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ABSTRACT

A novel inverted generalized gamma (IGG) distribution, proposed for data modelling with an upside-down
bathtub hazard rate, is considered. In many real-world practical situations, when a researcher wants to conduct
a comparative study of the life testing of items based on cost and duration of testing, censoring strategies are
frequently used. From this point of view, in the presence of censored data compiled from the most well-known
progressively Type-II censoring technique, this study examines different parameters of the IGG distribution. From
a classical point of view, the likelihood and product of spacing estimation methods are considered. Observed
Fisher information and the delta method are used to obtain the approximate confidence intervals for any unknown
parametric function of the suggested model. In the Bayesian paradigm, the same traditional inferential approaches
are used to estimate all unknown subjects. Markov-Chain with Monte-Carlo steps are considered to approximate
all Bayes’ findings. Extensive numerical comparisons are presented to examine the performance of the proposed
methodologies using various criteria of accuracy. Further, using several optimality criteria, the optimum progressive
censoring design is suggested. To highlight how the proposed estimators can be used in practice and to verify the
flexibility of the proposed model, we analyze the failure times of twenty mechanical components of a diesel engine.
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1 Introduction

Recently, we have come across several studies on inverse (or reciprocal) distributions of one or
two parameters in the literature. Louzada et al. [1] recently emphasized that inverse distributions
provide greater flexibility for fitting data and, in many cases, have been found to be better than many
other standard distributions. The three parameter inverted generalized gamma (IGG) distribution
was introduced by Hoq et al. [2] in the context of life testing experiments. As specific examples, the
IGG distribution includes a number of lifespan distributions, including inverted gamma, inverted
half-normal, inverted Weibull, inverted exponential, inverted Rayleigh, inverted Maxwell-Boltzmann,
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and inverted chi-square. The IGG distribution has been found to be a good alternative to other
skewed distributions, including inverse gamma, inverse Weibull, and generalized inverse exponential
distributions, and can be used to illustrate skewed data.

A random variable x is said to have IGG (ϒ) distribution, where ϒ = (δ, μ, σ)�, if its cumulative
distribution function (CDF) and probability density function (PDF) are given, respectively, by

F(x; ϒ) = 1 − 1
�(μ)

γ (μ, σ δx−δ), x > 0, (1)

and

f (x; ϒ) = δ

�(μ)
σ δμx−δμ−1e−σδx−δ

, (2)

where (δ, μ) > 0 (denote the shape parameters) and σ > 0 (denotes the scale parameter). The reliability
function (say, R(t)) and hazard rate function (say, h(t)) are, respectively, given by

R(t; ϒ) = 1
�(μ)

γ (μ, σ δt−δ), t > 0, (3)

and

h(t; ϒ) = δσ δμ

γ (μ, σ δt−δ)
t−δμ−1e−σδ t−δ

, t > 0, (4)

where γ (a, b) = ∫ b

0
ua−1e−udu and �(ξ) = ∫ ∞

0
tξ−1e−tdt.

The hazard rate function (4) has an unimodal shape, while the density function (2) is unimodal
and right-skewed with heavy tails. These tails become thicker when the shape parameters are equal,
and longer when the shape parameter δ increases.

Besides Type-I, Type-II, and progressive Type-II censoring (PT2C) plans, several censoring
mechanisms are available in the literature. An important advantage of PT2C is that it allows the
experimenter to withdraw some live units before the experiment stops. The PT2C can be described
as follows: Suppose we have n identical and independent units. The effective size (say, m) and the
progressive censoring (say, R = (R1, R2, · · · , Rm)) must be determined in advance. When the first
failure occurs (say, X1:m:n), R1 (from n − 1) of live units are randomly selected and excluded from the
test. Likewise, in case of the second failure X2:m:n, we randomly remove R2 from n − R1 − 2 live units.
Once the mth failure is recorded, all remaining surviving items Rm = n − m − ∑m−1

i=1 Ri are eliminated.
For more details; see Balakrishnan et al. [3].

The maximum product spacing (MPS) was initially presented by Cheng et al. [4] and was utilized
by Ranneby [5] as an alternative to the maximum likelihood (ML) estimation approach. In recent times,
the MPS method has been employed in different contexts; see Zhu [6], Jeon et al. [7], Nassar et al. [8],
Nassar et al. [9], and many others. According to Anatolyev et al. [10], the MPS approach adheres to
the invariance property and outperforms likelihood estimators in small-sample scenarios for heavy
and skewed distributions.

The limitations and challenges of this work are particularly related to the complexity of parameter
estimation, computational intensity, small sample sizes, model power, hypothesis testing, and inference
difficulties. Addressing these issues often requires advanced statistical techniques and careful consid-
eration of the specific characteristics of the data and the censoring scheme.
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Researchers pay little attention to analyzing new extended gamma lifetime models because of
their complex results and expensive numerical evaluations. Aside from the work of Ramos et al. [11],
as they studied Bayesian inferences based on non-informative priors using a complete sample, and no
attempt has been made, to our knowledge, to estimate IGG parameters based on PT2C since the IGG
distribution was introduced in the literature.

Given the usefulness and practicality of the IGG distribution, and with samples collected from
the PT2C strategy, we state our main objectives in this paper as follows:

• Obtain the frequentist point estimators of the parameters (including ϒ, R(t), and h(t)) through
the ML and MPS methods of estimation.

• Obtain the approximate confidence intervals (ACIs) for all parameters using the acquired ML
estimators (MLEs) and MPS estimators (MPSEs).

• As an alternative to the ML function in the Bayesian paradigm, the MPS function is also taken
into consideration. Next, both ML and MPS functions are explored in a Bayesian framework
for all unknown parameters under squared error loss (SEL) with independent gamma priors.

• Implement Markov chain Monte Carlo (MCMC) methodology with Metropolis–Hastings
(M–H) sampler to calculate the offered Bayes point estimates as well as Bayes confidence
intervals (BCIs).

• Various optimality metrics are assessed to provide the optimal PT2C plan.

• Extensive Monte Carlo simulations are performed to evaluate the performance of the proposed
techniques.

• An engineering data set representing diesel engine failure times is analyzed to show the
applicability of the proposed methodologies in a real-life scenario.

The rest of the article is organized as follows: In Sections 2 and 3, we discuss ML- and MPS-based
estimation. In Section 4, we discuss Bayesian inferences. Simulation investigations are highlighted in
Section 5. In Section 6, the optimal PT2C is discussed. One real data set is analyzed in Section 7.
Finally, various observations are made in Section 8.

2 Likelihood Estimation

This section considers the ML estimation to provide the MLEs along with their ACIs of the IGG
parameters δ, μ, σ , R(t), and h(t) using the PT2C sample.

2.1 The MLEs
Suppose x = (xi, Ri), i = 1, 2, . . . , m, where xi is used in place of xi:m:n, is an observed PT2C sample

obtained from the IGG (ϒ) distribution. From (2) and (1), the likelihood function (LF) becomes

L(δ, μ, σ |x) = A
m∏

i=1

f (xi; δ, μ, σ) [1 − F(xi; δ, μ, σ)]Ri ,

= A
(

δ

�(μ)

)m

σ mδμ

m∏
i=1

x−δμ−1
i e−σδx−δ

i

[
1

�(μ)
γ (μ, σ δx−δ

i )

]Ri

, (5)

where A = n(n − R1 − 1) · · · (n − (m − 1) − ∑m−1

i=1 Ri).
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Using (5), without constant terms, the log-likelihood function � ∝ L(·) can be written as

� ∝ m ln(δ) − n ln(�(μ)) + mδμ ln(σ ) − (δμ + 1)
∑m

i=1
ln(xi) −

∑m

i=1

(
σx−1

i

)δ +
∑m

i=1
Ri ln(ψi), (6)

where ψi = γ
(
μ, (σ/xi )

δ
)
.

The MLEs δ̂, μ̂, and σ̂ of δ, μ, and σ , can be offered by differentiating (6) with respect to δ, μ,
and σ , respectively, as

∂�

∂δ
= m

δ
+ μ(m ln(σ ) −

∑m

i=1
ln(xi)) −

∑m

i=1
(σx−1

i )δ ln(σx−1
i ) +

∑m

i=1
Riψi(δ

′), (7)

∂�

∂μ
= −nη(μ) + δ(m ln(σ ) −

∑m

i=1
ln(xi)) +

∑m

i=1
Riψi(μ

′), (8)

and
∂�

∂σ
= δ

σ

[
mμ −

∑m

i=1
(σx−1

i )δ

]
+

∑m

i=1
Riψi(σ

′), (9)

where η(μ) = d ln(�(μ))/dμ is the digamma function and ψi(ξ
′) is the first-partial derivative with

respect to ξ as

ψi(δ
′) = ∂

∂δ
ln(γ (μ, (σx−1

i )
δ
)) = ψ−1

i (σx−1
i )

δμ ln(σx−1
i ) exp(−(σx−1

i )
δ
)

ψi(μ
′) = ∂

∂μ
ln(γ (μ, (σx−1

i )
δ
)) = ψ−1

i

∫ (σx−1
i )

δ

0
wμ−1 ln(w)e−wdw,

and

ψi(σ
′) = ∂

∂σ
ln(γ (μ, (σx−1

i )
δ
)) = ψ−1

i

δ

σ
(σx−1

i )
δμ exp(−(σx−1

i )
δ
).

To prove the convergence of the MLEs δ̂, μ̂, and σ̂ of δ, μ, and σ , respectively, the offered form in
(6) makes it difficult to verify these features theoretically. To solve this problem, we simulate a PT2C
sample from IGG (1,1.5,0.5) when (n, m) = (50, 25) and Ri = 1, i = 1, . . . , m. As a result, we find that
(δ̂, μ̂, σ̂ ) = (1.1621,1.4558,0.6533). In Fig. 1, the log-LF line and its normal-equation curve of δ̂, μ̂,
and σ̂ are depicted. To distinguish, for each sup-plot in Fig. 1, we plot the log-LF curve (in red at the
apex) and the first-partial derivative (FPD) curve (in black at the zero point) intersect at the vertical
line (which represents the MLE of δ, μ, or σ ). Since we obtained the estimated values of the MLEs,
this indicates that the proposed likelihood equations converge well. At the same time, the MLEs δ̂, μ̂,
and σ̂ exist and are unique. The invariance feature of δ̂, μ̂, and σ̂ makes it easy to acquire the MLEs
of R(t) (3) and h(t) (4) at time t > 0 once the MLEs of δ, μ, and σ have been obtained.

2.2 ACIs via LF-Based
In this subsection, the (1 − ρ)% ACIs of δ, μ, σ , R(t), and h(t) are obtained. First, from (6), the

second derivatives with respect to δ, μ, and σ are obtained and reported in Appendix A. It is clear that
the issue of obtaining asymptomatic expressions for the variances and covariances of δ̂, μ̂, and σ̂ is
tedious. We thus estimate the variance-covariance (V-C) matrix (say, I−1

1 (·)), where I1(·) is the observed
Fisher’s information, using the LF-based as

I−1
1 (δ̂, μ̂, σ̂ ) =

⎡⎣−�11 −�12 −�13

−�22 −�23

−�33

⎤⎦−1

(δ̂,μ̂,σ̂ )

=
⎡⎣v̂ar(δ̂) ĉov(δ̂, μ̂) ĉov(δ̂, σ̂ )

v̂ar(μ̂) ĉov(μ̂, σ̂ )

v̂ar(σ̂ )

⎤⎦ . (10)
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Figure 1: The log-LF (top) and its FPD (bottom) of (a) δ, (b) μ, and (c) σ

It is established that (δ̂, μ̂, σ̂ ) ∼ N((δ, μ, σ), I−1
1 (δ̂, μ̂, σ̂ )). Consequently, the (1 − ρ)% ACIs of δ,

μ, and σ are given, respectively, by

δ̂ ± zρ/2

√
v̂ar(δ̂), μ̂ ± zρ/2

√
v̂ar(μ̂), and σ̂ ± zρ/2

√
v̂ar(σ̂ ),

where zρ/2 is the upper (ρ/2)th standard-normal percentile point.

To find the (1 − ρ)% ACIs of R(t) and h(t), we use the delta method; see Greene [12]. Next, the
approximated variances of R̂(t) and ĥ(t) (after getting (δ̂, μ̂, σ̂ )) can be obtained as

v̂ar(R̂(t)) = [∇R(t)]TI−1
1 (δ, μ, σ)[∇R(t)]|(δ̂,μ̂,σ̂ ) and v̂ar(ĥ(t)) = [∇h(t)]TI−1

1 (δ, μ, σ)[∇h(t)]|(δ̂,μ̂,σ̂ ),

where ∇R̂(t) and ∇ĥ(t) are the estimated gradient of R(t) and h(t), respectively.

Hence, once we obtain the variances v̂ar(R̂(t)) and v̂ar(ĥ(t)), then 100(1 − ρ)% two-sided ACIs
for R(t) and h(t) are given by

R̂(t) ± zρ/2

√
v̂ar(R̂(t)) and ĥ(t) ± zρ/2

√
v̂ar(ĥ(t)),

respectively, where zρ/2 is the right-tail (ρ/2)th standard-normal point.

3 Product of Spacings Estimation

This section examines the MPS estimation approach to acquire the MPSEs and ACIs of δ, μ, σ ,
R(t), and h(t) based on the PT2C sample.
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3.1 The MPSEs
Substituting (2) and (1) into the product of spacing (PS) function of PT2C, we get the joint PS

function of δ, μ, and σ as follows:

S(δ, μ, σ) =
m+1∏
i=1

[F(xi; δ, μ, σ) − F(xi−1; δ, μ, σ)]
m∏

i=1

[1 − F(xi; δ, μ, σ)]Ri ,

=
m+1∏
i=1

[
1

� (μ)
γ

(
μ,

(
σ

xi−1

)δ
)

− 1
� (μ)

γ

(
μ,

(
σ

xi

)δ
)]

m∏
i=1

[
1

� (μ)
γ

(
μ,

(
σ

xi

)δ
)]Ri

, (11)

where F(x0; δ, μ, σ) ≡ 0 and F(xm+1; δ, μ, σ) ≡ 1.

By maximizing the following logarithmic MPS function (e.g., ln S) with respect to δ, μ, and σ ,
one can obtain their MPSEs as follows:

ln S ∝ − (n + 1) ln �(μ) +
m+1∑
i=1

ln (ψi−1 − ψi) +
m∑

i=1

Ri ln ψi, (12)

where ψi−1 = γ
(
μ,

(
σx−1

i−1

)δ
)

and ψi = γ
(
μ,

(
σx−1

i

)δ
)

.

Solving the following three normal equations will yield the MPSEs of δ, μ, and σ , denoted by δ̃,
μ̃, and σ̃ , respectively:

∂ ln S
∂δ

=
m+1∑
i=1

[
ψi−1(δ

′) − ψi(δ
′)

ψi−1 − ψi

]
+

m∑
i=1

Riψi(δ
′), (13)

∂ ln S
∂μ

= −(n + 1)η (μ) +
m+1∑
i=1

[
ψi−1(μ

′) − ψi(μ
′)

ψi−1 − ψi

]
+

m∑
i=1

Riψi(μ

‘

), (14)

and

∂ ln S
∂σ

=
m+1∑
i=1

[
ψi−1(σ

′) − ψi(σ
′)

ψi−1 − ψi

]
+

m∑
i=1

Riψi(σ
′), (15)

where ψi−1(ξ
′) is the first-partial derivative of ψi−1 with respect to ξ .

Since the proposed MPSEs from (13)–(15) lack closed form solutions, an iterative method such
as Newton-Raphson can be easily used to derive the MPSEs numerically. It is important to note that
the MPSEs and MLEs of δ, μ, and σ have several flexible qualities, such as consistency, asymptotic
efficiency, and invariance.

Now, to highlight the convergence of the MPSEs δ̃, μ̃, and σ̃ of δ, μ, and σ , respectively, the
offered form in (12) makes it not easy. Using the same PT2C sample generated in Subsection 2.1,
we have (δ̃, μ̃, σ̃ ) = (1.2729,1.4557,0.5154). Fig. 2 supports this result. It indicates that the suggested
normal equations used to create the MPSEs converge well. It also indicates that the MPSEs δ̃, μ̃, and
σ̃ exist and are unique.
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Figure 2: The log-PS (top) and its FPD (bottom) of (a) δ, (b) μ, and (c) σ

3.2 ACIs via PS-Based
To get the two bounds (1−ρ)% ACIs (PS-based) of the δ, μ, σ , R(t), or h(t), the second derivatives

of (12) with respect to δ, μ, and σ should be first obtained; see Appendix B. Since the exact expectations
of Sij, i, j = 1, 2, 3 cannot be solved analytically, similar to the case of Fisher information using LF-
based, the approximated V-C matrix of the MPSEs can be obtained as

I−1
2 (δ̃, μ̃, σ̃ ) =

⎡⎣−S11 −S12 −S13

−S22 −S23

−S33

⎤⎦−1

(δ̃,μ̃,σ̃ )

=
⎡⎣ṽar(δ̃) c̃ov(δ̃, μ̃) c̃ov(δ̃, σ̃ )

ṽar(μ̃) c̃ov(μ̃, σ̃ )

ṽar(σ̃ )

⎤⎦ . (16)

It follows that (δ̃, μ̃, σ̃ ) ∼ N
(
(δ, μ, σ), I−1

2 (δ̃, μ̃, σ̃ )
)

, where I−1
2 (δ̃, μ̃, σ̃ ) is given by (16). Conse-

quently, the respective (1 − ρ)% ACIs (PS-based) of δ, μ, and σ are

δ̃ ± zρ/2

√
ṽar(δ̃), μ̃ ± zρ/2

√
ṽar(μ̃), and σ̃ ± zρ/2

√
ṽar(σ̃ ).

Replacing δ, μ, and σ in (3) and (4) by their MPSEs δ̃, μ̃, and σ̃ , respectively, the MPSEs R̃(t) and
h̃(t) can be easily derived. Thus, the 100(1 − ρ)% ACIs (PS-based) of R(t) and h(t) are given by

R̃(t) ± zρ/2

√
˜var(R̃(t)) and h̃(t) ± zρ/2

√
ṽar(h̃(t)),

respectively, where

ṽar(R̃(t)) = [∇R(t)]TI−1
2 (δ, μ, σ)[∇R(t)]|(δ̃,μ̃,σ̃ ) and ṽar(h̃(t)) = [∇h(t)]TI−1

2 (δ, μ, σ)[∇h(t)]|(δ̃,μ̃,σ̃ ).

4 Bayesian Inference

In this section, under the PT2C scheme, the Bayes framework for unknown IGG parameters based
on LF and PF methods is discussed. Prior information plays an influential role in obtaining Bayes’
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estimate. We now consider the independent gamma priors (say, ωi, i = 1, 2, 3,) for δ, μ, and σ as

ω1(δ) ∝ δa−1 e−b δ, δ > 0, a, b > 0,

ω2(μ) ∝ μc−1 e−d μ, μ > 0, c, d > 0,

ω3(σ ) ∝ σ e−1 e−f σ , σ > 0, e, f > 0, (17)

where a, b, c, d, e and f are known, non-negative and reflect the prior knowledge of the IGG
parameters. Thus, from (17), the joint PDF of δ, μ, and σ becomes

ω(δ, μ, σ) ∝ δa−1μc−1σ e−1e−(bδ+dμ+f σ) δ, μ, σ > 0. (18)

Suppose π̂ denotes the unknown parameter to be evaluated. In this case, the SEL (say, l(·)) can
be defined as

l(π , π̂) = (π̂ − π)2, (19)

where the Bayes estimator π̂ is directly offered by the posterior expectation of �.

4.1 Posterior Density via LF-Based
Using (5) and (18), the joint posterior PDF via the LF (say, �1(·)) can be written as

�1(δ, μ, σ |x) ∝ δa−1μc−1σ e−1e−(bδ+dμ+f σ)

×
(

δ

�(μ)

)m

σ mδμ

m∏
i=1

x−δμ−1
i e−σδx−δ

i

[
1

γ (μ)
�(μ, σ δx−δ

i )

]Ri

. (20)

Using an arbitrary function Π(δ, μ, σ) of parameters δ, μ and σ , the Bayes’ estimator via LF-
based (say Π̂(δ, μ, σ)) against the SEL can be expressed as

Π̂(δ, μ, σ) =
∫ ∞

0

∫ ∞
0

∫ ∞
0

Π(δ, μ, σ)ω(δ, μ, σ)L(δ, μ, σ |x)dδdμdσ∫ ∞
0

∫ ∞
0

∫ ∞
0

ω(δ, μ, σ)L(δ, μ, σ |x)dδdμdσ
. (21)

All triple integrals in (21) do not have a closed form. Therefore, we will implement the M-H
algorithm. From (20), we note that the full conditionals of δ, μ, and σ cannot be obtained in the form
of any known distribution. To generate the required samples of δ, μ, or σ , implement the MCMC
algorithm as follows:

Step 1: Set initial guesses of (δ0, μ0, σ 0) as (δ̂, μ̂, σ̂ ).

Step 2: Set i = 1.

Step 3: Obtain δ∗ ∼ N(δi−1, v̂ar(δ̂)), μ∗ ∼ N(μi−1, v̂ar(μ̂)) and σ ∗ ∼ N(σ i−1, v̂ar(σ̂ )).

Step 4: Compute �1 = �1(δ
∗|μi−1, σ i−1, x)

�1(δi−1|μi−1, σ i−1, x)
, �2 = �1(μ

∗|δi, σ i−1, x)

�1(μi−1|δi, σ i−1, x)
and �3 = �1(σ

∗|δi, μi, x)

�1(σ i−1|δi, μi, x)
.

Step 5: Simulate ui, i = 1, 2, 3, from Uniform U(0, 1) distribution.

Step 6: Set (δi, μi, σ i) = (δ∗, μ∗, σ ∗) if ui � min{1, �i} for i = 1, 2, 3; else set (δi, μi, σ i) =
(δi−1, μi−1, σ i−1).

Step 7: Obtain Ri(t) and hi(t) by replacing δ, μ, and σ by their δi, μi, and σ i, respectively.

Step 8: Repeat Steps 2–7 B times to obtain B draws of δ, μ, σ , R(t), and h(t) (say, ϕ) as

ϕ i = (
δi, μi, σ i, Ri(t), hi(t)

)
, i = 1, 2, . . . , B.
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Step 9: Find the Bayes estimate of ϕ as

ϕ̂ = 1
B − B0

B∑
i=B0+1

ϕ i.

where B0 is the burn-in size.

Step 10: Obtain the BCI via LF-based of ϕ as

a. Arrange ϕ i as ϕ [B0+1], ϕ [B0+2], . . . , ϕ [B].

b. Determine ρ.

c. Obtain the 100(1 − ρ)% BCI of ϕ as{
ϕ [(B−B0)ρ/2], ϕ [(B−B0)(1−ρ/2)]

}
.

4.2 Posterior Density via PS-Based
Using (11) and (18), the joint posterior PDF via PS-based (say, �2(·)) becomes

�2(δ, μ, σ |x) ∝ δa−1μc−1σ e−1e−(bδ+dμ+f σ)

×
m+1∏
i=1

[
1

� (μ)
γ

(
μ,

(
σxi−1

−1
)δ

)
− 1

� (μ)
γ

(
μ,

(
σx−1

i

)δ
)] m∏

i=1

[
1

� (μ)
γ

(
μ,

(
σxi

−1
)δ

)]Ri

.

(22)

Certainly, from (22), the Bayes estimator via PS-based (say Π(δ, μ, σ)) cannot be obtained in a
closed expression. Thus, following the same MCMC algorithm described in Subsection 4.1, the M-H
algorithm with the start values (δ0, μ0, σ 0) = (δ̃, μ̃, σ̃ ) can be easily implemented to approximate Bayes
estimates as well as their BCI estimates of δ, μ, σ , R(t), and h(t).

5 Numerical Comparisons

The performance of the proposed estimation methodologies is highlighted in this part. According
to the algorithm proposed by Balakrishnan et al. [13] for various levels of n (total test items), m
(objective sample size), and R (progressive design), large 1000 PT2C samples are simulated when
(δ, μ, σ) is taken as (1.5, 1.5, 0.6). At a distinct time t = 0.2, the estimates of R(t) and h(t) are evaluated
when their actual values are 0.952 and 1.341, respectively. For each n (= 50,100), the total number of

failed subjects m is determined by the failure percentage, such as
m
n

×100% = 40% and 80%. To assess

the effects of the removals Ri, i = 1, 2, . . . , m, for specified (n, m), several progressive fashions are also
considered, namely:

Scheme-1 : R1 = n − m, Ri = 0 for i 
= 1,

Scheme-2 : R m
2

= n − m, Ri = 0 for i 
= m/2,

Scheme-3 : Rm = n − m, Ri = 0 for i 
= m.

Once the simulated PT2C samples are acquired, the classical (point and 95% interval) estimations
are offered. Following two independent information requirements called prior-mean and prior-
variance, we can easily assign certain values to the proposed prior parameters; see Kundu [14].
Therefore, two different sets for the hyperparameter values of a, b, c, d, e and f of δ, μ, and σ are
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utilized, called Prior-I: (a, c, e) = (3, 3, 1) and b = d = f = 2 and Prior-II: (a, c, e) = (15, 15, 5) and
b = d = f = 10.

To conduct the M-H sampling procedure, 12,000 MCMC samples are gathered from the posterior
functions (20) and (22). For each simulated Markov chain, the first 2000 variates are removed to ignore
the effect of the selection of initial guesses. In all proposed numerical simulations, we assume that all
IGG model parameters are unknown. We also assume that the practitioner records the failure time of
all test units m(1 ≤ m ≤ n) and withdraws preassigned live units R (

∑m

i=1 Ri = n − m) during testing,
and stops the test before all test units fail.

The performances of the point theoretical results of δ, μ, σ , R(t), or h(t) are examined in
terms of their values obtained by root-mean-squared-errors (RMSE) and mean-relative-absolute-bias
(MRAB). In addition, when ρ = 5%, the interval comparison is made based on average interval length
(AIL) and coverage-percentage (CP). Taking ϑ1 = δ, ϑ2 = μ, ϑ3 = σ , ϑ4 = R(t), and ϑ5 = h(t), the
average point estimates (APEs) along with their RMSEs, MRABs, AILs, and CPs of ϑι, ι = 1, . . . , 5,
are obtained using the following formulae, respectively, as

APE(ϑι) = 1
1000

∑1000

j=1
ϑ̂ (j)

ι
,

RMSE (ϑι) =
√

1
1000

∑1000

j=1

(
ϑ̂ (j)

ι
− ϑι

)2

,

MRAB (ϑι) = 1
1000

∑1000

j=1

1
ϑ ι

∣∣∣ϑ̂ (j)
ι

− ϑι

∣∣∣,
AIL(ϑι) = 1

1000

∑1000

j=1

(
U(ϑ̂ (j)

ι
) − L(ϑ̂ (j)

ι
)
)

,

and

CP(ϑι) = 1
1000

∑1000

j=1
1(

L
ϑ̂

(j)
ι

;U
ϑ̂

(j)
ι

) (ϑι) ,

where ϑ̂ (j)
ι

denotes the offered estimate of ϑι, 1(·) is the indicator operator, L(ϑ̂ (j)
ι

) denotes the lower
interval bound, and U(ϑ̂ (j)

ι
) denotes the upper interval bound.

All calculations are performed in R with the ‘coda’ (proposed by Plummer et al. [15]) and ‘maxLik’
(by Henningsen et al. [16]) packages. Tables 1–5 list the APEs, RMSEs, and MRABs of each unknown
subject in the first, second, and third columns, respectively. Meanwhile, in Tables 6–10, the AILs and
CPs of each unknown subject are reported in the first and second columns, respectively. For distinction,
using LF (as an example), we abbreviate the Bayes estimates MCMC using LF-based, ACI using LF-
based, and BCI using LF-based as MCMC-LF, ACI-LF, and BCI-LF, respectively. From Tables 1–10,
regarding the lowest values of RMSE, MRAB, and AIL, as well as the highest values of CP, we can
make the following observations:

• In general, the proposed point (or interval) estimates of δ, σ , R(t), or h(t) showed good behavior.

• As n (or m) increases or
∑m

i=1 Ri decreases, the accuracy of all acquired estimates becomes better.
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• Comparing the proposed point approaches, it is clear that:
– The MLE (or MCMC-LF) of δ, σ , R(t), and h(t) performed better compared to those

obtained from the PS (or MCMC-PS) approach.

– The performance of μ behaved better via the PS (or MCMC-PS) approach compared
to others.

• Comparing the proposed interval approaches, it is clear that:
– The ACI-LF estimates of δ, σ , and R(t) have overall lower AILs and higher CPs

compared to those obtained using the ACI-PS approach.

– The AILs of ACI-PS estimates of μ and h(t) have worked effectively compared to those
developed from the ACI-LF approach.

• The CPs of the BCI estimates are (in most cases) greater than the specified nominal level, while
the ACI estimates are lower (or closer) to the specified nominal level.

• Due to the availability of gamma priors, Bayes’ MCMC-LF (or MCMC-PS) estimates of all
unknown parameters outperform ML (or MPS) estimates. The same comment is also drawn in
the context of comparing the BCI-LF (or BCI-PS) with the ACI-LF (or ACI-PS).

• Obviously, the variance of Prior-II is less than that of Prior-I. Therefore, all Bayes estimates
of all unknown parameters developed from Prior-II using LF (or PS) data outperform those
obtained based on other methods.

• Comparison of the proposed Scheme-1 (first stage) and Scheme-3 (last stage), it is clear that
the point estimates of δ, μ, and σ via the LF (using Scheme-1) and via the PS (using Scheme-3)
behaved better than others.

• Regarding the interval estimates of δ, μ, and σ , the associated asymptotic/credible interval
estimates become better under Scheme-3, in most situations, compared to others.

• As a tip, to obtain accurate estimates of any unknown life parameter when the proposed
censored data are present, the experimenter should record an appropriate effective sample size,
taking into account the total cost of the test.

• To sum up, the Bayes M-H procedure is recommended to study the unknown parameters of life
of the IGG model in the presence of PT2C data.

Table 1: The point comparisons of δ

n m Scheme MLE MCMC-LF
Prior-I Prior-II

50 20 1 1.6077 0.2837 0.1427 1.5747 0.1610 0.0704 1.4570 0.1285 0.0339
2 1.6280 0.3273 0.1600 1.4847 0.1512 0.0622 1.4661 0.1284 0.0298
3 1.6384 0.3423 0.1617 1.5343 0.1579 0.0488 1.4517 0.1422 0.0328

40 1 1.5771 0.2029 0.1040 1.4101 0.1490 0.0599 1.5022 0.1318 0.0335
2 1.5853 0.2148 0.1110 1.5027 0.1444 0.0614 1.4742 0.1335 0.0280
3 1.5688 0.2135 0.1100 1.4591 0.1425 0.0370 1.5176 0.1349 0.0355

(Continued)
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Table 1 (continued)

n m Scheme MLE MCMC-LF
Prior-I Prior-II

100 40 1 1.5510 0.1745 0.0909 1.5711 0.1595 0.0690 1.4927 0.1146 0.0204
2 1.5721 0.2072 0.1053 1.4067 0.1230 0.0329 1.5039 0.1220 0.0250
3 1.5803 0.2133 0.1093 1.4659 0.1351 0.0250 1.4562 0.1282 0.0317

80 1 1.5535 0.1351 0.0700 1.5115 0.1446 0.0450 1.4749 0.1249 0.0236
2 1.5426 0.1387 0.0722 1.4079 0.1352 0.0277 1.4672 0.1196 0.0230
3 1.5435 0.1439 0.0746 1.5199 0.1342 0.0305 1.4605 0.1327 0.0340

MPSE MCMC-PS
50 20 1 1.8248 0.4642 0.2391 1.5988 0.1967 0.0903 1.5474 0.1447 0.0542

2 1.8222 0.4737 0.2421 1.5455 0.1634 0.0750 1.4462 0.1418 0.0491
3 1.7224 0.4100 0.1951 1.3956 0.1603 0.0696 1.4570 0.1452 0.0350

40 1 1.6866 0.2821 0.1469 1.3910 0.1620 0.0726 1.5382 0.1520 0.0543
2 1.6907 0.2855 0.1493 1.5518 0.1533 0.0565 1.4289 0.1446 0.0474
3 1.6263 0.2358 0.1203 1.5284 0.1501 0.0492 1.5420 0.1713 0.0798

100 40 1 1.6697 0.2537 0.1321 1.6022 0.1886 0.0892 1.4876 0.1336 0.0346
2 1.6811 0.2776 0.1441 1.3875 0.1509 0.0542 1.4324 0.1245 0.0388
3 1.6307 0.2450 0.1252 1.5126 0.1379 0.0321 1.4868 0.1297 0.0283

80 1 1.6164 0.1806 0.0952 1.5349 0.1423 0.0457 1.5021 0.1400 0.0288
2 1.6026 0.1700 0.0890 1.4268 0.1475 0.0539 1.5097 0.1396 0.0336
3 1.5806 0.1543 0.0806 1.5011 0.1373 0.0382 1.5856 0.1486 0.0510

Table 2: The point comparisons of μ

n m Scheme MLE MCMC-LF
Prior-I Prior-II

50 20 1 1.4616 0.0823 0.1056 1.4473 0.0754 0.0496 1.5358 0.0718 0.0472
2 1.4615 0.1816 0.1256 1.5612 0.1766 0.0852 1.5549 0.0674 0.0402
3 1.4614 0.1804 0.1327 1.4450 0.1402 0.0837 1.5618 0.0731 0.0426

40 1 1.4599 0.0901 0.0916 1.5586 0.0667 0.0446 1.5066 0.0620 0.0328
2 1.4578 0.1802 0.0910 1.6554 0.0715 0.0421 1.4620 0.0661 0.0375
3 1.4579 0.1654 0.1148 1.6048 0.1290 0.0726 1.5580 0.0622 0.0387

100 40 1 1.4622 0.0799 0.0852 1.5448 0.0649 0.0312 1.5475 0.0529 0.0277
2 1.4616 0.0803 0.0756 1.5143 0.0747 0.0285 1.4999 0.0508 0.0281
3 1.4613 0.0890 0.0858 1.6216 0.0750 0.0383 1.4883 0.0501 0.0278

80 1 1.4624 0.0800 0.0628 1.4258 0.0624 0.0358 1.5708 0.0409 0.0216
2 1.4621 0.0804 0.0620 1.4607 0.0401 0.0411 1.4414 0.0377 0.0180
3 1.4630 0.0622 0.0585 1.5316 0.0563 0.0281 1.4697 0.0434 0.0250

MPSE MCMC-PS
50 20 1 1.4616 0.0993 0.1156 1.5406 0.0709 0.0517 1.4965 0.0585 0.0340

(Continued)
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Table 2 (continued)

n m Scheme MLE MCMC-LF
Prior-I Prior-II

2 1.4626 0.0982 0.1149 1.4541 0.0876 0.0553 1.4856 0.0695 0.0410
3 1.4598 0.0992 0.1268 1.4576 0.0962 0.0572 1.4883 0.0481 0.0226

40 1 1.4620 0.0899 0.0953 1.5179 0.0644 0.0368 1.5257 0.0331 0.0169
2 1.4626 0.0893 0.0949 1.4576 0.0703 0.0433 1.5232 0.0391 0.0229
3 1.4576 0.0835 0.0983 1.4143 0.0613 0.0337 1.5011 0.0254 0.0141

100 40 1 1.4619 0.0786 0.0854 1.4639 0.0579 0.0303 1.4859 0.0362 0.0179
2 1.4623 0.0783 0.0852 1.5610 0.0587 0.0313 1.5495 0.0347 0.0192
3 1.4602 0.0798 0.0865 1.5103 0.0461 0.0245 1.4905 0.0305 0.0169

80 1 1.4622 0.0689 0.0752 1.5775 0.0428 0.0231 1.5477 0.0314 0.0136
2 1.4626 0.0684 0.0750 1.4183 0.0575 0.0312 1.4769 0.0312 0.0168
3 1.4595 0.0611 0.0770 1.4952 0.0277 0.0138 1.5291 0.0255 0.0139

Table 3: The point comparisons of σ

n m Scheme MLE MCMC-LF
Prior-I Prior-II

50 20 1 0.4839 0.1700 0.1639 0.5183 0.1470 0.1486 0.5309 0.1248 0.0942
2 0.4871 0.1676 0.1578 0.5660 0.1445 0.1337 0.5719 0.1306 0.1445
3 0.4834 0.1629 0.1513 0.4722 0.1459 0.1193 0.4832 0.1310 0.1008

40 1 0.4833 0.1519 0.1158 0.5293 0.1418 0.0771 0.5287 0.1225 0.0867
2 0.4803 0.1532 0.1154 0.5334 0.1326 0.0794 0.5003 0.1308 0.0744
3 0.4889 0.1462 0.1075 0.5001 0.1346 0.0821 0.5320 0.1258 0.0812

100 40 1 0.4915 0.1488 0.1193 0.5548 0.1389 0.0767 0.5373 0.1245 0.0846
2 0.4858 0.1488 0.1299 0.5471 0.1366 0.0957 0.5246 0.1201 0.0646
3 0.4843 0.1462 0.1255 0.4948 0.1422 0.0893 0.5150 0.1282 0.0765

80 1 0.4872 0.1363 0.1084 0.5108 0.1334 0.0664 0.4878 0.1150 0.0704
2 0.4861 0.1365 0.1096 0.5136 0.1204 0.0711 0.5031 0.1124 0.0564
3 0.4903 0.1340 0.0947 0.5252 0.1300 0.0745 0.4969 0.1234 0.0580

MPSE MCMC-PS
50 20 1 0.4725 0.2014 0.2072 0.5494 0.1646 0.1590 0.5341 0.1488 0.1062

2 0.4656 0.2001 0.2042 0.5880 0.1714 0.1770 0.5420 0.1398 0.1118
3 0.4819 0.1933 0.1913 0.5165 0.1590 0.1227 0.4595 0.1367 0.1338

40 1 0.4884 0.1852 0.1796 0.5559 0.1546 0.1144 0.5527 0.1411 0.0987
2 0.4865 0.1859 0.1773 0.5522 0.1711 0.1068 0.5294 0.1363 0.1030
3 0.4885 0.1779 0.1666 0.5221 0.1579 0.0735 0.5157 0.1359 0.0789

100 40 1 0.4844 0.1795 0.1699 0.5744 0.1530 0.1021 0.5490 0.1402 0.0833
2 0.4720 0.1824 0.1756 0.5472 0.1509 0.0999 0.5499 0.1381 0.1015
3 0.4821 0.1766 0.1652 0.5261 0.1530 0.0717 0.5106 0.1306 0.0770

80 1 0.4907 0.1680 0.1496 0.5044 0.1420 0.0715 0.5061 0.1362 0.0737

(Continued)
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Table 3 (continued)

n m Scheme MLE MCMC-LF
Prior-I Prior-II

2 0.4906 0.1684 0.1511 0.5092 0.1288 0.0719 0.5479 0.1267 0.0835
3 0.4914 0.1653 0.1461 0.5288 0.1451 0.0701 0.4943 0.1181 0.0636

Table 4: The point comparisons of R(t)

n m Scheme MLE MCMC-LF
Prior-I Prior-II

50 20 1 0.9497 0.0295 0.0245 0.9645 0.0312 0.0300 0.9628 0.0205 0.0178
2 0.9547 0.0231 0.0198 0.9732 0.0258 0.0244 0.9674 0.0204 0.0176
3 0.9546 0.0234 0.0201 0.9157 0.0470 0.0389 0.9166 0.0421 0.0373

40 1 0.9523 0.0238 0.0199 0.9511 0.0243 0.0203 0.9542 0.0252 0.0187
2 0.9527 0.0231 0.0198 0.9618 0.0213 0.0164 0.9532 0.0131 0.0119
3 0.9523 0.0232 0.0197 0.9589 0.0236 0.0166 0.9489 0.0146 0.0102

100 40 1 0.9520 0.0209 0.0176 0.9758 0.0287 0.0197 0.9616 0.0186 0.0143
2 0.9525 0.0167 0.0139 0.9489 0.0127 0.0104 0.9532 0.0106 0.0083
3 0.9531 0.0172 0.0145 0.9506 0.0197 0.0137 0.9491 0.0109 0.0070

80 1 0.9540 0.0174 0.0148 0.9371 0.0138 0.0111 0.9407 0.0128 0.0107
2 0.9526 0.0167 0.0141 0.9444 0.0198 0.0132 0.9560 0.0101 0.0085
3 0.9534 0.0161 0.0136 0.9439 0.0185 0.0129 0.9475 0.0126 0.0094

MPSE MCMC-PS
50 20 1 0.9666 0.0297 0.0269 0.9706 0.0312 0.0268 0.9546 0.0241 0.0213

2 0.9657 0.0252 0.0226 0.9636 0.0255 0.0220 0.9669 0.0221 0.0194
3 0.9632 0.0241 0.0214 0.9272 0.0399 0.0266 0.9372 0.0252 0.0183

40 1 0.9633 0.0242 0.0215 0.9594 0.0245 0.0194 0.9548 0.0169 0.0145
2 0.9625 0.0233 0.0207 0.9439 0.0228 0.0161 0.9538 0.0231 0.0147
3 0.9599 0.0230 0.0201 0.9542 0.0260 0.0224 0.9436 0.0202 0.0126

100 40 1 0.9632 0.0224 0.0198 0.9725 0.0250 0.0219 0.9631 0.0179 0.0134
2 0.9595 0.0177 0.0152 0.9539 0.0149 0.0101 0.9501 0.0128 0.0100
3 0.9586 0.0177 0.0153 0.9339 0.0269 0.0216 0.9389 0.0181 0.0144

80 1 0.9607 0.0185 0.0162 0.9429 0.0241 0.0148 0.9466 0.0142 0.0104
2 0.9586 0.0171 0.0148 0.9551 0.0210 0.0152 0.9407 0.0173 0.0105
3 0.9582 0.0165 0.0142 0.9511 0.0210 0.0131 0.9546 0.0199 0.0107
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Table 5: The point comparisons of h(t)

n m Scheme MLE MCMC-LF
Prior-I Prior-II

50 20 1 1.3716 0.5793 0.3386 1.2032 0.6067 0.3919 1.0642 0.3620 0.2332
2 1.2886 0.4699 0.2789 0.9517 0.5271 0.3233 1.0673 0.4549 0.2916
3 1.2868 0.4588 0.2685 1.7641 0.5161 0.3238 1.5692 0.3744 0.2196

40 1 1.3137 0.4568 0.2721 1.2421 0.2799 0.1621 1.2784 0.2559 0.1487
2 1.3159 0.4611 0.2733 1.4074 0.3285 0.2001 1.2961 0.2263 0.1362
3 1.3041 0.4349 0.2576 1.0996 0.3389 0.2178 1.4356 0.2330 0.1453

100 40 1 1.3235 0.4072 0.2426 0.8355 0.3777 0.2019 1.0985 0.3077 0.1923
2 1.3387 0.3288 0.1949 1.2816 0.2375 0.1460 1.2823 0.2222 0.1299
3 1.3264 0.3173 0.1872 1.3361 0.2831 0.1795 1.3762 0.1804 0.0961

80 1 1.2926 0.3307 0.1983 1.4479 0.2550 0.1528 1.4729 0.2507 0.1538
2 1.3161 0.3148 0.1885 1.4201 0.2786 0.1560 1.4175 0.1796 0.1125
3 1.3023 0.3065 0.1813 1.4748 0.3443 0.2017 1.3804 0.2143 0.1230

MPSE MCMC-PS
50 20 1 1.0883 0.6785 0.4153 0.9217 0.7178 0.4826 1.1026 0.5693 0.3443

2 1.1457 0.5463 0.3328 0.8055 0.6076 0.4060 0.9480 0.4859 0.2961
3 1.1341 0.5071 0.3034 1.8203 0.6112 0.3738 1.8989 0.7003 0.4338

40 1 1.1403 0.5119 0.3112 1.1520 0.4279 0.2615 1.2045 0.3924 0.2311
2 1.1683 0.5041 0.3052 1.0759 0.3776 0.2351 1.3341 0.3065 0.2014
3 1.1773 0.4683 0.2815 1.5356 0.4985 0.3184 1.2698 0.2809 0.1694

100 40 1 1.1500 0.4764 0.2900 0.7572 0.5269 0.3173 1.0337 0.3730 0.2360
2 1.2641 0.3603 0.2155 1.2937 0.2237 0.1357 1.2602 0.2025 0.1232
3 1.2402 0.3394 0.2025 1.6176 0.4133 0.2580 1.5947 0.3654 0.2149

80 1 1.1908 0.3684 0.2242 1.6057 0.3870 0.2480 1.5557 0.2684 0.1698
2 1.2320 0.3410 0.2051 1.2087 0.3207 0.1963 1.1545 0.2306 0.1286
3 1.2254 0.3283 0.1964 1.3158 0.3383 0.2164 1.2997 0.2211 0.1376

Table 6: The interval comparisons of δ

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

50 20 1 1.2813 0.952 0.4308 0.973 0.3417 0.980
2 0.9403 0.944 0.3479 0.965 0.3334 0.971
3 0.9309 0.927 0.3604 0.947 0.3481 0.954

40 1 0.6332 0.965 0.3567 0.986 0.3022 0.994
2 0.6127 0.952 0.3382 0.973 0.3086 0.981
3 0.6110 0.939 0.3380 0.960 0.3309 0.967

100 40 1 0.7657 0.968 0.4003 0.989 0.3371 0.997
2 0.5512 0.957 0.3439 0.978 0.3137 0.986

(Continued)
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Table 6 (continued)

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

3 0.6147 0.936 0.3513 0.957 0.3332 0.964
80 1 0.4390 0.974 0.3429 0.995 0.2824 0.996

2 0.4189 0.966 0.3237 0.987 0.3079 0.995
3 0.4228 0.948 0.3377 0.969 0.3311 0.977

ACI-PS BCI-PS
50 20 1 1.8095 0.899 0.5176 0.919 0.3823 0.925

2 1.0152 0.893 0.4395 0.913 0.3615 0.919
3 1.3934 0.849 0.4061 0.868 0.3997 0.874

40 1 0.9175 0.914 0.4192 0.934 0.3832 0.938
2 0.7320 0.911 0.3768 0.931 0.3339 0.938
3 0.8230 0.892 0.3953 0.912 0.3620 0.922

100 40 1 0.9099 0.918 0.4540 0.938 0.3812 0.946
2 0.6370 0.907 0.3872 0.927 0.3432 0.932
3 0.8931 0.898 0.4018 0.918 0.3636 0.930

80 1 0.6513 0.929 0.3950 0.949 0.3391 0.960
2 0.4364 0.917 0.3442 0.937 0.3235 0.947
3 0.5955 0.910 0.3546 0.930 0.3415 0.942

Table 7: The interval comparisons of μ

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

50 20 1 2.3852 0.841 0.1904 0.914 0.1559 0.931
2 2.2584 0.857 0.1571 0.928 0.1405 0.947
3 2.2177 0.885 0.1505 0.957 0.1209 0.968

40 1 2.0073 0.867 0.1563 0.942 0.1379 0.960
2 1.1767 0.894 0.1375 0.976 0.1259 0.978
3 1.0459 0.902 0.1289 0.976 0.1206 0.987

100 40 1 2.0738 0.868 0.1613 0.941 0.1320 0.960
2 1.8204 0.876 0.1473 0.955 0.1305 0.972
3 1.4948 0.893 0.1424 0.970 0.1056 0.983

80 1 1.0867 0.889 0.1459 0.960 0.1295 0.981
2 0.7623 0.907 0.1086 0.980 0.1058 0.985
3 0.7513 0.917 0.1171 0.982 0.0941 0.987

ACI-PS BCI-PS
50 20 1 1.2145 0.904 0.1790 0.946 0.1309 0.955

2 1.2109 0.909 0.1623 0.952 0.1346 0.951

(Continued)
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Table 7 (continued)

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

3 0.7144 0.920 0.1557 0.963 0.1071 0.972
40 1 0.9033 0.913 0.1366 0.956 0.1286 0.973

2 0.9382 0.910 0.1121 0.953 0.0986 0.982
3 0.6524 0.932 0.1238 0.976 0.0934 0.984

100 40 1 0.8761 0.921 0.1486 0.964 0.1192 0.979
2 0.8723 0.922 0.1455 0.965 0.1066 0.984
3 0.5141 0.937 0.1154 0.981 0.0902 0.988

80 1 0.6317 0.933 0.1127 0.977 0.1102 0.983
2 0.6827 0.942 0.1104 0.986 0.0959 0.987
3 0.4758 0.951 0.1005 0.989 0.0825 0.991

Table 8: The interval comparisons of σ

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

50 20 1 0.6254 0.948 0.3547 0.963 0.3369 0.972
2 0.4234 0.958 0.3575 0.960 0.3138 0.974
3 0.4762 0.951 0.3491 0.965 0.3106 0.977

40 1 0.3820 0.967 0.3465 0.970 0.3032 0.978
2 0.4176 0.966 0.3188 0.986 0.3119 0.976
3 0.3378 0.973 0.3260 0.980 0.2903 0.986

100 40 1 0.3565 0.969 0.3117 0.981 0.3091 0.985
2 0.3867 0.960 0.3288 0.972 0.2908 0.987
3 0.3443 0.983 0.3284 0.972 0.3189 0.983

80 1 0.3404 0.985 0.3327 0.989 0.2988 0.994
2 0.3242 0.988 0.3104 0.992 0.2610 0.999
3 0.3351 0.979 0.3141 0.991 0.3128 0.992

ACI-PS BCI-PS
50 20 1 0.7102 0.913 0.3689 0.936 0.3506 0.950

2 0.5806 0.918 0.3941 0.925 0.3627 0.948
3 0.5426 0.924 0.3740 0.930 0.3315 0.958

40 1 0.5268 0.934 0.3637 0.960 0.3407 0.972
2 0.4522 0.940 0.3886 0.947 0.3444 0.968
3 0.4308 0.937 0.3517 0.965 0.3294 0.975

100 40 1 0.4749 0.920 0.4065 0.935 0.4019 0.950
2 0.4275 0.924 0.3644 0.946 0.3162 0.952
3 0.3889 0.935 0.3693 0.941 0.3335 0.958

(Continued)
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Table 8 (continued)

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

80 1 0.3669 0.949 0.3435 0.956 0.3220 0.982
2 0.4088 0.945 0.3307 0.959 0.3131 0.975
3 0.3434 0.952 0.3144 0.962 0.3101 0.977

Table 9: The interval comparisons of R(t)

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

50 20 1 0.1278 0.911 0.0684 0.937 0.0572 0.953
2 0.1176 0.918 0.0688 0.935 0.0466 0.957
3 0.1109 0.921 0.0813 0.928 0.0808 0.947

40 1 0.1147 0.917 0.0659 0.939 0.0550 0.952
2 0.0522 0.933 0.0518 0.943 0.0391 0.965
3 0.0803 0.928 0.0633 0.940 0.0457 0.958

100 40 1 0.0885 0.938 0.0663 0.950 0.0563 0.968
2 0.0828 0.943 0.0646 0.952 0.0441 0.974
3 0.0776 0.945 0.0769 0.944 0.0537 0.970

80 1 0.0796 0.944 0.0528 0.957 0.0469 0.971
2 0.0477 0.955 0.0403 0.960 0.0329 0.975
3 0.0690 0.949 0.0569 0.954 0.0414 0.973

ACI-PS BCI-PS
50 20 1 0.1774 0.895 0.0810 0.920 0.0760 0.931

2 0.1154 0.904 0.0810 0.918 0.0628 0.935
3 0.1659 0.900 0.1063 0.912 0.1038 0.923

40 1 0.1403 0.908 0.0790 0.933 0.0662 0.936
2 0.0720 0.926 0.0644 0.929 0.0498 0.943
3 0.1078 0.919 0.0747 0.924 0.0692 0.930

100 40 1 0.1197 0.926 0.0794 0.936 0.0743 0.951
2 0.1112 0.924 0.0796 0.935 0.0615 0.962
3 0.1112 0.925 0.0745 0.940 0.0657 0.958

80 1 0.1016 0.929 0.0633 0.946 0.0514 0.966
2 0.0532 0.936 0.0468 0.948 0.0434 0.967
3 0.0841 0.932 0.0678 0.943 0.0472 0.970
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Table 10: The interval comparisons of h(t)

n m Scheme ACI-LF BCI-LF
Prior-I Prior-II

50 20 1 4.8207 0.891 1.2557 0.932 1.0404 0.953
2 2.1276 0.909 1.3205 0.928 1.0873 0.946
3 3.7047 0.901 1.3993 0.924 1.3739 0.947

40 1 2.1424 0.900 1.0163 0.943 0.8362 0.964
2 2.0774 0.912 1.1200 0.940 0.9500 0.961
3 1.7131 0.918 1.0309 0.938 1.0186 0.956

100 40 1 2.2815 0.922 1.3822 0.957 1.1552 0.966
2 1.9498 0.919 0.9902 0.960 0.8055 0.975
3 2.3791 0.910 1.0045 0.948 0.8220 0.972

80 1 1.4611 0.928 1.2239 0.967 0.7061 0.988
2 1.4282 0.942 0.8934 0.981 0.7699 0.984
3 1.1908 0.953 0.9950 0.976 0.7475 0.985

ACI-PS BCI-PS
50 20 1 2.5623 0.917 1.0601 0.947 0.8967 0.967

2 2.4664 0.915 1.0098 0.951 0.9260 0.962
3 2.4522 0.914 1.1464 0.942 1.0669 0.958

40 1 2.0923 0.920 0.8919 0.957 0.8736 0.970
2 1.9119 0.923 0.9281 0.954 0.8477 0.974
3 1.4353 0.926 0.8808 0.960 0.8167 0.978

100 40 1 2.0164 0.930 1.4839 0.969 1.1885 0.978
2 1.9060 0.938 0.8074 0.977 0.7495 0.985
3 1.7277 0.934 1.1011 0.973 1.0631 0.981

80 1 1.3577 0.939 1.0535 0.980 0.9022 0.982
2 1.4091 0.944 0.9979 0.983 0.6250 0.999
3 1.1316 0.957 1.0574 0.979 0.8011 0.987

6 Optimum PT2C

The previous sections dealt with the derivation of point and interval estimations, using both
frequentist and Bayesian MCMC estimations, for the parameters of life of the IGG distribution when
samples are gathered from the PT2C strategy. Following Ng et al. [17], when the design of removal
items R is fixed in advance as well as n (total test items) and m (effective sample) are pre-specified, one
can choose the optimal R = (R1, R2, . . . , Rm) censoring scheme.

Thus, to select the optimal progressive censoring (OPC) plan, Table 11 reports common criteria
for this purpose. Regarding the A-and D-optimality criteria, our objective is to reduce the trace and
determinant values of estimated variances and covariances developed from the LF and PS methods.
Further, the goal of F-optimality is to maximize the observed values of the Fisher matrices in relation
to the MLE (or MPSE) (say, ξ̂ ) of the unknown parameter(s) (say ξ ) being considered. The OPC plan
that offers more information should correspond to the lowest A and D values and the largest F value;
see, for example, Elshahhat et al. [18], Elshahhat et al. [19], among others.
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Table 11: Three criteria of OPC plans

Criterion Goal

A Minimize trace (I−1
(ξ̂))

D Minimize det (I−1
(ξ̂))

F Maximize trace (I(ξ̂))

7 Diesel Engine Data Analysis

This section analyzes a useful real data set consisting of the failure times (in weeks) of 20 mechan-
ical components of a diesel engine to demonstrate the performance of the proposed methodologies;
see Murthy et al. [20]. For computational convenience, we multiply each original data unit by one
hundred, and the new transformed data set is: 6.70, 6.80, 7.60, 8.10, 8.40, 8.50, 8.50, 8.60, 8.90, 9.80,
9.80, 11.4, 11.4, 11.5, 12.1, 12.5, 13.1, 14.9, 16.0, and 48.5.

First, the IGG distribution is fitted to the complete diesel engine data with eleven inverted lifetime
distributions (for x > 0 and δ, μ, σ > 0) as competitors, namely:

(1) Generalized inverted Gompertz (GIG(δ, μ, σ )) by Elshahhat et al. [21].

(2) Alpha-power inverse-Weibull (APIW(δ, μ, σ )) by Basheer [22].

(3) Generalized inverse-Weibull (GIW(δ, μ, σ )) by De Gusmão et al. [23].

(4) Exponentiated inverted-Weibull (EIW(μ, σ )) by Flaih et al. [24].

(5) Generalized inverted-exponential (GIE(μ, σ )) by Abouammoh et al. [25].

(6) Generalized inverted half-logistic (GIHL(μ, σ )) by Potdar et al. [26].

(7) Inverted exponentiated Rayleigh (IER(μ, σ )) by Ghitany et al. [27].

(8) Inverted Nadarajah–Haghighi (INH(μ, σ )) by Tahir et al. [28].

(9) Inverted Gompertz (IGo(μ, σ )) by Eliwa et al. [29].

(10) Inverse-Weibull (IW(μ, σ )) by Keller et al. [30].

(11) Inverse gamma (IG(μ, σ )) by Glen [31].

To evaluate the feasibility of the IGG model in comparison with other popular models, several
information measures are implemented, namely: (i) Kolmogorov-Smirnov (KS) statistic (with its
p-value); (ii) Anderson-Darling (AD); (iii) Cramer von Mises (CvM); (iv) estimated negative log-
likelihood (ENL); (v) Akaike information (AI); (vi) consistent Akaike information (CAIC); and (vii)
Hannan-Quinn information (HQI).

The MLEs (with their standard-errors (SEs)) of δ, μ, and σ as well as the evaluated information
criteria are provided in Table 12. It shows that the IGG distribution has the greatest p-value and the
lowest values for other statistics, thus the IGG model fits the diesel engine data set quite satisfactorily
and is the best choice among others. Moreover, the quantile–quantile (Q–Q) plots for the competitive
distributions are displayed in Fig. 3. It also confirms the same findings as displayed in Table 12.
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Table 12: Fitting results of IGG and its competitors from diesel engine data

Model MLE (SE) Statistics

δ μ σ ENL AIC CAIC BIC HQIC AD CvM KS (p-value)

IGG 7.7656 (5.8386) 0.3521 (0.3504) 7.3541 (0.9362) 52.907 111.81 113.31 114.80 112.39 0.3229 0.0445 0.1144 (0.956)
GIG 2.4085 (1.3514) 4.2427 (3.6299) 19.924 (7.7511) 53.092 112.19 113.69 115.17 112.77 0.3061 0.0420 0.1145 (0.956)
APIW 485.95 (1161.7) 3.7807 (0.5672) 750.25 (968.83) 54.029 114.06 115.56 117.05 114.64 0.4185 0.0545 0.1146 (0.955)
GIW 3.7843 (0.6867) 8.0911 (668.49) 1.5647 (489.20) 53.474 112.95 114.45 115.93 113.53 0.3517 0.0464 0.1141 (0.956)
EIW – 84.818 (45.153) 2.0182 (0.2506) 58.146 120.29 120.99 122.28 120.68 0.5438 0.0696 0.2260 (0.259)
GIE – 8.5938 (3.5241) 27.176 (4.8461) 57.703 119.41 120.11 121.39 119.80 1.0166 0.1385 0.1655 (0.644)
GIHL – 5.5828 (2.1396) 0.0342 (0.0054) 56.923 117.84 118.55 119.83 118.23 0.8622 0.1152 0.1495 (0.763)
IER – 1.9731 (0.6436) 128.51 (31.149) 55.262 114.52 115.22 116.51 114.91 0.5704 0.0735 0.1326 (0.873)
INH – 0.5158 (0.1374) 6.4190 (0.2920) 54.866 113.73 114.43 115.72 114.12 0.6969 0.1038 0.2113 (0.334)
IGo – 2.3979 (1.6447) 21.837 (7.4234) 55.255 114.51 115.22 116.50 114.90 0.2850 0.0403 0.2261 (0.258)
IW – 2.0202 (0.2310) 81.148 (38.906) 58.270 120.53 121.24 122.53 120.92 0.5480 0.0704 0.2117 (0.332)
IG – 7.4987 (2.3205) 75.333 (24.110) 56.120 116.24 116.94 118.23 116.62 0.7674 0.1007 0.1339 (0.866)

Figure 3: The Q–Q diagrams of IGG and its competitors from diesel engine data
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To capture the behavior of the estimated PDFs and CDFs of the IGG and its competitive distri-
butions using the diesel engine data, we have provided two plots: (a) representing the histogram and
the fitted densities and (b) representing the fitted/empirical reliability lines; see Fig. 4. It demonstrates
that the IGG distribution reflects the overall structure of the histograms and confirms the numerical
results presented here.

Figure 4: Fitted densities and reliability lines of IGG and its competitors from diesel engine data

Using the complete diesel engine data, for different choices of R, three PT2C samples (with m =
10) are obtained; see Table 13. The scheme R = (1, 0, 0, 0, 1) (as an example) is referred to as R =
(1, 0∗3, 1) for simplicity. For each PT2C data, the point and interval estimators of δ, μ, σ , R(t), and h(t)
(at t = 10) are obtained; see Tables 14 and 15, respectively. Since we have no prior information about
IGG (ϒ), the Bayesian results are approximated using the M-H algorithm based on gamma improper
priors, i.e., ai = bi = 0, i = 1, 2, 3. Here, to perform our calculations, we set all hyperparameters values
to 0.001. To run the MCMC sampler, the initial guess of δ, μ, or σ is taken as MLE (or MPSE), and
then the first 5000 (of 30,000) iterations are taken as burn-in.

Table 13: Three PT2C samples from diesel engine data

Sample (R1, R2, . . . , Rm) Generated data

1 (10, 0∗9) 6.70, 11.4, 11.4, 11.5, 12.1, 12.5, 13.1, 14.9, 16.0, 48.5
2 (0∗4, 5, 5, 0∗4) 6.70, 6.80, 7.60, 8.10, 8.40, 9.80, 13.1, 14.9, 16.0, 48.5
3 (0∗9, 10) 6.70, 6.80, 7.60, 8.10, 8.40, 8.50, 8.50, 8.60, 8.90, 9.80

Table 14: The point (SE) estimates of δ, μ, σ , R(t), and h(t) from diesel engine data

Sample Parameter MLE MPSE MCMC-LF MCMC-PS

1 δ 375.09 (16.950) 6.3776 (2.3115) 375.08 (3.16×10−4) 6.3785 (9.52×10−4)
μ 0.0036 (0.0012) 1.4547 (0.2280) 0.0042 (2.83×10−6) 1.4413 (7.50×10−4)
σ 6.6528 (0.0657) 13.077 (0.8674) 6.6528 (3.15×10−6) 13.053 (9.25×10−4)

(Continued)
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Table 14 (continued)
Sample Parameter MLE MPSE MCMC-LF MCMC-PS

R(10) 0.5712 (0.2858) 0.9895 (0.0448) 0.5309 (2.29×10−4) 0.9883 (3.43×10−5)
h(10) 37.431 (10.556) 0.0307 (0.0024) 37.419 (6.85×10−5) 0.0331 (7.78×10−5)

2 δ 375.03 (9.7201) 2.4541 (0.6851) 375.02 (3.14×10−4) 2.4524 (1.88×10−3)
μ 0.0031 (0.0010) 1.4615 (0.2297) 0.0037 (2.83×10−6) 1.4395 (9.75×10−4)
σ 6.6510 (0.0706) 12.243 (1.9397) 6.6510 (3.09×10−6) 12.156 (1.83×10−3)
R(10) 0.6167 (0.2912) 0.6630 (0.2888) 0.5658 (2.44×10−4) 0.6616 (3.76×10−4)
h(10) 37.436 (8.6046) 0.1479 (0.0072) 37.422 (6.88×10−5) 0.1480 (1.62×10−4)

3 δ 1772.3 (8.3902) 3.4394 (0.9908) 1772.3 (6.33×10−4) 2.4558 (1.87×10−3)
μ 0.0010 (0.0003) 1.4557 (0.2262) 0.0011 (6.01×10−7) 1.5206 (1.02×10−3)
σ 6.6851 (0.0270) 10.398 (1.0967) 6.6850 (6.33×10−7) 12.109 (1.81×10−3)
R(10) 0.4989 (0.0038) 0.5017 (0.1514) 0.4599 (1.98×10−4) 0.6312 (3.95×10−4)
h(10) 177.13 (0.0029) 0.2656 (0.0116) 177.11 (8.81×10−5) 0.1621 (1.89×10−4)

Table 15: The interval [length] estimates of δ, μ, σ , R(t), and h(t) from diesel engine data

Sample Parameter ACI BCI

MLE MPSE MCMC-LF MCMC-PS

1 δ (341.87,408.32)
[66.457]

(1.8472,10.908)
[9.0608]

(374.99,375.19)
[0.1966]

(6.0845,6.6719)
[0.5875]

μ (0.0014,0.0060)
[0.0046]

(1.0078,1.9015)
[0.8937]

(0.0033,0.0050)
[0.0017]

(1.2129,1.6788)
[0.4660]

σ (6.5241,6.7817)
[0.2576]

(11.377,14.777)
[3.4002]

(6.6518,6.6538)
[0.0020]

(12.763,13.338)
[0.5751]

R(10) (0.0109,0.9999)
[0.9890]

(0.9017,0.9999)
[0.0082]

(0.4670,0.6056)
[0.1387]

(0.9751,0.9959)
[0.0209]

h(10) (16.741,58.119)
[41.378]

(0.0260,0.0354)
[0.0094]

(37.398,37.441)
[0.0431]

(0.0142,0.0617)
[0.0475]

2 δ (355.99,394.09)
[38.101]

(1.1114,3.7969)
[2.6854]

(374.93,375.12)
[0.1928]

(1.8623,3.0177)
[1.1553]

μ (0.0012,0.0052)
[0.0040]

(1.0113,1.9117)
[0.9005]

(0.0029,0.0046)
[0.0017]

(1.1451,1.7464)
[0.6012]

σ (6.5124,6.7893)
[0.2769]

(8.4416,16.045)
[7.6035]

(6.6501,6.6520)
[0.0019]

(11.583,12.724)
[1.1415]

R(10) (0.0459,0.9999)
[0.9540]

(0.0971,0.9999)
[0.9028]

(0.4955,0.6460)
[0.1505]

(0.5399,0.7736)
[0.2337]

h(10) (20.571,54.300)
[33.729]

(0.1338,0.1619)
[0.0281]

(37.401,37.443)
[0.0426]

(0.1055,0.2065)
[0.1010]

3 δ (1755.8,1788.7)
[32.887]

(1.4975,5.3813)
[3.8837]

(1772.1,1772.5)
[0.3898]

(1.8627,3.0373)
[1.1746]

μ (0.0004,0.0016)
[0.0012]

(1.0124,1.8990)
[0.8867]

(0.0009,0.0013)
[0.0004]

(1.2095,1.8402)
[0.6307]

σ (6.6321,6.7381)
[0.1060]

(8.2485,12.548)
[4.2991]

(6.6848,6.6852)
[0.0004]

(11.553,12.671)
[1.1175]

R(10) (0.4914,0.5065)
[0.0150]

(0.2049,0.7985)
[0.5936]

(0.4008,0.5240)
[0.1232]

(0.5058,0.7489)
[0.2431]

(Continued)
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Table 15 (continued)
Sample Parameter ACI BCI

MLE MPSE MCMC-LF MCMC-PS

h(10) (177.12,177.14)
[0.0116]

(0.2429,0.2883)
[0.0454]

(177.09,177.15)
[0.0542]

(0.1128,0.2298)
[0.1170]

Tables 14 and 15 indicate that the computed estimates of δ, μ, σ , R(t), or h(t) based on both
MCMC approaches performed satisfactorily than those obtained based on classical approaches with
respect to minimum standard-error and interval length values. Trace diagrams of δ, μ, σ , R(t), and
h(t) are plotted; see Fig. 5. For each sup-plot in Fig. 5, the sample average and 95% BCI bounds
are displayed with solid and dashed horizontal lines, respectively. Using the Gaussian kernel when
the sample average is plotted as a vertical dash-dotted line, Fig. 6 displays the estimates with their
histograms of δ, μ, σ , R(t), and h(t). It indicates that the simulated estimates (from MCMC-LF or
MCMC-PS) of δ, μ, and σ are fairly symmetrical. It also shows the simulated estimates of R(t) and
h(t) are fairly symmetrical (using MCMC-LF) and are also close to being negatively and positively
skewed, respectively (using MCMC-PS).

Figure 5: (Continued)
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(a) MCMC-LF (b) MCMC-PS

Figure 5: Trace plots of δ, μ, σ , R(t), and h(t) from diesel engine data
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Figure 6: (Continued)
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(a) MCMC-LF (b) MCMC-PS

Figure 6: Posterior histograms of δ, μ, σ , R(t), and h(t) from diesel engine data

Now, using Table 13, the selection of the OPC plan is explored. So, from (10) and (16), the criteria
A, D, and F are evaluated; see Table 16. It shows that the scheme R = (0∗9, 10) used in Sample 3 is the
best PT2C compared to others. Clearly, the OPC plan proposed here supports our findings reported
in Section 5.

Table 16: The OPC design from diesel engine data

Sample LF

Criterion → A D F

1 1.679×10−6 287.429 739578.9
2 4.745×10−7 94.4785 993350.9
3 4.900×10−9 70.3856 10499746

PS

1 1.048×10−1 6.14721 29.29390
2 2.324×10−2 4.28454 35.86464
3 1.687×10−2 2.23559 36.66400
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8 Concluding Remarks

In this paper, various estimates of the inverted generalized gamma parameters δ, μ, σ , R(t),
and h(t) have been investigated through the maximum likelihood and maximum product of spacings,
and Bayes methods based on data sets collected from progressively Type-II censoring. In addition,
the asymptotic confidence intervals of the same unknown quantites have been obtained based on
the maximum likelihood and maximum product of spacing methods, as well as the Bayes’ credible
intervals have been obtained based on Bayesian approaches as well. The Monte Carlo results show
that, as expected, the Bayesian-based estimates behave satisfactorily when compared with frequentist
alternatives. An ideal progressive strategy has been suggested using several metrics. To confirm the
practical applicability of our calculations, a real-world data set containing mechanical components of
diesel engines has been examined. We recently recommended a Bayes MCMC setup using MPS-based.
As future work, it would be better to extend the proposed inferential techniques to other real-life
domains such as medicine, physics, chemistry, etc.
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Appendix A: Fisher-LF Elements

Differentiating (6) with respect to the unknown parameters δ, μ and σ , the elements of the
observed Fisher information matrix via LF can be expressed as
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Appendix B: Fisher-PS Elements

Differentiating (12) with respect to the unknown parameters δ, μ and σ , the elements of the
observed Fisher information matrix via PS can be expressed as
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