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ABSTRACT

Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical
properties is important to assess their reliability and safety for sensitive engineering applications. This is all the
more important when elements composed of brittle materials are exposed to dynamic environments, resulting in
catastrophic fatigue failures. The authors propose the application of a non-intrusive polynomial chaos expansion
method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and
material properties are random independent variables. Understanding the probabilistic nature of fatigue fracture
in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic
loading. Crack growth is modelled using a phase-field approach within a finite element framework. For modelling
fatigue, fracture resistance is progressively degraded by modifying the regularised free energy functional using
a fatigue degradation function. Number of cycles to failure is treated as the dependent variable of interest and
is estimated within acceptable limits due to the randomness in independent properties. Multiple 2D benchmark
problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with
significantly fewer simulations than the Monte Carlo method. This proposed approach can accurately predict results
typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of
magnitude in required runs. The independent random variables’ sensitivity to the system response is determined
using Sobol’ indices. The proposed approach has low computational overhead and can be useful for computationally
intensive problems requiring rapid decision-making in sensitive applications like aerospace, nuclear and biomedical
engineering. The technique does not require reformulating existing finite element code and can perform the
stochastic study by direct pre/post-processing.

KEYWORDS
Phase-field; fatigue fracture; polynomial chaos expansion; material uncertainty; random variables; non-intrusive
stochastic technique

Nomenclature

• b Body force
• s Stress tensor
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• t Surface traction
• u Displacement field
• x Position vector
• a Crack length
• h Minimum element edge
• k Stress degradation factor
• n Iteration step
• t Pseudo time step
• C Elasticity matrix
• E Young’s modulus
• H Energy history
• N Number of cycle
• R Load ratio
• s0 Undamaged stress tensor
• �o Length scale parameter
• tt Total pseudo time step
• Gc Critical energy release rate
• Nf Number of cycles to failure
• ε Strain tensor
• ν Poisson’s ratio
• φ Phase-field parameter
• μ Mean
• σ Standard deviation
• σa Stress amplitude
• αT Fatigue threshold
• �b Bulk energy
• �e Elastic strain energy
• �ext External energy
• �int Internal energy
• �s Fracture/surface energy
• 	s Crack Surface
• α Cumulative fatigue history
• CoV Coefficient of variation
• CT Compact tension
• DOF Degrees of freedom
• MCS Monte Carlo simulation
• PCE Polynomial chaos expansion
• PDF Probability density function
• PF Phase-field
• PFM Phase-field modelling
• RV Random Variable
• SNS Single-edge notched specimen

1 Introduction

Material fatigue is a localized and progressive structural damage phenomenon in materials
when subjected to repeated cyclic loads far below the monotonic strength of the material [1]. Even
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though fatigue failures are traditionally associated with metallic materials, this unique failure mode
is widespread and is of significant concern for designers and engineers. These failures can result in
catastrophic consequences if not adequately understood and managed. Fatigue failure of materials
occurs in multiple stages: initiation or formation, micro-crack growth and macro-crack growth. Earlier
studies to predict fatigue life were experimental, with little or no usage of predictive and numerical
methods [1]. Studies carried out by Wohler [2] to determine the relation between number of cycles
to failure (Nf ) and applied stress amplitude (σa) were one of the earliest systematic approaches
to understand fatigue failure in metals. Fatigue failure of materials can be classified into three
different types based on the number of cycles to failure: Oligocyclic (OC), Low cycle (LC) and High
Cycle (HC) fatigue.

The earlier approach to fatigue life predictions used various relationships to predict the number
of strain and stress cycles the material has to undergo to fail from Wöhler curves. These approaches
cannot be applied to model multi-axial fatigue failures and are limited to uniaxial cases of constant
amplitude cycles. Paris et al. [3] proposed a relationship between stress intensity factor and crack
growth per cycle, widely known as Paris law. Improvements to the above law have resulted in NASGRO
(NASA/FLAGRO) equations that reproduce real-life fatigue behaviour like nucleation, crack closure
and load effects. All the above approaches require calibration of problem-specific parameters and
cannot be generalized for arbitrary materials.

Works on computational modelling of damage to date can be broadly categorized into two types
based on their approach—discrete and diffuse/smeared method. Discrete methods model cracks as a
discrete quantity. In earlier approaches, crack growth was modelled via node splitting, and each node
split created a fresh fracture plane and a new discontinuity for crack propagation. Hence, such models
showed high mesh dependency and constrained crack growth along element edges. The automatic re-
meshing approach developed by Ingraffea et al. [4] addressed the mesh bias problem to a large extent.
Another prominent discrete modelling technique is Cohesive zone model (CZM) proposed by Dugdale
[5] and Barenblatt [6]. In CZM, the fracture is a gradual process, and separation occurs between
the crack tip’s virtual surfaces. Another discrete modelling approach that has gained prominence
in the late 90s is the Extended Finite Element Method (XFEM) [7]. XFEM technique avoids mesh
manipulation, resolves stress singularities and enables local enrichment of nodes using the partition
of unity method. XFEM has also been extended to model fatigue fracture [8]. However, this approach
suffers from increased computational complexity compared to traditional Finite Element Method
(FEM). Another school of thought assumes crack to be a continuum. Though the discrete approach
satisfies our physical intuition, the smeared approach may be better suited to simulate the cracks.
Rashid et al. [9] introduced this approach while working on concrete specimens. Here, the effect of
crack formation and propagation on properties like stiffness and stress are incorporated into the
constitutive model. An introduction of a crack converts an isotropic specimen into an orthotropic
specimen due to loss of stiffness in a direction orthogonal to the crack, also known as the Plane of
Degradation (POD). Peridynamics [10] is a non-local approach and is one of the most recent and
popular diffuse approaches to crack modelling. In this approach, material points interact with each
other over finite distances called horizon size and use integro-differential equations, unlike classical
continuum mechanics. This approach has also been extended to model fatigue fracture [11] recently
and offers numerous advantages due to its ability to naturally handle discontinuities and complex
crack interactions without needing predefined paths or criteria.

In this paper, low-cycle fatigue fracture in brittle materials is modelled using Phase-Field Mod-
elling (PFM) technique in a finite element framework. Even though the PFM approach was developed
to model solidification problems [12], this technique has emerged as a transformative approach to
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model fracture processes such as crack nucleation, growth, merging and branching. PFM is based
on a variational framework [13] and recasts the critical energy theory of Griffith’s [14] to an energy
minimization problem. Variational problem is regularized [15] for efficient numerical implementation,
and a scalar field parameter, φ ∈ [0, 1], is introduced to model crack and its growth. PFM
approach is widely investigated to model various material properties such as anisotropy [16], hyper-
elasticity [17], thermo-poroelasticity [18], visco-elasticity [19], ductility [20], functionally gradation
[21], chemo-mechanical coupling [22,23], thermo-mechanical coupling [24], piezo-electricity [25,26].
This technique is also extended to model crack propagation in rocks [27], biological tissues [28], brittle
materials [29], concrete [30], polymers [31] and composites [32]. Fracture modes such as dynamic
cracking [33,34], thermal fracture [35], hydro-fracture [36] and compressive shear fracture [37] have
been modelled using phase-field method.

This modelling technique has been very recently extended for simulating fatigue fracture.
Boldrini et al. [38] simulated fatigue fracture by introducing another continuous field variable for
fatigue in addition to the PF variable. Although this approach could reproduce fatigue under small
strains, it failed to reproduce the S-N curves. The degradation potential introduced by Alessi et al. [39]
used accumulated strain to degrade the fracture toughness. This approach could not only model
S-N curves but also reproduce mean stress effects and multi-axial loading to a great extent. In the
PF models proposed by Mesgarnejad et al. [40], fracture toughness was set as a global material
property and degraded in the crack tip region. This approach could capture Paris law with high
exponents. Grossman-Ponemon et al. [41] extended the above model and fracture toughness was
modelled as a function of spatial coordinates and N. Lo et al. [42] introduced a viscous parameter
modelled using power law into standard PFM for capturing fatigue crack growth. Caputo et al. [43]
and Amendola et al. [44] used Ginzburg-Landau formalism for fatigue crack problems wherein the
degradation is modelled by introducing a fatigue potential. Another approach to PFM of fatigue
fracture is to degrade the fracture energy [45] as the crack progresses. Ulloa et al. [46] have extended
this approach to elastoplastic materials. An additional energy term was introduced to the standard
PF model by Schreiber et al. [47] to model fatigue and irreversibility. This approach could reproduce
fatigue growth under varying stress ratios and stress amplitudes. Recently, Hasan et al. [48] introduced
a new fatigue degradation function and a fatigue history variable. Crack initiation, propagation
and final failure could be modelled using this approach, including load and stress ratio effects.
Baktheer et al. [49] used the phase-field cohesive zone modelling (PF-CZM) technique to evaluate
fatigue behaviours in quasi-brittle materials like concrete.

The specimen’s material properties, geometric parameters, and loading conditions are treated
as deterministic in all the aforementioned studies. Studies are carried out for mean, minimum and
maximum value without acknowledging the inherent variability in material properties, geometry and
applied loads. For a realistic assessment of system response and to arrive at an optimal design that
balances safety, efficiency, and performance for critical applications like aerospace, bio-medical and
nuclear, a probabilistic approach is more realistic [50]. A probabilistic approach to design is pertinent
for the realistic assessment of safety risks, addressing unforeseen life extension requirements, and
responding to the dynamic evolution of design criteria over the operational lifespan of structures.

The most common and straightforward technique to determine the uncertainty in dependent
response is to employ Monte Carlo simulation (MCS) approach [51]. The technique mentioned above
relies on generating many random inputs, observing their impact on the system, and generating
a statistical distribution of all possible outcomes. Even though the method is easy to implement,
the number of input samples required to represent the dependent variable response accurately will
be typically 105 or more. For complex engineering problems with millions of DOFs, the MCS



CMES, 2024, vol.141, no.2 1001

approach will result in substantial overheads like increased computation time and resources. Another
commonly applied probabilistic method is the perturbation technique [52], which uses Taylor series
expansion to obtain local approximation of dependent variables. Applying perturbation techniques is
frequently limited to first and second-order and higher orders are computationally demanding. This
approach finds application for systems with low variability in independent parameters, as in aerospace
engineering, where stringent quality control is followed [53]. In the Polynomial Chaos Expansion
(PCE) approach [54], a polynomial basis represents the dependent variables of interest. The polynomial
is decomposed such that uncertainty is associated with the polynomial part, and the coefficients of
the polynomial become deterministic. In earlier days, PCE approaches were intrusive and required
extensive modification of the existing deterministic parent codes. Non-intrusive PCE techniques [55]
were later introduced as an added improvement. The sensitivity of random independent variables on
dependent variables of interest can also be readily determined by computing Sobol’ indices from PCE
coefficients [56]. PCE technique is widely applied for uncertainty quantification in various engineering
fields [57,58]. In the last decade, numerous stochastic crack growth studies have been carried out
[57–59] using various probabilistic approaches. Numerous probabilistic models have been proposed
for fatigue over the past few decades [60,61]. Experimental fatigue tests to quantify uncertainty are
extremely costly and time-consuming.

In this paper, the authors propose a non-intrusive PCE-based stochastic method to study low-
cycle fatigue fracture in brittle materials utilizing the PFM framework to account for uncertainties
in material properties and geometric parameters. In PCE approach, the objective is to account an
equivalent model without any loss of generality to overcome prohibitively expensive simulations to
conduct various iterations. This general equivalent model involves running the simulation to represent
the characteristics of the numerical model. Unlike traditional methods that often demand substantial
computational resources and intrusive modifications to finite element codes, the proposed framework
offers a streamlined solution with little or no computational overheads. Sensitivity analysis is carried
out to determine the dominant parameters when multiple random independent variables are present
in the system. Leveraging Sobol’ indices for sensitivity analysis provides valuable insights into the
influence of random variables on system response. Sensitivity studies can be carried out by post-
processing the coefficients of PCE polynomials. This innovative framework not only facilitates precise
estimation of the number of cycles to failure but also offers a practical, efficient, and non-intrusive tool
for probabilistic studies in sensitive engineering applications, empowering informed decision-making
and risk assessment.

The paper is organized as follows: General mathematical formulations for fatigue phase-field
are provided in Section 2. Governing equations, finite element discretization and solution schemes
are presented in Section 3. Section 4 touches upon the fundamentals of PCE for modelling systems
dependent variable response and sensitivity analysis. Applications of the PCE technique to evaluate
the low cycle fracture characteristic in a brittle fatigue crack growth problem are demonstrated in
Section 5 using multiple two-dimensional numerical problems having random geometric and material
variables. Concluding remarks of this manuscript are given in Section 6.

2 Phase-Field Fatigue Fracture Model

This section gives the basics of PFM developed to model rate-independent fatigue fracture under
quasi-static conditions. Small strain, irreversibility of any dissipative forces and smooth loading in
time are assumed to hold, while inertial effects, wave propagation and thermal effects are neglected
in this model. Heat and sound release due to the generation and growth of crack surfaces are also
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ignored. The governing equations are derived based on energy principles. Consider an arbitrary linear
elastic n dimensional body (
 ⊂ R

n, n ∈ {2, 3}) undergoing brittle fracture. The surface of the body,
	 ⊂ R

n−1, is decomposed to 	 = ∂	1 ∪ ∂	2. 	1 and 	2, represents two disjoint surfaces where t(x) for
x ∈ 	1 and u0(x) for x ∈ 	2 is the traction (Neumann boundary condition) and applied displacement
(Dirichlet boundary condition), respectively. Let 	s represent the evolving crack surface. Let b(x) for
x ∈ 
 represent the body forces. The total internal energy potential of the body (�int) is sum of surface
energy (�s) and bulk energy (�b):

�int = �s + �b (1)

Fracture energy can be calculated from the critical energy release rate (Gc) and is defined as

�s =
∫

	s

Gc d	 (2)

Computing �s requires explicit tracking of 	s. Tracking 	s for 2D and 3D problems with multiple
crack branching and coalescence is computationally expensive and numerically difficult. The sharp
crack surface is diffused using a scalar parameter [62] such that the surface integral form of �s can be
rewritten into a domain integral form. An auxiliary variable called phase-field parameter (φ ∈ [0, 1])
is introduced to track crack growth in the domain. A schematic representation of an arbitrary body
with sharp and diffused cracks is given in Fig. 1. This scalar parameter is 0 for sound material and 1
for fully damaged material. The domain integral form [63] of Eq. (2) is

�s =
∫

	s

Gc d	 ≈ Gc

∫



I(φ, φ ′) d
 (3)

where Gc is not dependent on position within the material. I(φ, φ ′) in the above expression is defined
as

I(φ, φ ′) = 1
4cw

{
�o(∇φ)T · (∇φ) + w(φ)

�o

}
(4)

In Eq. (4), �o is the length scale parameter (regularization length) and determines the extent of
smearing of the crack. The larger the value of �o, the more diffused the crack is assumed to be and
vice versa. cw and w(φ) are the scaling constant and dissipation function, respectively. Choice of w(φ)
cannot be arbitrary and is expected to fulfil certain conditions [64]:

w(0) = 0; w(1) = 1; w′(φ) ≥ 0 for φ ∈ [0, 1] (5)

Based on the choice of w(φ) and cw, the phase-field models are widely classified as AT1 (Ambrosio-
Tortorelli) [65] and AT2 models [66]. The functional forms for w(φ) and cw employed in the AT1 and
AT2 models are given below:

AT1 model:

w(φ) = φ and cw = 2
3

(6a)

AT2 model:

w(φ) = φ2 and cw = 1
2

(6b)
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(a) (b)

Figure 1: Schematic representation of a solid body with (a) Sharp and (b) Diffused crack

From Eq. (6b), it can be observed that AT2 is a second-order phase-field model. Since w′(φ) = 0
has a vanishing threshold once the crack initiates, this leads to a material model without a linear
elastic branch. This model has been widely used to simulate various fracture phenomena, including
crack branching, interaction between multiple cracks, and fracture in heterogeneous materials. The
technique is widely validated against experimental data and benchmark problems. On the other hand,
the AT1 model (Eq. (6a)) uses first-order PFM and has an initial linear elastic constitutive behaviour.
Numerical simulations in this work use AT2 model. Substituting Eqs. (6b) and (4) in Eq. (3) leads to

�s = Gc

2

∫



(φ2

�o

+ �o|∇φ|2
)

d
 (7)

The bulk energy term in Eq. (1) can be written as

�b(φ, ε) =
∫




g(φ)�e(ε) d
 (8)

In the above equation, �e is the elastic strain energy, and g(φ) is the crack degradation function
employed to model the reduction in material stiffness due to crack growth. The degradation function
should satisfy [63]:

g(0) = 1; g(1) = 0; g′(φ) ≤ 0 for φ ∈ [0, 1] (9)

Although degradation functions are available in various forms satisfying Eq. (9), the function
chosen for this paper is given below [62]:

g(φ) =
{(

1 − φ
)2 + k

}
(10)

where k ≈ 10−6 is the stress degradation constant that prevents numerical singularities during
computation. Elastic strain energy for a material at any point is defined as:
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�e = 1
2
ε : C : ε (11)

In Eq. (11), C and ε = ∇ s(u) are the fourth-order elasticity and small strain tensor, respectively
and u is the unknown displacement field variables and ∇ s is the symmetric gradient operator. �int is
redefined by substituting the expressions given in Eqs. (8) and (7) in Eq. (1):

�int =
∫




{
g(φ)�e(ε) + Gc

2

(φ2

�o

+ �o|∇φ|2
)}

d
 (12)

External work increment δWext is defined as

δWext = δ�ext =
∫




b · δu d
 +
∫

	1

t · δu d	 (13)

Internal work increment δWint is defined as

δWint = δ�int = ∂�int

∂ε
δε + ∂�int

∂φ
δφ

=
∫




s · δε d
 +
∫




−2(1 − φ)δφ�e(ε) d
 +
∫




Gc

(
�o∇φ · ∇δφ + 1

�o

φδφ

)
d


(14)

In the above expression, s is the degraded cauchy stress tensor and is given by

s = g(φ)
∂�e(ε)

∂ε
(15)

δWint − δWext = 0 should hold true for any random values of δu and δφ. Applying the divergence
theorem to Eq. (14) gives the following governing equations:

∇ · s + b = 0 in 
 (16a)

− Gc�o∇2φ +
{

Gc

�o

+ 2�e(ε)

}
φ = 2�e(ε) in 
 (16b)

s · n̂ = t on 	1 (16c)

u = u0 on 	2 (16d)

∇φ · n̂ = 0 in 	 (16e)

Eqs. (16a) and (16b) are coupled stress and phase-field equilibrium equations, respectively.
Eqs. (16c) and (16d) gives the natural and essential boundary condition for Eqs. (16a) and (16e) is
the natural boundary condition associated with Eq. (16b).

2.1 Strain Energy Decomposition
To model tension/compression asymmetry during the material loading cycle, hybrid scheme pro-

posed by Ambati et al. [67] is employed. �b is additively decomposed into tensile (�+
e ) and compressive

part (�−
e ). Degradation function affects only the tensile part. Expression for the decomposed �b(φ, ε)

is given below:

�b(φ, ε) = g(φ)�+
e (ε) + �−

e (ε) (17)
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This ensures crack growth does not occur during the compressive loading cycle. In this work, the
relationship between �±

e and ε is defined as

�±
e (ε) = λl〈tr(ε)〉2

±/2 + μltr(ε±)2 (18)

In the above expression, λl and μl are Lame’s first and second parameters, respectively. ε± is defined
as ε± = �3

b=1〈εb〉± nb ⊗ nb, where εb and nb are eigen values and vectors of strain tensor.

2.2 Karush-Kuhn-Tucker (KKT) Conditions
To ensure irreversibility of damage, i.e., φ̇ ≥ 0, a energy history variable, H is introduced [62,68].

H must satisfy KKT conditions given below

Ḣ ≥ 0, �+
e (ε) − H ≤ 0, Ḣ

{
�+

e (ε) − H
}= 0 (19)

Thus phase-field evolution equation given in Eq. (16b) can be rewritten as

− Gc�o∇2φ +
(

Gc

�o

+ 2H
)

φ = 2H in 
 (20)

2.3 Fatigue Damage
To model the damage caused by fatigue loading, a fatigue degradation function f (α) is introduced.

Evolution of the degradation function depends on cumulative fatigue history variable (α(t)) and
fatigue threshold (αT). Alessi et al. [39] in their work proposed two unique models for f (α): asymptotic
and logarithmic. In this paper, we adopt the asymptotic model:

f (α) =

⎧⎪⎪⎨⎪⎪⎩
1 if α(t) ≤ αT{

2 αT

α(t) + αT

}2

if α(t) ≥ αT

(21)

α(t) is assumed to be independent of mean load [45] and is defined as

α(t) =
∫ t

0

H(αα̇) |α̇| dt (22)

where, H is the Heaviside function. This ensures that α(t) only increases in value during the loading
cycle. α(t) represents the damage driving force and is defined as

α(t) = g(φ)�+
e (ε) (23)

The fatigue threshold is defined as αT = Gc
12�o

unless otherwise specified [45]. Thus the variational
form of internal energy defined in Eq. (14) is redefined as

δWint =
∫




s · δε d
 +
∫




−2(1 − φ) δφ H d
 +
∫




f (α) Gc

(
�o∇φ · ∇δφ + 1

�o

φ δφ

)
d
 (24)

3 Numerical Implementation
3.1 Finite Element Discretization

The weak form of Eq. (16) can be written taking into account Sections 2.1 to 2.3∫



(s : δε + b · δu) d
 +
∫

	1

t.δu d	 = 0 (25a)
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∫



{
−2 (1 − φ) δφ H + f (α) Gc

(
1
�o

φ δφ + �o∇φ · ∇δφ

)}
d
 = 0 (25b)

The domain 
 is discretized using finite elements. Using Voigt notation for a plane strain solid,
primary kinematic variables are expressed in terms of nodal values of phase-field (φi) and displacement
field (ui) at node i as

u =
m∑

i=1

Nu
i ui φ =

m∑
i=1

Nφ

i φi (26)

where m is the number of nodes per element. Nu
i and Nφ

i are the displacement and phase-field shape
interpolation matrices respectively. Strain field (ε) and gradient of the phase-field (∇φ) over an element
is defined as

ε =
m∑

i=1

Bu
i ui ∇φ =

m∑
i=1

Biφφi (27)

where Bu
i and Bφ

i are the displacement derivative and phase-field derivative functions respectively.
Energy history variable H described in Section 2.2 is written as

H = max
t∈[0,tt ]

�+
e

{
ε(t)

}
(28)

where t and tt represents current time and total pseudo time respectively. α(t) defined in Section 2.3
also needs to be time discretized and updated during numerical integration. α(t) is formulated as

αn+1 = αn +
∫ tn+1

tn

α̇ dτ = αn + �α (29)

where tn+1 and tn refers to n + 1 and n pseudo time instant respectively. �α defined in Eq. (29) for a
mean load independent fatigue problem is approximated as

�α ≈| αn+1 − αn | H
(

αn+1 − αn

�t

)
where �t = tn+1 − tn (30)

Eq. (25) must hold true for arbitrary values of δu and δφ. The displacement residual is given as

ru =
∫




g(φ)(Bu
)Ts0 d
 −

∫



(Nu
)T · b d
 −

∫
	1

(Nu
)T · t d	 (31)

In the above expression, s0 is the undamaged stress tensor. Likewise, the residual corresponding
to the evolution of the phase-field variable (rφ) is given by

rφ =
∫




Gc f (α) �o (Bφ
)T∇φ d
 +

∫



{
Gc f (α)

�o

+ 2H
}
(Nφ

)Tφ d
 −
∫




2(Nφ
)TH d
 (32)

3.2 Solution Schemes
A quasi-newton method determines the primary kinematic variables for which the residuals in

Eqs. (31) and (32) are zero. The tangent stiffness matrices are determined from the residuals and are
given below:

Kuu =
∫




g(φ) (Bu
)T C (Bu

) d
 (33a)
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Kφφ =
∫




[
Gc f (α) �o (Bφ

)T Bφ+
{

Gc f (α)

�o

+ 2 H
}

(Nφ
)T Nφ

]
d
 (33b)

The global equation is given below:[
u
φ

]
tn+1

=
[

u
φ

]
tn

−
[

Kuu 0
0 Kφφ

]−1

tn

[
ru

rφ

]
tn

(34)

In the above equation, the stiffness matrix is symmetric and positive definite. The global equation
can be solved via a monolithic or staggered approach. In staggered approach, u and φ are solved
sequentially. Although this scheme is robust and can overcome snapback instabilities, improper
selection of time increments can result in solutions deviating from the equilibrium solution. The
monolithic approach enables the use of large time increments, and u and φ are solved simultaneously.
The approach is computationally intensive and sometimes results in a lack of converged solutions. In
this paper, Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme [69,70] is employed. BFGS scheme is
a quasi-Newton monolithic solution scheme in which the stiffness matrix is only updated after a fixed
number of iterations. For BFGS scheme, Eq. (34) can be redefined as

K̃�z = �r where z =
[

u
φ

]
(35)

where �z = ztn+1
−ztn and �r = rtn+1

− rtn . The approximated stiffness matrix is defined [71] as follows:

K̃ =
(

I − �z �rT

�zT �r

)
K̃

−1

t

(
I − �z �rT

�zT �r

)−1

+�z �zT

�z �r
(36)

BFGS algorithm is implemented using commercial finite element package: ABAQUS® [72]

3.3 Abaqus Implementation
The commercial finite element package ABAQUS® defines and discretises the geometry and

applies Neumann and Dirichlet boundary conditions. The discretized geometry is processed using
MATLAB® [73] and made into a UEL (User Element) subroutine readable format. A UEL subroutine
is written based on standard formulations to calculate shape functions, derivatives of shape functions,
stiffness matrix and force matrix. ABAQUS is used to assemble the global matrices defined in Eq. (34)
and solve the system. ABAQUS uses BFGS with a line search algorithm. Implementation details and
the associated computational overheads are given in [70,74].

4 Probabilistic Analysis: Polynomial Chaos Expansion

This section details the fundamentals of the non-intrusive solver used for stochastic analysis.
Unlike intrusive approaches, the non-intrusive nature of the PCE technique does not demand any
modification of the phase-field relations and the developed finite element code. The finite element
code for the fatigue phase-field is used as a solver to obtain the responses of the dependent variables.
This can be repeated for a set of independent random variables. Direct pre/post-processing can be
carried out on phase-field model to get the stochastic responses of the dependent variable. Let

U = f (ξ) (37)

represent any generalized computational model of interest. In the above equation, U and ξ ∈ R
d

represent the dependent variable and a set of d number of random independent variables, respectively.
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The independent variables can be a material property, geometric feature, external load, or combina-
tion. This paper assumes that all ξ have identical distributions described by a predefined probability
density function (PDF). The mean and standard deviation are considered to be bounded in all cases.
The non-intrusive PCE approach allows for representation of the system’s response as follows:

U(ξ) =
∞∑

i=1

ui Bi(ξ) (38)

In the above equation, Bi(ξ ) represents an orthogonal multivariate polynomial basis and ui ε R

its Fourier coefficients. The choice of basis function depends upon the nature of the probability
distribution of independent random variables (RVs). Various orthogonal polynomial types can be
chosen corresponding to the distribution types of RVs under the Askey-Wiener Scheme [75]. The
chosen polynomial has weighing functions identical to the PDF of RVs. The tensor products of
these uni-variate polynomials will result in multivariate orthogonal polynomials, which represent the
dependent variable’s response. The second moment of dependent variable U(ξ) is assumed to be
bounded. In this manuscript, the RVs are assumed to have uniform distribution, and the orthogonal
basis function chosen is Legendre polynomial. The orthogonality of the Legendre polynomial can be
mathematically represented as follows:

〈Bi, Bj〉 = Bi · Bj δij (39)

where δij is the Kronecker Delta function. In the above equation, 〈·〉 stands for the inner dot product
operator. For computational easiness, the terms in Eq. (38) are restricted to N terms, and the modified
equation is given as

U(ξ) ≈
N∑

i=1

ui Bi(ξ) (40)

The number of terms in Eq. (40) (including the zeroth order term) can be computed using the
equation given below:

N = (n + d)!
n! d!

(41)

where n is the order of PCE. Higher PCE orders will increase terms in Eq. (40) and improve the solution
accuracy. The penalty is the increased computational cost. Eq. (40) can be rewritten as

〈U(ξ), Bi(ξ)〉 =
〈

N∑
i=1

uj Bj(ξ), Bi(ξ)

〉
(42)

Applying the orthogonality of the polynomial function (Eq. (39)):

〈U(ξ), Bi(ξ)〉 = ui〈Bi(ξ)〉2 (43)

The coefficients of the polynomial are given by the expression:

ui = 〈U(ξ), Bi(ξ)〉
〈Bi(ξ)〉2

(44)

The above equation can be solved using standard integration approaches such as the Gaussian
quadrature rule. The number of integration points (q) used for integration depends upon the order of
polynomials. The mean (μ) of the dependent variable is
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μ = u0 (45)

The standard deviation (σ ) of the dependent variable is

σ =
√√√√ N∑

i=1

u2
i 〈Bi(ξ), Bi(ξ)〉 (46)

Variance (V) is defined as σ 2. Variance of the dependent variable can be expressed as

V =
N∑

i=1

u2
i 〈Bi(ξ)Bi(ξ)〉 (47)

Global sensitivity analysis can be carried out by determining the Sobol’s Indices, ST
i . Sobol’s

indices are computed from the Fourier coefficients and give the sensitivity of each RV on the system’s
dependent variable of interest. Thus, the sensitivity computation is done by post-processing the Fourier
coefficients without additional computational cost. The higher the numerical value of Sobol’s Indices,
the more sensitivity. The analytically expression for computing Sobol Indices is

ST
i =

∑
j∈IT

i
u2

j

V
(48)

where IT
i is defined as

IT
i = {

J ∈ N : ji > 0
}

(49)

Fig. 2 gives a schematic representation of PCE implementation for modelling fatigue phase-
field having multiple independent RVs. The technique can be classified into three phases: Phase 1:
Pre-processing, Phase 2: Processing phase, and Phase 3: Post-Processing. In the pre-processing step,
simulation points (quadrature points) are determined. The number of simulation points (black dots)
depends on the PCE order and d. In the processing phase, fatigue phase-field simulations are run for
each simulation point specified in the pre-processing to obtain the dependent variable response. In the
post-processing phase, the results are used to determine the Fourier coefficients, ST

i , μ, σ and PDF of
the dependent variable. Detailed implementation algorithm is given in Algortihm 1.

5 Results and Discussion

In this section, it is proposed to apply and compare PCE technique using certain numerical
experiments. Results obtained are compared against MCS and deterministic responses wherever
possible. CPU hours required for simulating a SNS under symmetric cyclic axial load is 14.5 CPU
hrs (approx.) [70]. Therefore, MCS runs for real-life problems are compute-intensive due to the large
DOF required to model complex geometry. For such problems, MCS runs can extend for months or
even years, given the considerable number of sample runs required, which can reach 105 or more.
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A single element under monotonic loading is chosen to validate the results of the PCE technique
with MCS runs in Section 5.1. Peak failure load is treated as the dependent variable of interest for this
numerical problem. In subsequent sections (Sections 5.2 to 5.5), fatigue fracture responses of brittle
specimens are studied to demonstrate the application of the proposed stochastic approach. Nf is the
dependent variable of interest for all subsequent studies. The μ, σ , minimum and maximum responses
are determined for the randomness in geometry and material properties. All simulations in subsequent
sections are carried out in plane strain conditions and displacement control loading unless otherwise
specified. Four node iso-parametric quadrilateral elements are employed for idealizing the geometry.
All RVs are assumed to follow uniform distribution unless otherwise stated. Mesh convergence studies
were carried out for all the simulations. However, for the brevity of the paper, convergence results are
not discussed in detail.

Figure 2: Schematic representation of stochastic analysis of fatigue phase-field using non-intrusive
polynomial chaos technique

Algorithm 1: Numerical solution procedure using PCE technique
1 Fix the order of PCE (n), identify number of random variables (d) and orthogonal basis

function (Bi)
2 Compute the number of terms (N) in orthogonal polynomial using Eq. (41)

(Continued)
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Algorithm 1 (continued)
3 Fix the number of quadrature points (q) based on n
4 Obtain integration points (hk) and their weights (wk) from Gauss Legendre integration rule.
5 Map hk onto the physical space for all ξ
6 for i ← 1 to d do
7 for j ← 1 to q do
8 ξi,j=ξmean,i + σi ·

√
3 · hj

9 Solve Eq. (34) for all values of ξi,j using commercial finite element packages to determine U(ξ)

10 for i ← 1 to q do
11 Determine Bi(ξ)

12 Determine un = un + Bi(ξ) ∼ U(ξ)wi

13 Determine ud = ud + Bi(ξ) Bi(ξ) wi

14 Determine the coefficients of PCE using Eq. (44)
15 Generate Q samples (Q > 105) randomly between (−1, 1) for each stochastic dimensions and

determine U using the surrogate model given in Eq. (40)
16 Determine μ and σ analytically by solving Eqs. (45) and (46), respectively
17 Compute Sobol’ Indices to carry sensitivity analysis using Eq. (48)

The numerical simulations were carried out using ABAQUS® on a 32 GB RAM machine with
Intel® Xeon® Gold 5118 CPU @ 2.30 GHz (2 Processors). The solutions from ABAQUS® are post-
processed using MATLAB® to determine the system responses.

5.1 Homogeneous Plane Strain Plate under Uniaxial Tension
To compare the results of the PCE technique with MCS runs, a benchmark problem of 2D plane

strain plate under uniaxial tension is considered [58,59,76]. Material properties of the specimen and
�o chosen for the simulation are listed in Table 1 [76]. Geometry (w = 1 mm) and boundary condition
of the specimen is given in Fig. 3 [76]. The specimen is modelled as a single four-node iso-parametric
quadrilateral element. A single-element problem is chosen to validate the results of the PCE technique
with MCS runs. The uniaxial tension is applied as a displacement load of u = 0.1 × w at the CD edge.
Load is applied in increments of δu = 10−4 × w. The load-carrying capacity of the specimen decreases
as displacement load is incrementally applied on the specimen and φ grows from an intact state (φ = 0)
to a fully damaged state (φ = 1).

Table 1: Material property of homogeneous plane-strain plate under uniaxial tension

Material property Value

Young’s modulus, E (MPa) 2.1 × 105

Poisson’s ratio, ν 0.3
Critical energy release rate, Gc (MPa-mm) 5
Length scale parameter, �o (mm) 0.1
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Figure 3: Geometry and boundary condition of homogeneous plane-strain plate under uniaxial tension

Three material properties are considered to be independent RVs for this study: (E, Gc and ν).
Table 2 gives the coefficient of variation (CoV ) for these independent random variables for the three
case studies considered in this section. For Case 1 material distribution, Young’s Modulus (E) alone
is treated as the random independent variable and is assumed to have CoV of 0.2. For Case 2 material
distribution, CoV of E and Gc are 0.2 and 0.15, respectively. For Case 3 material distribution, in
addition to the RVs in Case 2, Poisson’s ratio (ν) is assumed to have a CoV of 0.1. Peak reaction
load is treated as the dependent variable of interest. For detailed insights into analytical solutions and
implementation of PFM for this specific problem, readers are requested to refer to [59,76]. A total of
2×105 simulation runs are carried out for each distribution case to obtain a converged MCS solution.
The μ and σ for MCS and PCE runs are listed in Table 2. PCE functions of orders 1, 2 and 3 are
used for simulations. μ and σ of peak reaction load determined using PCE runs are compared with
that of MCS runs. From the results, it can be observed that the PCE results are comparable to MCS
results. Second and third PCE orders can approximate the results better. The PDF for the peak reaction
load determined using MCS and PCE runs are compared in Fig. 4 for all three material distribution
cases. From Fig. 4 and Table 2, it can be observed that the second and third PCE orders are in good
agreement with MCS runs. For Case 3 material gradation with PCE order 3, 64 simulation runs were
carried out. Thus, PCE simulations can obtain probabilistic measures of the dependent variables of
interest with good estimates using a significantly lower number of simulation runs. Total sensitivity
analysis is carried out for the RVs considered for all three gradation cases using PCE coefficients.
Sobol’ indices for the sensitivity analysis are given in Fig. 5. A good agreement is observed between
the obtained results in Fig. 5a and [58]. Analyzing Fig. 5b, E influences the peak load carrying capacity
of the specimen the most in comparison to Gc and ν. Mean, maximum and minimum plots of reaction
load vs. applied displacement using PCE technique and MCS runs are plotted in Fig. 6. Results of
the third-order PCE technique are used to obtain the bounds of response. The mean, maximum, and
minimum responses obtained using the PCE technique match with MCS.
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Table 2: Mean and standard deviation of peak reaction load (in N) for a homogeneous plane-strain
plate under uniaxial tension

MCS PCE

Peak load (N) Order Peak load (N)

Case 1: 100
(

σ

μ

)
E

= 20

1215.0 ± 123.3 1 1221.4 ± 123.3
2 1220.2 ± 123.4
3 1221.1 ± 123.3

Case 2: 100
(

σ

μ

)
E

= 20; 100
(

σ

μ

)
Gc

= 15

1211.8 ± 154.0 1 1221.4 ± 152.7
2 1220.1 ± 154.3
3 1221.1 ± 153.5

Case 3: 100
(

σ

μ

)
E

= 20; 100
(

σ

μ

)
Gc

= 15; 100
(

σ

μ

)
ν

= 10

1219.2 ± 163.8 1 1220.9 ± 162.4
2 1221.3 ± 163.6
3 1221.6 ± 163.6

Note: In σX ± α μX , α = 1.0, X = E, Gc, ν.

Figure 4: (Continued)
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Figure 4: Probability density function of peak reaction load (N) for a homogeneous plane-strain plate
under uniaxial tension from PCE and MCS results: (a) Case 1 material distribution (b) Case 2 material
distribution (c) Case 3 material distribution

Figure 5: Total sensitivity analysis using Sobol’ Indices for a homogeneous plane-strain plate under
uniaxial tension using PCE of orders 1, 2 and 3: (a) Case 2 material distribution (b) Case 3 material
distribution
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Figure 6: Load vs. displacement plots for a homogeneous plane-strain plate under uniaxial tension
from PCE and MCS results: (a) Case 1 material distribution (b) Case 2 material distribution (c) Case
3 material distribution

5.2 Uniaxial Tension-Compression Study in a SNS
This section studies fracture response for a SNS [62,67,77] subjected to symmetric cyclic load.

This common benchmark problem can be considered as simulating the conditions experienced by a
test coupon subjected to uniform straining in an axial direction. Material properties for the simulations
are tabulated in Table 3 [45]. The geometry and boundary conditions are given in Fig. 7 (w = 1 mm)
[45]. The nodes corresponding to edge AB are constrained in Y directions and the node at corner A are
constrained in both X and Y direction. The specimen is subjected to a quasi-static cyclic displacement
load along edge CD with load ratio, R = −1 as shown in Fig. 8 and �u = 4×10−3 mm. The amplitude
of the applied displacement load in this section and subsequent sections are considered to simulate Low
cycle (LC) fatigue applications. The specimen undergoes Model I fracture. The minimum characteristic
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element size (h) in the crack growth zone is maintained at least 1
6

times �o to ensure sufficient mesh
refinement [78]. The model contains approximately 2.2 × 105 DOF. Fig. 9a gives the relationship
between crack length a and the number of cycles N. The result is consistent with [45,70]. Simulated
crack evolution is given in Fig. 9b. For this study, two different material distribution cases are explored.
E and Gc are treated as RVs of interest. For Case 1 material distribution, E alone is treated as the RV
with CoV of 0.1. For Case 2, both E and Gc are assumed to have a CoV of 0.1 and 0.05, respectively. The
CoVs for all cases are tabulated in Table 4. Lower and upper bounds of responses obtained by carrying
out deterministic runs are given in Table 4. PDF for Nf for the first three PCE orders is given in Fig. 10
for Case 1 and Case 2. From the figure, it can be observed that PDFs of PCE of orders 2 and 3 coincide
showing converged results. The μ, σ , minimum and maximum responses for Case 1 and Case 2 material
distributions are tabulated in Table 4. Mean, minimum and maximum responses are compared with
deterministic responses. Second and third PCE orders can better approximate the results and display
a converged solution. αT is dependent on the value of Gc [45] and hence not chosen as an independent
random material property variable for this study and subsequent studies. Total sensitivity analysis is
carried out using third-order PCE coefficients and is given in Fig. 11. E and Gc are found to influence
the Nf ; however E is still the governing parameter. The minimum, mean and maximum response for
crack length vs. the number of cycles for Case 1 and Case 2 material randomness is given in Fig. 12.

Table 3: Material property for SNS

Material property Value

Young’s modulus, E (MPa) 2.1 × 105

Poisson’s ratio, ν 0.3
Critical energy release rate, Gc (MPa mm) 2.7
Fatigue threshold, αT (MPa) 56.25

Figure 7: Boundary and geometry of SNS
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Figure 8: Piece-wise linear loading cycle

Figure 9: SNS under symmetric cyclic axial load (a) Crack length a vs. number of cycles N (b) Phase-
field plot [22,45]

Table 4: Mean and standard deviation of Nf for a SNS under symmetric cyclic loading

Deterministic (Nf ) PCE PCE (Nf )

μ Min Max Order μ ± σ Min Max

Case 1: 100
(

σ

μ

)
E

= 10

405.0 310.1 555.2 1 404.7 ± 69.4 284.7 524.8
2 404.7 ± 70.2 302.0 543.7
3 404.6 ± 70.4 300.6 545.1

Case 2: 100
(

σ

μ

)
E

= 10; 100
(

σ

μ

)
Gc

= 5

404.3 264.3 635.3 1 404.1 ± 49.7 298.5 509.6
2 403.8 ± 78.2 260.1 619.7
3 404.2 ± 78.2 256.0 623.6
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Figure 10: Probability density function of Nf for a SNS under symmetric cyclic loading using PCE of
orders of 1, 2 and 3 (a) Case 1 material distribution (b) Case 2 material distribution

Figure 11: Total sensitivity analysis using Sobol’ Indices for SNS under symmetric cyclic axial loading
using PCE of order 3 for Case 2 material distribution

5.3 Notched Beam under Asymmetric Three-Point Bending
Fatigue crack propagation is studied for a notched beam subjected to an asymmetric three-

point bending load. Material properties are identical to Section 5.2. The geometry of the specimen
(w = 2 mm) along with boundary conditions is given in Fig. 13. �o and αT for the specimen are 0.04
mm and 5.625 MPa, respectively. The model is discretized with approximately 55,000 DOF. A non-
inverting cyclic displacement load is applied with amplitude �u = 0.0125 mm (Fig. 14). The specimen
undergoes Mode I fracture when the displacement load is applied directly above the notch. In this
section, load is applied at an offset from the notch axis to simulate mixed-mode fracture ie Mode I
+ Mode II fracture. Mode II component can be increased by moving the load away from the notch.
For numerical discussion, we treat E and Gc as two random independent material properties having
CoV of 8% each. In this study, the dependent variable of interest is the number of cycles (Nf ) required
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for the crack to grow from the notch tip to 0.6w in the Y direction. Phase-field plot for the nominal
case is given in Fig. 15. PDF of Nf using PCE of first, second and third orders are given in Fig. 16a.
Analysing the figure, second- and third-order PDFs match closely, indicating convergence. The μ and
σ of the dependent variable for PCE simulations are listed in Table 5. The sensitivity analysis is carried
out for all the PCE orders and computed Sobol’ Indices are given in Fig. 16b. From the figure, it can
be concluded that E and Gc are equally sensitive and influence the system’s response. Mean, upper and
lower bounds of a vs. N due to material randomness are given in Fig. 17.

Figure 12: Crack length vs. the number of cycles for a SNS under symmetric cyclic loading (a) Case 1
material distribution (b) Case 2 material distribution

Figure 13: Geometry and boundary condition of notched beam under asymmetric three-point bending
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Figure 14: Non inverting cyclic displacement load

Figure 15: Phase-field plot for a notched beam under asymmetric three-point bending under non-
inverting cyclic loading

Figure 16: Fatigue crack growth in a notched beam under asymmetric three-point bending under non-
inverting cyclic loading (a) Probability density function of Nf (b) Total sensitivity analysis using Sobol’
Indices
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Table 5: Mean and standard deviation of Nf for a notched beam under asymmetric three-point bending
for random material distribution

CoV(%) PCE Nf

E Gc Order μ σ

8 8 1 597.4 109.9
2 597.6 110.8
3 598.0 110.6

Figure 17: Crack length vs. the number of cycles for a notched beam under asymmetric three-point
bending under non-inverting cyclic loading

5.4 Fatigue Growth in a Compact-Tension (CT) Test Specimen
This section considers fatigue crack growth in a CT test specimen. The geometry and boundary

conditions of the specimen are given in Fig. 18a. Material properties of the specimen are tabulated
in Table 6 [74]. The specimen is subjected to symmetric cyclic displacement load as shown in Fig. 8
with �u = 0.13 mm. The finite element discretization and statistics are given in Fig. 18b. The element
density is increased with h = 1

5
× �o in the crack growth zone. For this discussion, we consider two

material properties (E and Gc) and one geometric parameter (Cl) as the random independent variables.
The CoV for E, Gc, Cl are assumed to be 0.08, 0.04 and 0.05, respectively. Studies are carried out using
PCE functions of order one, two and three. Table 7 lists the μ and σ of Nf using PCE of order up to
three. Phase-field plot for the simulation with nominal value is given in Fig. 19. PDF of Nf is given
in Fig. 20. PCE of order two and above are required to capture the response for the RV distribution
studied in this section. Hence, it is recommended to analyze using higher-order PCE until convergence
is obtained. Global sensitivity analysis is performed to determine the sensitive parameter influencing
Nf using Sobol’ indices. E is found to be the most sensitive parameter while the sensitivity of response
due to randomness of Cl is negligibly small. Sobol’ indices for the distribution cases are given in Fig. 21.
The mean and extreme responses for the crack growth vs. the number of cycles is given in Fig. 22. The
minimum response of the system is obtained for the upper bounds of E and Cl and the lower bound
of Gc, and vice versa for the maximum response.
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Figure 18: Fatigue crack growth in a CT test specimen (a) Geometry and boundary (b) Finite element
discretization and statistics

Table 6: Material property of CT test specimen under symmetric cyclic loading

Material property Value

Young’s modulus, E (MPa) 215960
Poisson’s ratio, ν 0.3
Critical energy release rate, Gc (MPa-mm) 5.4
Length scale parameter, �o (mm) 0.1
Fatigue threshold, αT (N/mm2) 4.5

Table 7: Mean and standard deviation of Nf for a CT test specimen under symmetric cyclic loading

Case CoV(%) PCE Nf (PCE)

E Gc Cl Order μ σ

1 8 4 5 1 1976.3 277.8
2 1976.9 269.8
3 1977.0 271.1
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Figure 19: Phase-field plot for a CT test specimen under symmetric cyclic loading

Figure 20: Probability density function of Nf for a CT specimen under symmetric cyclic loading
determined using PCE technique
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Figure 21: Total sensitivity analysis for a CT specimen under symmetric cyclic loading

Figure 22: Crack length vs. the number of cycles for a CT test specimen under symmetric cyclic loading

5.5 Fatigue Growth in a Compact-Tension Test Specimen with a Hole
This last section studies fatigue growth for a CT test specimen with a hole adjacent to the

crack growth trajectory. The geometry and boundary conditions are given in Fig. 23a. The material
properties and applied loads are identical to the specimen studied in Section 5.4. The finite element
discretization and statistics are given in Fig. 23b. For this example problem, hole position (hp) and Gc

are treated as independent RVs. CoV of these two random independent parameters are tabulated in
Table 8. Nf is treated as the dependent variable of interest. Phase-field plot for the nominal run is given
in Fig. 24. The predicted PDF of Nf for PCE orders 1, 2 and 3 are given in Fig. 25a. The μ and σ of
Nf are computed using the PCE technique for all three orders and are tabulated in Table 8. Studying
Fig. 25a and Table 8, it is observed that a PCE order of 1 is sufficient to capture the randomness of
Nf . The total sensitivity analysis results are shown in Fig. 25b. It is observed that both Gc and hp are
found to influence the distribution of Nf . From the figure, it can be concluded that Gc is found to have
a greater influence among the two RVs. Convergence of the total Sobol indices for all PCE orders are
given in Fig. 25b. Fig. 26 highlights the minimum, maximum and nominal response for crack length
vs. the number of cycles. Fig. 27 gives the crack growth trajectory for the response bounds.
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Figure 23: Fatigue crack growth in a CT test specimen with a hole (a) Geometry and boundary (b)
Finite element discretization and statistics

Table 8: Mean and standard deviation of Nf for a CT test specimen with a hole under symmetric cyclic
loading for uncertainty in material distribution

CoV(%) PCE Nf

Gc hp Order μ σ

5 6.5 1 2678.3 227.2
2 2680.0 227.8
3 2679.2 227.7
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Figure 24: Phase-field plot for a CT test specimen with a hole under symmetric cyclic loading

Figure 25: Fatigue crack growth in a CT test specimen with a hole under symmetric cyclic loading (a)
Probability density function of Nf (b) Total sensitivity analysis using Sobol’ Indices
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Figure 26: Crack length vs. the number of cycles for a CT test specimen with a hole under symmetric
cyclic loading

Figure 27: Crack growth path for a CT test specimen with a hole under symmetric cyclic loading

6 Conclusion

In this work, non-intrusive stochastic fatigue fracture studies are carried out on brittle materials
when geometric parameters and material properties are random independent variables. Number of
cycles to failure is treated as the dependent variable of interest. PCE technique is employed with
PFM for fatigue fracture problems and is solved using finite element method. First and second-order
stochastic moments of dependent variables and their bounds are determined using PCE of up to
three orders. The results obtained are compared with those of MCS and deterministic approaches
wherever possible and are in close agreement. PCE approach can achieve the results in significantly
fewer simulations than MCS runs where the simulations are computationally expensive. Five different
numerical problems are solved to demonstrate the application of the proposed probabilistic technique.
This probabilistic approach to fracture problems does not require modification of the existing finite
element code and can perform stochastic analysis by direct pre/post-processing. Sensitivity analysis
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is also carried out using Sobol’ indices to determine the influence of various independent random
variables on the system’s responses. Sensitivity studies are carried out by simply post-processing the
coefficients of PCE polynomials. PCE faces challenges in accurately representing highly nonlinear
systems and discontinuous functions. Despite these limitations, PCE is a valuable uncertainty quan-
tification and sensitivity analysis tool in sensitive applications like aerospace, nuclear and biomedical
to assess safety factors without computational overheads.
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