e) Opcode Frequency-Based Image (60,000), (f) Opcode Frequency-Based Image (90,000)

Similarly, Fig. 10d–f shows the loss changes for the Siamese Network tested with 30,000, 60,000,
and 90,000 Opcode Frequency-Based Images Pairs, respectively. Both Siamese Networks converge
stably, with minimal loss rates due to the model’s estimation errors. The x-axis and y-axis of each
graph in the figures mean the number of epochs for training and binary cross entropy loss value. The
binary cross entropy loss is calculated using Eq. (8) and Eq. (9) [36].
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LossBCE = mean{l0, ..., lN−1} (8)

ln = −(pi log(qi) + (1 − pi) log(1 − qi)) (9)

where pi represents the actual label value (0 or 1), qi represents the value predicted by the model, and
N represents the total number of samples.

Fig. 11 shows the accuracy changes for the model trained with byte image and opcode frequency-
based image. The accuracy was measured every 10 epochs during the training process, and it can be
observed that the accuracy improves as training progresses.

Figure 11: The growth of accuracy values along learning epochs (Dataset: [35]). (a) Accuracy (Image
Pair: 30,000), (b) Accuracy (Image Pair: 60,000), (c) Accuracy (Image Pair: 90,000)

4.3.4 Performance Comparison with Previous Works

Table 9 presents the comparative analysis results between our study and related works using the
same dataset as well as studies performing malware detection based on the Siamese Network. The
study using the same dataset by Jeon et al. [15] achieved an accuracy of 94.85% with their Bi-LSTM and
SPP-Net method, while the study based on the Siamese Network by Zhu et al. [27] reported an accuracy
of 95%. Our proposed framework demonstrated approximately 1–10% higher accuracy compared to
related studies using the same dataset, and about 1–3% higher performance than the study using the
Siamese Network. This indicates that the Dual Siamese Network proposed in this paper enables more
efficient detection.

Table 9: Comparison results of performance

Related works Operating system Detection model Accuracy (%)

Yoo et al.∗ [14] Windows AI-HydRa (random forest and deep learning) 85.1
Hwang et al.∗ [13] Windows DNN 91.77
Jeon et al.∗ [15] Windows Bi-LSTM and SPP-Net 94.85
Zhu et al. [27] Android Siamese network 95
Hsiao et al. [26] Windows Siamese network 92.6
Our proposed model Windows Siamese network 95.9
Note: ∗ indicates the previous method evaluated using the same dataset as ours.
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5 Conclusion and Limitation

In this paper, we propose a Dual Siamese Network framework based on byte Image and opcode
frequency-based image. Our framework utilizes byte image and opcode frequency-based image to
generate malware detection models, applying different weights to each to comprehensively reflect
various characteristics. We measured the malware detection performance of our framework which
uses two kinds of features, by varying the number of the image pairs for training and similarity weight
ratios. As a result, the detection accuracies of 95.90% and 99.83% were achieved in the experiments
using different malware samples. The experimental results demonstrate that our malware detection
model can effectively detect malware by utilizing two different types of features and employing the
dual Siamese network-based model.

Our proposed framework uses byte image and opcode frequency-based image features for malware
detection. While these static features are useful, they have the limitation of not capturing the behavioral
information of malware. Addressing this limitation is necessary. Incorporating a wider variety of
dynamic features (e.g., API execution features) is believed to result in even better performance.
Additionally, integrating other neural networks, such as GANs (Generative Adversarial Networks),
is also expected to enhance the detection model’s generalization and performance. In the future, we
plan to research the combination of other useful algorithms or features that might enhance the quality
of the proposed framework. These efforts are expected to significantly contribute to the detection of
various types of malware.
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