
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.052637

ARTICLE

Multi-Binary Classifiers Using Optimal Feature Selection for Memory-Saving
Intrusion Detection Systems

Ye-Seul Kil1,#, Yu-Ran Jeon1,#, Sun-Jin Lee1 and Il-Gu Lee1,2,*

1Department of Future Convergence Technology Engineering, Sungshin Women’s University, Seoul, 02844, Republic of Korea
2Department of Convergence Security Engineering, Sungshin Women’s University, Seoul, 02844, Republic of Korea

*Corresponding Author: Il-Gu Lee. Email: iglee@sungshin.ac.kr
#Ye-Seul Kil and Yu-Ran Jeon contributed equally
Received: 10 April 2024 Accepted: 14 July 2024 Published: 27 September 2024

ABSTRACT

With the rise of remote work and the digital industry, advanced cyberattacks have become more diverse and
complex in terms of attack types and characteristics, rendering them difficult to detect with conventional intrusion
detection methods. Signature-based intrusion detection methods can be used to detect attacks; however, they
cannot detect new malware. Endpoint detection and response (EDR) tools are attracting attention as a means of
detecting attacks on endpoints in real-time to overcome the limitations of signature-based intrusion detection
techniques. However, EDR tools are restricted by the continuous generation of unnecessary logs, resulting in
poor detection performance and memory efficiency. Machine learning-based intrusion detection techniques for
responding to advanced cyberattacks are memory intensive, using numerous features; they lack optimal feature
selection for each attack type. To overcome these limitations, this study proposes a memory-efficient intrusion
detection approach incorporating multi-binary classifiers using optimal feature selection. The proposed model
detects multiple types of malicious attacks using parallel binary classifiers with optimal features for each attack type.
The experimental results showed a 2.95% accuracy improvement and an 88.05% memory reduction using only six
features compared to a model with 18 features. Furthermore, compared to a conventional multi-classification model
with simple feature selection based on permutation importance, the accuracy improved by 11.67% and the memory
usage decreased by 44.87%. The proposed scheme demonstrates that effective intrusion detection is achievable with
minimal features, making it suitable for memory-limited mobile and Internet of Things devices.

KEYWORDS
Endpoint detection and response; feature selection; machine learning; malware detection

Nomenclature

EDR Endpoint detection and response
Conv-All Conventional multi-classification model using all features
Conv-6 Conventional multi-classification top-6 model using selected top-6 features with high

importance weights

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.052637
https://www.techscience.com/doi/10.32604/cmes.2024.052637
mailto:iglee@sungshin.ac.kr


1474 CMES, 2024, vol.141, no.2

1 Introduction

Cyberattacks are on the rise worldwide, accompanying the accelerated digital transformation
of companies following the coronavirus disease of 2019 (COVID-19) pandemic. During COVID-19,
many ransomware, distributed denial of service (DDoS), and phishing attacks occurred, and the main
targets were medical institutions. Most hospital systems are composed of computer systems with low-
end operating systems; therefore, they were directly attacked by advanced persistent threat (APT) 29
and others during COVID-19 [1].

As medical institutions are directly connected to life, strong security for information technology
(IT) systems is required. In addition, with the development of Industry 4.0, cyberattacks have
become more advanced, exhibiting various attack paths and types as well as complex characteristics.
Conventional malware is operationally simple, does not cause heavy damage, and is easily detectable.
However, advanced malware exhibits complex operational structures and performs long-term attacks,
causing massive damage to specific targets. Thus, detecting advanced cyberattacks using conventional
intrusion detection methods is challenging [2].

Typical conventional intrusion detection methods include the signature-based method [3–5],
which detects attacks based on predetermined detection rules corresponding to previously detected
attacks. However, these methods can only detect previously identified attacks; they cannot respond
adequately to novel malware variants [6]. Machine learning (ML)-based intrusion detection methods,
which can actively detect malware to overcome this limitation, are divided into binary classification
models, which determine the existence of an attack, and multi-classification models, which classify
malware into detailed types. However, the practical use of these classification models is limited because
their detection accuracy decrease as the number of malware types increases.

Endpoint detection and response (EDR) tools, which monitor security threats at endpoints in
real-time, have garnered significant attention for overcoming the limitations of conventional methods.
These tools collect data to enable automated responses to threats. They facilitate automatic real-time
monitoring; however, they constantly generate massive security alarms, including unnecessary data,
which wastes memory resources and degrades intrusion detection performance [7]. Thus, existing
intrusion detection systems are not optimized for detection performance and resources used owing
to the increase in types of malicious code.

This paper is a supplementary and extended version of the paper presented at the 7th International
Symposium on Mobile Internet Security (MobiSec’23) Conference. This study proposes a binary
classifier-based malware multi-classification technique using optimal features for each attack type
to address the limitations of conventional studies. A ransomware classifier and a trojan classifier,
which are binary classifiers that detect individual attacks, were configured in parallel. Subsequently, the
results of the two classifiers were comprehensively analyzed based on their classification probabilities.
The proposed model can improve the accuracy and memory usage compared to conventional models.

The main contributions of this study are as follows:

• A malware detection technique based on parallel binary classifiers and optimal feature selection
that addresses the limitations of conventional detection methods was proposed.

• It was proven that binary classifiers alone can detect multiple types of malicious attacks.

• The accuracy and memory usage of the proposed model were improved compared to conven-
tional models, enabling memory-efficient attack detection.



CMES, 2024, vol.141, no.2 1475

The remainder of this paper is organized as follows: First, previous related works on conventional
feature selection methods and malware detection are discussed in Section 2. In Section 3, the proposed
malware detection method is introduced; its performance improvements are demonstrated in Section 4
by describing comparative experiments with conventional models. Finally, Section 5 concludes the
paper and discusses future research directions.

2 Related Work

Intrusion detection methods can be classified into tool-based and ML-based intrusion detection
methods. Tool-based intrusion detection methods use a malicious behavior detection tool, such as
EDR, to detect attacks. In contrast, ML-based intrusion detection methods classify abnormal traffic
by training on network traffic data, including the Internet Protocol (IP) address and port information.
Table 1 lists the contributions and limitations of previous studies regarding the two types of intrusion
detection methods.

Table 1: Previous studies on intrusion detection methods

Category Ref. Contributions Limitations

Tool-based intrusion detection [8] Google Rapid Response
(GRR) and Osquery were
used together to detect APT
attacks. The APT attack
detection coverage was
evaluated using the MITRE
adversarial tactics, techniques
and common knowledge
(ATT&CK) framework.

The APT attack was
configured as a simple
attack; hence, the detection
performance for complex
attacks could not be
confirmed. In addition,
intrusion detection was not
performed using various
pieces of log information.

[9] GRR, Osquery, and
open-source host-based
intrusion detection security
(OSSEC) were used to detect
RAASNet ransomware
attacks. In addition, the
intrusion detection technique
of each EDR tool was
analyzed, and the differences
among and the differences
between the tools were
identified.

As an integrity-based
intrusion detection method
was used, detecting
advanced attacks was
difficult.

(Continued)



1476 CMES, 2024, vol.141, no.2

Table 1 (continued)

Category Ref. Contributions Limitations

[10] GRR and Graylog were
combined to detect APT
attacks; the limitations of the
GRR tool were mitigated,
and the detection coverage
was extended.

Both the GRR and
Graylog tools were used
manually; thus, the delay
was increased.

[11] GRR and Auditbeat were
used to monitor the behavior
of APT attacks and collect
log data, providing earlier
detection than conventional
methods with higher
accuracy.

As additional tools were
used, more logs were
collected than with
conventional methods.

ML-based
intrusion detection

Binary
classification

[12] A model was proposed to
detect TrickBot, the first
banking trojan horse.
Dynamic analysis of
malicious programs was
performed to collect packets,
and the performance was
evaluated using random
forest (RF), multilayer
perceptron (MLP), sequential
minimal optimization
(SMO), and logistic
regression (LR) models.

The proposed model
struggled to detect attack
types other than trojan
horses, and an imbalanced
dataset was used in the
experimental evaluation.

[13] The deep learning-based
binary fruit fly algorithm
(DL-BFFA) model was
proposed for synchronization
(SYN) flooding attack
detection.

A single class was used for
DoS, Probing, u2R, and
remote attacks, rendering
the classification of various
attack types difficult.

[14] A dynamic malware detection
algorithm was proposed using
feature selection and ML
based on genetic algorithms.

The proposed method only
determines the presence or
absence of malware;
performance may be
degraded if various types
of attacks are performed.

(Continued)



CMES, 2024, vol.141, no.2 1477

Table 1 (continued)

Category Ref. Contributions Limitations

[15] Frequency differential
selection (FDS) and weight
measurement were used with
newly proposed feature
selection algorithms to detect
Android malware.

FDS mainly considers the
characteristics of malware
that may occur on
Android; its performance
may be poor in detecting
malware in other operating
system (OS) environments.

[16] A semi-supervised federated
IoT malware detection
framework was proposed to
address privacy issues in
collecting user logs.

The authors did not
measure the memory
efficiency, making it
difficult to confirm its
performance in an IoT
environment.

[17] An automated feature
selection method for
behavior-based ransomware
detection was proposed, and
a particle swarm optimization
(PSO) algorithm with
wrapper-based feature
selection for ransomware
detection was used.

The performance was
lower when the malware
classification model was
applied to
multi-classification than
when it was applied to
binary classification.

Multi-
classification

[18] DDoS attack types in the
KDD99 dataset were
classified using support
vector machine (SVM),
decision tree (DT), naïve
Bayes (NB), and
unsupervised ML (USML)
models. An accuracy of
94.78% was revealed for the
USML model.

Only the sub-types of
DDoS attacks were
classified. In addition,
multi-classification with
SVM exhibited increased
overheads (latency and
memory usage) during
training and testing
compared to a binary
classifier.

[19] RF, DT, k-nearest neighbor
(KNN), and ridge classifier
(RC) were used to classify
DoS, Probing, u2R, and
remote attacks, and the PSO
method was applied to
optimize the performance.

The performance
improvement using PSO
was not evaluated.

(Continued)



1478 CMES, 2024, vol.141, no.2

Table 1 (continued)

Category Ref. Contributions Limitations

[20] A behavior-based
ransomware classification
model was proposed, and
feature selection was
performed by removing
features with similar
attributes to increase
classification accuracy.

The proposed model
manually selected a feature
for every training run.

[21] A multilayer architecture was
proposed to perform
classification in three stages
and to maintain high
performance in noisy
environments.

The memory usage and
latency increased with the
use of the three-stage
model.

[22] Proposed feature extraction
algorithm reduced the
dimensionality of
high-dimensional features,
thus improving the detection
speed.

The proposed method did
not consider the behavioral
characteristics of each
attack.

DL-based intrusion detection [23] A combined convolutional
neural network (CNN) and
bidirectional long short-term
memory (BiLSTM) model
was proposed to solve the
problem of the low detection
rate caused by
high-dimensional data.

The process of learning
and training by combining
two models uses a large
amount of resources.

[24] A low-complexity DL-based
intrusion detection system for
IoT nodes was proposed.

Insufficient consideration
of computing costs that
occur when learning large
amounts of data

[25] The proposed algorithm
selects important features
using high-level and low-level
features.

The runtime calculation
criteria are not clearly
explained.

[26] To overcome limitation of
Transnet, the proposed
algorithm accelerated the
feature learning process.

Selecting the transfer
method of the feature
learning process is not
automated.



CMES, 2024, vol.141, no.2 1479

Park et al. [8] proposed a tool-based intrusion detection method and suggested a framework
for detecting APT attacks by combining GRR and Osquery. They also evaluated the APT attack
coverage regarding the tactics and techniques provided by MITRE ATT&CK. The detection coverage
using the proposed method has been expanded by integrating multiple tools; the intrusion detection
performance was not verified for complex attacks because the APT attacks were composed of a
combination of simple malware. In addition, various pieces of log data were not used for intrusion
detection. Lee et al. [9] used GRR, Osquery, and OSSEC to detect RAASNet ransomware. The authors
analyzed the characteristics of each tool, which enabled faster attack detection using EDR tools.
However, an integrity-based intrusion detection method was primarily used in their study, making
it challenging to detect attacks bypassing integrity. This method also exhibits the limitation of not
using various pieces of log data for detection. Jeon et al. [10] proposed a method for detecting APT
attacks by combining Graylog and GRR to address the limitation of GRR that only some data
types can be collected owing to limited output plug-ins. An APT attack environment was configured
using the Carbanak attack scenario emulator and the attack detection coverage was measured. The
MITRE ATT&CK detection range of the proposed method was expanded by 11% compared to the
conventional method. However, although the GRR and Graylog tools were interworked, the two
tools were each used manually. Park et al. [11] proposed a rapid detection model using GRR and
Auditbeat. As GRR monitors the behavior of APT attacks and Auditbeat collects specific log data,
the proposed method can provide earlier detection than conventional methods with higher accuracy.
However, more logs are collected compared to conventional methods because additional tools are
used to detect APT attacks. The traditional tool-based intrusion detection methods are restricted by
the continuous generation of unnecessary logs, degrading detection performance. To overcome these
challenges in tool-based intrusion detection, our study applies an optimal feature selection and ensures
that only a small number of features, optimized for each type of attack, are used.

Gezer et al. [12] proposed an ML-based detection method to collect packets and perform dynamic
analysis of the environment of TrickBot, which is a banking trojan horse targeting bank customers
globally. Subsequently, ML models were used to classify TrickBot traffic flows. TrickBot infects the
hosts of victims with binary malware, injects malware into application programs, and then leaks
user data via redirection. In experiments using RF, MLP, SMO, and LR models, the RF model
was observed to classify attacks with an accuracy of 99.94%. The study provided insights into the
detection of a TrickBot infection, but it only evaluated trojan attacks, and other types of attacks
were not considered. Nevertheless, as an imbalanced dataset was used for evaluation, higher accuracy
than that with a balanced dataset was obtained. Nagaraju et al. [13] proposed the DL-BFFA to
classify SYN flooding attacks, which is a type of DDoS attack that acquires the handshake process
of the Transmission Control Protocol. The BFFA model was used to select optimal parameters in
a DL model, and binary BFFA was applied to the binary classification model. A comparison of
the performances of a simple SYN network model, tuning DL using the hybrid bat algorithm, the
binary bat algorithm, and the DL-BFFA revealed that the proposed model achieved the highest
accuracy of 99.96%. However, the study proposed a binary classifier that detects only SYN flooding
attacks; thus, its detection performance may be poor in an environment with various types of attacks.
Irshad et al. [14] proposed a genetic algorithm-based feature selection method and a dynamic malware
detection algorithm using ML. They used Cuckoo and the genetic algorithm for malware behavior
analysis to select the optimal features. Experiments with SVMs, NB, and RF revealed accuracies
of 81.3%, 64.7%, and 86.8%, respectively. However, the algorithm proposed in [14] is an intrusion
detection method that determines only the presence or absence of malware, which limits its perfor-
mance when handling various types of attacks. Sun et al. [15] used newly proposed feature selection



1480 CMES, 2024, vol.141, no.2

algorithms, FDS, and weight measurement for Android malware detection. The representative data
required by the Android application function were analyzed, and the FDS algorithm, which aims
to increase accuracy while reducing complexity by selecting optimal features, was applied. Reference
[15] applied the FDS algorithm to extract the feature importance and remove irrelevant features, but
the proposed FDS is a feature selection algorithm that considers the characteristics of malware that
can occur only on Android, and it may be poor at detecting malware in other operating system (OS)
environments. In addition, only the performance results for malware detection could be verified;
the results for the malware classification performance of multiple classes could not be validated.
Pei et al. [16] proposed a semi-supervised federated IoT malware detection framework to address
privacy issues in collecting user logs and ensure the quality and reliability of data labels. The authors
utilized knowledge transfer techniques to infer labels by analyzing the correlation between unlabeled
and labeled data. This study proposed an IoT malware detection system that ensures privacy and
reliability, but it did not measure the memory performance of the proposed model, making it difficult
to confirm its performance in a resource-constrained IoT environment. Abbasi et al. [17] proposed
an automated feature selection method for behavior-based ransomware detection and classification.
PSO algorithms were used for ransomware detection and classification with wrapper method-based
feature selection. According to the experimental results, the RF-based binary classification and multi-
classification exhibited detection accuracies of approximately 97.06% and 55.33%, respectively. In
previous studies [12–16], a binary classifier that detects only specific attacks was proposed, limiting
the intrusion detection performance when multiple types of attacks are introduced. In addition,
Abbasi et al. [17] showed that when a malware classification model was applied to multi-classifiers,
the performance was 43% lower than when it was applied to binary classifiers.

Extensive multi-classification research has been conducted to overcome the limitations of binary
classification. Tuan et al. [18] evaluated the attack classification performances of SVM, NB, DT, and
USML models for botnet DDoS attacks. The experimental evaluation indicated that the classification
accuracies of SVM, DT, NB, and USML were 91.55%, 93.3%, 96.74%, and 98.08%, respectively. This
study provided guidelines for choosing a suitable ML method for each case study, but only sub-types of
DDoS attacks were considered. In addition, among the models used in this study, multi-classification
with SVMs exhibited increased overheads (latency and memory usage) during training and testing
compared to a binary classifier. Saheed et al. [19] applied a PSO algorithm to ML models to perform
multi-classification of attacks in the Internet of Medical Things environment. This study applied
the PSO algorithm, a meta-heuristic optimization algorithm, and selected optimal features from a
dataset. PSO-RF, PSO-DT, PSO-KNN, and PSO-RC achieved accuracies of 99.76%, 99.58%, 98.9%,
and 97.6%, respectively. However, because a performance comparison between the simultaneous
and independent use of feature selection and PSO was not conducted, proving the effect of the
application of PSO was difficult. Sethi et al. [20] proposed a behavior-based ransomware classification
model, classifying 10 families. They used behavior features with weights of high importance for
high classification accuracy. Subsequently, the calculated behavior features were grouped with those
with similar properties, and features with similar properties were removed. In contrast to previous
studies that only considered the importance weights of features, overlapping features were considered
through feature grouping; however, the features must be selected manually for every training run.
Piskozub et al. [21] proposed a multi-layer architecture for malware detection. They classified malware
through a three-stage process of binary, malware type, and malware family classification. This method
proved robust to noise when the number of malicious flows is relatively large. However, the proposed
architecture has limitations in that it uses memory excessively and increases the latency through



CMES, 2024, vol.141, no.2 1481

the three-step classification process. Zhang et al. [22] efficiently reduced the dimensionality of high-
dimensional features using normalized mutual antibodies information feature selection (NMAIFS)
and implemented a classifier using the best feature vectors. In this study, the NMAIFS algorithm
improved the detection speed but did not consider the behavioral characteristics of each attack, so it
has the limitation of using unnecessary features when multi-classifying each attack. The conventional
ML-based intrusion detection techniques lack optimal feature selection for each attack type. To
overcome these limitations in ML-based intrusion detection, our study configures binary classifiers
for each attack type and uses features optimized for each type of attack.

In addition, DL-based intrusion detection has been studied recently. Hnamte et al. [23] pointed
out that conventional DL-based intrusion detection systems often use binary classification. At this
time, the attack detection rate of the training model may decrease owing to the influence of high-
dimensional data. Therefore, this study presents a methodology that combines a CNN and BiLSTM
with more hidden layers. This method enables the LSTM model to process the input sequence based
on its structure to design a robust model. However, a limitation exists in that it uses a large amount
of resources during learning and training by combining the two models. Awajan [24] proposed a
real-time intrusion detection mechanism for Internet of Things (IoT) nodes. By using a four-layer
fully connected layer architecture, the complexity of the system was reduced, and a precision of
93% was achieved for actual intrusions. However, the computing costs arising from learning large
amounts of data were not considered. Zhang et al. [25] proposed a pyramid channel-based feature
attention network (PCFAN) that selects important features by simultaneously utilizing high-level
and low-level features. Utilizing the complementarity between features at different levels for single
image restoration, it improved the problem of ignoring low-level features in the conventional deep
learning-based image restoration method. However, the PCFAN proposed in this study considers
features at all levels and consists of multiple modules, which may increase complexity, and the runtime
calculation criteria are not clearly explained, so the applicability in real environments has not been
proven. Hu et al. [26] proposed a deep subdomain adaptation network with an attention mechanism
(DSAN-AT) to identify malware variant traffic accurately and efficiently at the IoT edge gateway. The
proposed DSAN-AT reduces computing resources at the IoT edge gateway by accelerating feature
learning of traffic classified into different domains. This study claims to improve the slow convergence
speed and memory limitation of Transnet, a state-of-the-art technique for malware variant traffic
classification. However, this study has limitations in that the selecting transfer method of the feature
learning process is not automated. To overcome these challenges in DL-based intrusion detection,
our study measures memory usage to demonstrate effectiveness in IoT environments. Additionally,
we implement automation in the feature selection process to better detect variant malware in realistic
scenarios.

In summary, conventional intrusion detection methods suffer from various limitations. Among
ML-based methods, the binary classification method classifies data into only benign and attack classes,
making individual responses to different attack types difficult. Thus, with the progressive diversifica-
tion of attacks and increasing similarity to benign behavior, its classification performance is likely
to be degraded. However, as the multi-classification method uses the same features simultaneously
during the training process for classification, its detection accuracy is lower than that of the binary
classification model. In addition, higher memory usage is required to handle more classes. Finally, tool-
based intrusion detection can only detect attacks that are defined by the rule set, making it challenging
to detect advanced attacks.



1482 CMES, 2024, vol.141, no.2

3 Proposed Method

The structure of the proposed method is illustrated in Fig. 1.

1) Data collection: The EDR tool GRR [27] collects malicious logs of ransomware and trojan
attacks. Benign logs are collected by executing everyday actions, such as searching, downloading, and
streaming, after logging into a personal computer.

2) Data preprocessing: The extracted data are preprocessed to derive 18 features.

3) Feature selection: The importance weights of the ransomware and trojan classifiers are
calculated to select optimal features for each attack type.

4) Classification: The classification comprises two sub-classifiers. The ransomware and trojan
classifiers simultaneously classify each malware type during the first phase classification. During
the second-phase classification, the classification results of the ransomware and trojan classifiers are
combined to determine the final classification into ransomware, trojan, or benign classes.

Figure 1: The structure of proposed method

3.1 Data Collection
An experimental environment was constructed using GRR to collect logs, as shown in Fig. 2. A

GRR server and GRR clients were installed on virtual machine software (VMware). GRR version
3.4.0-1 was used for the GRR clients. In addition, Windows and Linux clients were employed. In an
attack environment, the GRR server monitors the behavior of the client and collects relevant log data,
while the client acts as the victim being infected by the malware. When the attacker deploys and runs
malware on the client, the GRR server collects the behavior of the client.

Figure 2: Data collection environment



CMES, 2024, vol.141, no.2 1483

Considering the significant social impact and recent increase in the prevalence of ransomware and
trojan, we assumed an environment infected with these two types of malware as our attack scenario
[28]. MSFVenom [29], which is a Metasploit framework-based independent payload generator, and
MEMZ trojan [30], which is a trojan that is tailored to the Windows environment, were used to collect
trojan logs. MSFVenom was executed in the Ubuntu environment after creating a backdoor shell in
Kali Linux. Experiments on MEMZ trojan were performed after constructing an attack environment
in Ubuntu and Windows. PSRansom [31], which is a PowerShell-based ransomware simulator that
provides C2 server functionality, was used as an attack environment for collecting ransomware logs. It
was executed in the Windows and Ubuntu environments, and logs were collected using the EDR tool.
Benign logs were collected using the EDR tool after performing benign operations in the environment
of the victim. In addition, we assumed security while collecting the ransomware, trojan, and benign
logs and that the GRR Server could be trusted.

3.2 Preprocessing
The dataset comprised logs that are extracted from Netstat, FileFinder, and Process in the GRR

flow. Netstat is a type of flow artifact provided by the GRR server, and information regarding
the network status flow of the attacker can be obtained by tracking the attack timestamps of the
Windows attacker. FileFinder tracks file paths to provide information regarding the creation, deletion,
and changes of a specific file. Process provides information regarding a specific process; the process
name, execution time, and username of the process can be obtained based on these features [28]. For
preprocessing of the dataset, some features unrelated to classification were dropped, as they were
device information, system configuration, and system time features.

In addition, privacy-related features were dropped and 18 features were ultimately selected. The
selected features were related to the standard system or process, and features containing personal
information were not collected. Thereafter, missing values in the data were filled in with zeros and
label encoding was applied to the categorical variables. Table 2 lists the 18 dataset features derived
through the data preprocessing.

Table 2: Features of dataset

Type Feature Description

Process memory_percent Percentage of memory used
rss_size Memory information used by process
vms_size Virtual memory size
num_threads Number of threads used
user_cpu_time Central processing unit (CPU) time consumed for user’s task
system_cpu_time System CPU time
status Process status information
real_uid User identifier information used to execute process
real_gid Group identifier information used to execute process

Netstat state Network state information
local_address.ip Target system’s IP information
remote_address.port Remote port information

FileFinder urn Event path
st_blocks Number of blocks allocated to file

(Continued)



1484 CMES, 2024, vol.141, no.2

Table 2 (continued)

Type Feature Description

st_mode File’s mode (read, write, execute) information
st_ino File’s inode number
st_size File’s size
modified File’s integrity information

3.3 Feature Selection
In previous studies [18–22], which applied the same feature selection method irrespective of the

malware type, the accuracy decreased with increasing malware diversity, making the detection of
various advanced attacks difficult. For example, the primary malicious behavior of ransomware is
file encryption. In addition, a trojan is the connection of an attacker to a session to upload malware
or introduce a backdoor. As the characteristics of malware types differ, some features may cause noise
during specific malware training if the same features are used in large numbers for various malware
types. Furthermore, in the case of a recent DL-based intrusion detection system [23–26], experiments
were conducted using the same features regardless of the malware type. As most research focuses only
on achieving high performance using fixed datasets, little research has been conducted on developing
systems to prepare for intelligent attacks. Therefore, the proposed model performs feature selection
with ransomware and trojan classifiers to train the model using optimal features for each attack type
classification.

First, the feature importance for each classifier is derived using permutation importance [32].
Permutation importance calculates the importance weight of each feature by evaluating the predictive
performance of the verification dataset when data from a specific feature are shuffled after training
the model. When calculating the importance of permutation, we performed five-fold cross-validation
by dividing the entire dataset into training and validation sets. Fig. 3 presents a visualization of the
feature importance weights of the ransomware and trojan classifiers for the 18 features.

Figure 3: Relative importance weight of each feature in ransomware and trojan classifier

The feature importance weight was derived as the average of 1000 iterations. It can be observed
that the feature importance differs depending on the type of attack to be detected. For example,



CMES, 2024, vol.141, no.2 1485

system_cpu_time, num_threads, and state are essential features for the ransomware classifier but not
for the trojan classifier. In contrast, status, urn, remote_address.port, and local_address.ip are essential
features for the trojan classifier but not for the ransomware classifier. This is because ransomware
often performs intensive encryption, which can significantly increase CPU usage or create multiple
threads and may communicate remotely with the server. In contrast, status, urn, remote_address.port,
and local_address.ip are essential features for the trojan classifier but not for the ransomware classifier.
This is because trojan typically exploits specific paths to execute malicious processes in the background
and may establish remote connections with an attacker.

Fig. 4 depicts the training accuracy when accumulating the features in order of high importance
weights for the feature importance derived for each attack type. In some cases, the slope of the accuracy
variation is large when certain features are added. This indicates that the contributions of certain
features to the classification accuracy improvement are more considerable than those of others. In
contrast, in cases in which the slope is maintained or decreased, no significant change or degradation in
accuracy is observed after adding features. This is because the feature importance weight is calculated
by considering the contribution of each feature to the statistical performance of a fitted model [33].
Thus, a high feature importance weight does not necessarily correlate with a high contribution to
accuracy improvement.

Figure 4: Accuracy based on feature importance by attack type

Let Fm = {f1, f2, · · · , fm} be a set of m feature vectors. Vm is the array that is concatenated vertically
from f1 to fm, and is used for training the ML model. Acc (Vm) is the accuracy derived by the model
trained using Vm. In addition, Ftop is defined as the set of top-k features with high feature importance
weights selected among Fm, whereas Fnoise and Foptimal are defined as the sets of features classified as
noise and optimal features among Ftop, respectively. The accuracy contribution rate (ACR) in Eq. (1)
takes the argument fk, and ACR (fk) means the accuracy contribution rate when the feature vector fk

is added for the training dataset. If ACR (fk) is 1.5%p or more, fk is classified as an optimal feature,
and if ACR (fk) is 0.5%p or less, fk is classified as a noise feature using Eqs. (2) and (3).

ACR (fk) = Acc (Vm) − Acc (Vm−1) (1)

Foptimal = {fk | fk ∈ arg (ACR (fk) ≥ 1.5), k ≤ m} (2)

Fnoise = {fk| fk ∈ arg (ACR(fk) ≤ 0.5), k ≤ m} (3)

Table 3 summarizes Fnoise and Foptimal in the ransomware and trojan classifiers. Foptimal differs
according to the two attack types, and some features contribute uniquely to the identification of each



1486 CMES, 2024, vol.141, no.2

attack type. For example, st_mode is classified as Foptimal for the ransomware classifier and Fnoise for the
trojan classifier. In contrast, local_address.ip is classified as Foptimal for the trojan classifier and Fnoise for
the ransomware classifier. Therefore, four and five features are used in the ransomware and trojan
classifiers, respectively, whereas six features are used in the aggregate, excluding redundant features.

Table 3: Optimal and noise features by attack type

Foptimal Fnoise

Ransomware classifier memory_percent, rss_size,
st_mode, urn

system_cpu_time, user_cpu_time,
num_threads, real_gid, status,
local_address.ip, remote_address.port,
modified, st_ino

Trojan classifier rss_size, memory_percent,
vms_size, urn, local_address.ip

user_cpu_time, system_cpu_time,
status, real_uid, num_threads, real_gid,
state, st_size, modified, st_blocks,
st_ino, st_mode

3.4 Classification
Fig. 5 depicts the overall classification flow of the proposed model. During the first phase, the

ransomware and trojan classifiers operate in parallel to classify activities into the ransomware, trojan,
or benign classes. If both classifiers determine the activity to be an attack, the process progresses to
the second phase. In the second phase, the probabilities of the ransomware and trojan classifier results
are combined to identify the class as ransomware or trojan. Only data points with clear decisions
are classified in the first-phase classification, and data points with high uncertainty are eventually
classified in the second-phase classification.

1) First-phase classification

During the first phase classification, the binary ransomware and trojan classifiers operate in
parallel. If a new attack is identified, a binary classifier can be added to detect the specific attack.
The Python threading module was used to implement each binary classifier [34]. Before training,
the ransomware classifier assigns non_ransomware to the trojan and benign labels, and the trojan
classifier assigns non_trojan to the ransomware and benign labels. The ransomware classifier uses
four ransomware-optimized features for training, and the trojan classifier uses five trojan-optimized
features for training. Both classifiers were modeled using a DT [35]. The parameters were selected as
default parameters provided by the scikit-learn library to create a generalized model that can handle
various types of data. We conducted experiments using three popular ML models: DT, SVM, and RF.
We found that the classification accuracy of our proposed model using DT was higher than that of the
other classification models; thus, we utilized DT for classification.

Table 4 lists the classification results of the first-phase classification. The ransomware classifier
returns the values as true for ransomware and false for non-ransomware, and the trojan classifier
returns the values as true for trojan and false for non-trojan activity. When the results of the two
models differ, the attack is classified as ransomware if the ransomware classifier result is true and as
a trojan if the trojan classifier result is true. If the results of both classifiers are false, the activity is
classified as benign. If the results of both classifiers are true, this indicates high uncertainty for the
data point, so it is difficult to classify it as either ransomware or trojan. If the classifiers cannot make



CMES, 2024, vol.141, no.2 1487

a clear decision in the first-phase classification, the system proceeds to the second-phase classification,
and the uncertainty is reduced.

Figure 5: Procedures of proposed model

Table 4: First-phase classification results

Ransomware classifier output Trojan classifier output First-phase classification result

False True Trojan
True False Ransomware
False False Benign
True True Second-phase classification

2) Second-phase classification

The second-phase classification takes data with high uncertainty as input and finally classifies
the activity as trojan or ransomware. If both classifiers determine the activity to be an attack during
the first-phase classification, a function is used to determine the attack type based on the prediction
probability that is associated with each classifier. Subsequently, the probabilities of the ransomware
and trojan classifiers are compared and the classifier result corresponding to the higher probability
is used to classify the attack. Algorithm 1 displays the pseudo-code of the proposed model, which



1488 CMES, 2024, vol.141, no.2

operates through data preprocessing, training model generation, optimal feature set derivation based
on feature importance ranking, and attack classification. In step 1, the collected data are loaded and
preprocessed, and in step 2, an individual attack classifier is created. In step 3, the optimal feature sets
are derived using the ACR function. In step 4, the classification prediction result is determined using
two-step classification.

Algorithm 1: Pseudo-code of proposed model
Input: Collected dataset
Output: Classification result
Step 1: Data loading and preprocessing
dataset = data_load(collected_dataset)
preprocessed_dataset = preprocessor(dataset)

Step 2: Generation of detection models
ransomware_classifier() = DecisionTreeClassifier()
trojan_classifier() = DecisionTreeClassifier()

Step 3: Feature importance calculation and selection of optimal feature set
ransomware_feature_importance = PermutationImportance(ransomware_classifier)
trojan_feature_importance = PermutationImportance(trojan_classifier)
ransomware_top_featureset = ransomware_feature_importance[0:N]
trojan_top_featureset = trojan_feature_importance[0:N]
for i in range(N)
if ACR(ransomware_top_featureset[i]) >= 1.5:

ransomware_optimal_featureset.append(ransomware_top_featureset[i])
if ACR(trojan_top_featureset[i]) >= 1.5:

trojan_optimal_featureset.append(trojan_top_featureset[i])
Step 4: Attack classification
predict_ransom = ransomware_classifier(preprocessed_dataset, ransomware_optimal_featureset)
predict_trojan = trojan_classifier(preprocessed_dataset, trojan_optimal_featureset)
for m in range(len(predict_trojan))

if prediction_ransom[m] == 0 and prediction_trojan[m] == 0:
result.append(0) � Classification as benign

elif prediction_ransom[m] == 1 and prediction_trojan[m] == 0:
result.append(1) � Classification as ransomware

elif prediction_ransom[m] == 0 and prediction_trojan[m] == 1:
result.append(2) � Classification as trojan

else
z = 1 if prediction_ransom_proba[m] [1] > prediction_trojan_proba[m] [1] else 2
result.append(z) � Second-phase classification that compares probability

4 Evaluation and Analysis

In this section, we report the experiments performed to evaluate the performance of the ran-
somware and trojan attack detection using the proposed model. The proposed model was evaluated
using Python 3 with scikit-learn on the Jupyter Notebook in Windows 10. Consequently, 2735
ransomware-related logs, 3470 trojan-related logs, and 4195 benign logs were collected, totaling 10,400
logs. The superiority of the proposed method was demonstrated by comparing the accuracies and



CMES, 2024, vol.141, no.2 1489

memory usage of the proposed and conventional models in identical experimental environments. A
multi-classification model (Conv-All) using all 18 features [19] was selected as a conventional model.
Conv-All uses all features without a feature selection process for multi-classification of malware
types. A multi-classification top-6 model (Conv-6) that selects the top-6 features with high feature
importances [17] was selected as another conventional model. The number of features of Conv-6 was
set to six, which is the same as the number of features derived by the feature selection technique of the
proposed model.

Fig. 6 shows the accuracies of the conventional and proposed models in the noise environment.
The noise was defined as a labeling error in an ML environment and it was implemented to select a
label randomly among ransomware, trojan, and benign. The accuracy was compared by increasing the
labeling errors, starting from 0% labeling error and incrementally increasing it by 2% up to 50%. All
models exhibited decreased accuracy as the noise increased. Except for some sections, the accuracy
followed the order of the proposed model, Conv-All model, and Conv-6 model. The accuracy of
Conv-6 model was significantly reduced in the noise environment. In the zero-noise environment, the
accuracy of the Conv-All model was 85.76% and that of the Conv-6 model was 78.7%. In contrast,
the accuracy of the proposed model was 87.1% when using only six features, which was approximately
33.3% of the total of 18 features. In the 50% labeling error environment, the accuracies of the Conv-
All and Conv-6 models were 66.29% and 63.12%, respectively, whereas the proposed model exhibited
68.9% accuracy. On average, the proposed model improved the accuracy by approximately 2.95% over
the Conv-All model and 11.67% over the Conv-6 model.

Figure 6: Accuracy based on noise level

The accuracy and memory usage according to the training data size were measured to evaluate
the performance of the conventional and proposed models. The dataset ratio was varied with under-
sampling from 10% to 90% using stratified sampling [36], which assumes the current dataset ratio as
100% and maintains the data distribution ratio. The accuracy for each training data size is shown
in Fig. 7. The overall model training performance gradually improved as the data sampling ratio
increased. In particular, the proposed model exhibited higher performance despite using 66.7% fewer
features compared to the Conv-All model. In the environment with the smallest data size, the accuracy
of the Conv-All and Conv-6 models were 58.65% and 58.64%, and that of proposed model was 65.8%.
On average, the proposed model achieved an accuracy improvement of approximately 6.39% over the
Conv-All model and 14% over the Conv-6 model.



1490 CMES, 2024, vol.141, no.2

Figure 7: Accuracy based on data sampling ratio

We used memory_profiler [37], which is a process memory utilization monitoring package in
Python, to evaluate the memory usage. The memory_profiler package can calculate the total usage
and increase or decrease in memory for each code based on the psutil module. In our experiment,
we calculated the memory usage of our proposed model from the data preprocessing phase to the
classification phase using memory_profiler. Fig. 8 depicts the memory usage according to the data
sampling ratio.

Figure 8: Memory usage based on data sampling ratio

The memory usage is related to the complexity and computational overhead of the algorithm. It
can be observed that memory usage increased as the data sampling ratio increased. This is because a
more extensive dataset results in more loaded and trained data following preprocessing. The memory
usage was the highest for the Conv-All model because all 18 features were used. In contrast, the Conv-6
model [17] exhibited relatively low memory usage because it used only some features, and the proposed
model had the lowest memory usage even when the data sampling ratio was high. This is because,
in contrast to the Conv-6 model, which is a multi-classification model that uses the same number of
features, the proposed model processes data on a parallel processing basis during binary classification.
Thus, the proposed model used approximately 88.05% less memory than the conventional Conv-All
model and approximately 44.78% less memory than the Conv-6 model on average, making it the most
efficient from a memory perspective. Therefore, the proposed model can effectively collect and train
data from memory-limited mobile and IoT devices using a small number of features, even in a small
training data environment.



CMES, 2024, vol.141, no.2 1491

5 Conclusion

We have proposed binary classifier-based multi-classification techniques using optimal features
for each attack type. The classification performance of conventional intrusion detection methods
deteriorates as the diversity of the attack types increases. In addition, signature-based intrusion
detection methods can only detect predefined attacks, making it difficult to detect new malware
variants effectively. In the case of EDR, many security warnings, including unnecessary data, are
generated continuously, thereby wasting memory resources and degrading the intrusion detection
performance. The proposed method configures parallel binary classifiers to detect ransomware and
trojan attacks. It includes two classification phases to classify each activity as benign, ransomware, or
trojan, with the associated probabilities. Each classifier is trained using optimal features that contribute
to accuracy improvement based on the feature importance derived from the attack type. We compared
the performance of the proposed model to that of a conventional multi-classification model (Conv-All)
and a multi-classification top-6 model (Conv-6) using the top six features based on feature importance.
On average, the proposed model improved the accuracy by 2.95% over the Conv-All model and 11.67%
over the Conv-6 model. In addition, the proposed model improved the memory usage by 88.05%
over the Conv-All model and 44.78% over the Conv-6 model. Our proposed model improves the
accuracy and memory usage by selecting features specific to each type of malware and deploying binary
classifiers in parallel. Thus, this approach not only effectively responds to advanced and diverse new
malware, but also allows for the use of memory-intensive DL techniques. However, the proposed model
has a limitation in that it has not been tested in a network environment in which an actual attack is
performed. In future research, the proposed model will be optimized by configuring the classifier with
DL models to operate with low latency and adapt dynamically to new attack environments. It will also
be tested in a real-world environment with substantial traffic to demonstrate its effectiveness.

Acknowledgement: Not applicable.

Funding Statement: This work was partially supported by MOTIE under Training Industrial Security
Specialist for High-Tech Industry (RS-2024-00415520) supervised by the Korea Institute for Advance-
ment of Technology (KIAT), and by MSIT under the ICT Challenge and Advanced Network of HRD
(ICAN) Program (No. IITP-2022-RS-2022-00156310) supervised by the Institute of Information &
Communication Technology Planning & Evaluation (IITP).

Author Contributions: The authors confirm their contributions to the paper as follows: Ye-Seul
Kil: Conceptualization, Methodology, Software, Validation, Investigation, Resources, Data Curation,
Visualization, Writing—Original Draft. Yu-Ran Jeon: Conceptualization, Methodology, Software,
Investigation, Resources, Data Curation, Writing—Original Draft. Sun-Jin Lee: Methodology, Soft-
ware, Investigation, Resources, Data Curation, Writing—Original Draft. Il-Gu Lee: Conceptual-
ization, Validation, Writing—Review and Editing, Supervision, Project Administration, Funding
Acquisition. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the authors upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



1492 CMES, 2024, vol.141, no.2

References
1. Pranggono B, Arabo A. COVID-19 pandemic cybersecurity issues. Internet Technol Lett. 2021;4(2):e247.

doi:10.1002/itl2.247.
2. Aslan Ö.A, Samet R. A comprehensive review on malware detection approaches. IEEE Access. 2020;8:6249–

71. doi:10.1109/ACCESS.2019.2963724.
3. Al-Asli M, Ghaleb TA. Review of signature-based techniques in antivirus products. In: 2019 Interna-

tional Conference on Computer and Information Sciences (ICCIS), 2019; Sakaka, Saudi Arabia; p. 1–6.
doi:10.1109/ICCISci.2019.8716381.

4. Scott J. Signature based malware detection is dead. In: Institute for Critical Infrastructure Technology, The
2017 Critical Infrastructure Forum; 2017; Washington, DC, USA.

5. Sathyanarayan VS, Kohli P, Bruhadeshwar B. Signature generation and detection of malware families. In:
ACIS 2008: Information Security and Privacy, Wollongong, Australia, 2008 July 7–9, Berlin, Heidelberg,
Springer; 2008; p. 336–49. doi:10.1007/978-3-540-70500-0_25.

6. Or-Meir O, Nissim N, Elovici Y, Rokach L. Dynamic malware analysis in the modern era—a state of the
art survey. ACM Comput Surv. 2020;52(6):1–48. doi:10.1145/3365001.

7. George AS, George ASH, Baskar T, Pandey D. XDR: the evolution of endpoint security solutions-superior
extensibility and analytics to satisfy the organizational needs of the future. Int J Adv Res Sci. 2021;8:493–
501. doi:10.48175/568.

8. Park SH, Yun SW, Jeon SE, Park NE, Shim HY, Lee YR, et al. Performance evaluation of open-source
endpoint detection and response combining Google Rapid Response and Osquery for threat detection.
IEEE Access. 2022;10(4):20259–69. doi:10.1109/ACCESS.2022.3152574.

9. Lee SJ, Shim HY, Lee YR, Park TR, Park SH, Lee IG. Study on systematic ransomware detection
techniques. In: 24th International Conference on Advanced Communication Technology (ICACT), 2022;
Pyeongchang, Republic of Korea; p. 297–301. doi:10.23919/ICACT53585.2022.9728909.

10. Jeon SE, Lee SJ, Lee EY, Lee YJ, Ryu JH, Moon JH, et al. An effective threat detec-
tion framework for advanced persistent cyberattacks. Comput Mater Contin. 2023;75(2):4231–53.
doi:10.32604/cmc.2023.034287.

11. Park NE, Lee YR, Joo S, Kim SY, Kim SH, Park JY, et al. Performance evaluation of a fast and efficient
intrusion detection framework for advanced persistent threat-based cyberattacks. Comput Electr Eng.
2023;105(4):108548. doi:10.1016/j.compeleceng.2022.108548.

12. Gezer A, Warner G, Wilson C, Shrestha P. A flow-based approach for Trickbot banking trojan detection.
Comput Secur. 2019;84(2):179–92. doi:10.1016/j.cose.2019.03.013.

13. Nagaraju V, Raaza A, Rajendran V, Ravikumar D. Deep learning binary fruit fly algorithm for identifying
SYN flood attack from TCP/IP. Mater Today. 2023;80(3):3086–91. doi:10.1016/j.matpr.2021.07.171.

14. Irshad A, Maurya R, Dutta MK, Burget R, Uher V. Feature optimization for run time analysis of
malware in Windows operating system using machine learning approach. In: 2019 42nd International
Conference on Telecommunications and Signal Processing (TSP), 2019; Budapest, Hungary; p. 255–60.
doi:10.1109/TSP.2019.8768808.

15. Sun H, Xu G, Wu Z, Quan R. Android malware detection based on feature selection and weight
measurement. Intell Autom Soft Comput. 2022;33(1):585–600. doi:10.32604/iasc.2022.023874.

16. Pei X, Deng X, Tian S, Zhang L, Xue K. A knowledge transfer-based semi-supervised federated learn-
ing for IoT malware detection. IEEE Trans Dependable Secure Comput. 2022 May 10;20(3):2127–43.
doi:10.1109/TDSC.2022.3173664.

17. Abbasi MS, Al-Sahaf H, Mansoori M, Welch I. Behavior-based ransomware classification: a particle
swarm optimization wrapper-based approach for feature selection. Appl Soft Comput. 2022;121(9):108744.
doi:10.1016/j.asoc.2022.108744.

https://doi.org/10.1002/itl2.247
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/ICCISci.2019.8716381
https://doi.org/10.1007/978-3-540-70500-0_25
https://doi.org/10.1145/3365001
https://doi.org/10.48175/568
https://doi.org/10.1109/ACCESS.2022.3152574
https://doi.org/10.23919/ICACT53585.2022.9728909
https://doi.org/10.32604/cmc.2023.034287
https://doi.org/10.1016/j.compeleceng.2022.108548
https://doi.org/10.1016/j.cose.2019.03.013
https://doi.org/10.1016/j.matpr.2021.07.171
https://doi.org/10.1109/TSP.2019.8768808
https://doi.org/10.32604/iasc.2022.023874
https://doi.org/10.1109/TDSC.2022.3173664
https://doi.org/10.1016/j.asoc.2022.108744


CMES, 2024, vol.141, no.2 1493

18. Tuan TA, Long HV, Son LH, Kumar R, Priyadarshini I, Son NTK. Performance evaluation
of Botnet DDoS attack detection using machine learning. Evol Intell. 2019;13(2):283–94.
doi:10.1007/s12065-019-00310-w.

19. Saheed YK, Arowolo MO. Efficient cyber attack detection on the Internet of Medical Things-smart
environment based on deep recurrent neural network and machine learning algorithms. IEEE Access.
2021;9:161546–54. doi:10.1109/ACCESS.2021.3128837.

20. Sethi K, Kumar R, Sethi L, Bera P, Patra PK. A novel machine learning based malware detection and
classification framework. In: 2019 International Conference on Cyber Security and Protection of Digital
Services (Cyber Security), 2019; Oxford, UK; p. 1–4. doi:10.1109/CyberSecPODS.2019.8885196.

21. Piskozub M, de Gaspari F, Barr-Smith F, Mancini L, Martinovic I. MalPhase: fine-grained malware
detection using network flow data. In: Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, 2021; New York, NY, USA; p. 774–86. doi:10.1145/3433210.3453101.

22. Zhang X, Fan M, Wang D, Zhou P, Tao D. Top-k feature selection framework using robust
0–1 integer programming. IEEE Trans Neur Netw Learn Syst. 2020 Jul 31;32(7):3005–19.
doi:10.1109/TNNLS.2020.3009209.

23. Hnamte V, Hussain J. DCNNBiLSTM: an efficient hybrid deep learning-based intrusion detection system.
Telemat Inform Rep. 2023;10:100053 doi:10.1016/j.teler.2023.100053.

24. Awajan A. A novel deep learning-based intrusion detection system for IoT networks. Computers.
2023;12(2):34. doi:10.3390/computers12020034.

25. Zhang X, Wang T, Wang J, Tang G, Zhao L. Pyramid channel-based feature attention network for image
dehazing. Comput Vis Image Underst. 2020 Aug 1;197(9):103003. doi:10.1016/j.cviu.2020.103003.

26. Hu X, Zhu C, Cheng G, Li R, Wu H, Gong J. A deep subdomain adaptation network with attention
mechanism for malware variant traffic identification at an IoT edge gateway. IEEE Internet Things J. 2022
Mar 21;10(5):3814–26. doi:10.1109/JIOT.2022.3160755.

27. GRR Team. What is GRR? 2017. Available from: https://grr-doc.readthedocs.io/en/latest/what-is-grr.html.
[Accessed 2023].

28. Almeida F, Imran M, Raik J, Pagliarini S. Ransomware attack as hardware trojan: a feasibility and
demonstration study. IEEE Access. 2022 Apr 20;10:44827–39.

29. OffSec. MSFVENOM. 2015. Available from: https://www.offensive-security.com/metasploit-unleashed/Msf
venom/. [Accessed 2023].

30. Endermanch. MalwareDatabase. 2020. Available from: https://github.com/Endermanch/MalwareDatabase/
tree/master/trojans. [Accessed 2023].

31. JoelGMSec. PSRansom. 2022. Available from: https://github.com/JoelGMSec/PSRansom. [Accessed 2023].
32. GRR Team. GRR. 2017. Available from: https://grr-doc.readthedocs.io/en/v3.2.1/index.html. [Accessed

2023].
33. Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance

measure. Bioinformatics. 2010;26(10):1340–7. doi:10.1093/bioinformatics/btq134.
34. Threading. Available from: https://docs.python.org/3/library/threading.html. [Accessed 2023].
35. Decision tree classifier. 2007. Available from: https://scikit-learn.org/stable/modules/generated/sklearn.tree.

DecisionTreeClassifier.html. [Accessed 2023].
36. Parsons VL. Stratified Sampling. In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels

JL, editors. Variance reduction. Statistics Reference Online: Wiley StatsRef. John Wiley & Sons; 2017.
37. Fabian P, Philippe G. memory_profiler. 2011. Available from: https://github.com/pythonprofilers/memory_

profiler. [Accessed 2024].

https://doi.org/10.1007/s12065-019-00310-w
https://doi.org/10.1109/ACCESS.2021.3128837
https://doi.org/10.1109/CyberSecPODS.2019.8885196
https://doi.org/10.1145/3433210.3453101
https://doi.org/10.1109/TNNLS.2020.3009209
https://doi.org/10.1016/j.teler.2023.100053
https://doi.org/10.3390/computers12020034
https://doi.org/10.1016/j.cviu.2020.103003
https://doi.org/10.1109/JIOT.2022.3160755
https://grr-doc.readthedocs.io/en/latest/what-is-grr.html
https://www.offensive-security.com/metasploit-unleashed/Msfvenom/
https://github.com/Endermanch/MalwareDatabase/tree/master/trojans
https://github.com/JoelGMSec/PSRansom
https://grr-doc.readthedocs.io/en/v3.2.1/index.html
https://doi.org/10.1093/bioinformatics/btq134
https://docs.python.org/3/library/threading.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://github.com/pythonprofilers/memory_profiler

	Multi-Binary Classifiers Using Optimal Feature Selection for Memory-Saving Intrusion Detection Systems
	1 Introduction
	2 Related Work
	3 Proposed Method
	4 Evaluation and Analysis
	5 Conclusion
	References


