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ABSTRACT

This study analyzes the transmission of typhoid fever caused by Salmonella typhi using a mathematical model that
highlights the significance of delay in its effectiveness. Time delays can affect the nature of patterns and slow down
the emergence of patterns in infected population density. The analyzed model is expanded with the equilibrium
analysis, reproduction number, and stability analysis. This study aims to establish and explore the non-standard
finite difference (NSFD) scheme for the typhoid fever virus transmission model with a time delay. In addition,
the forward Euler method and Runge-Kutta method of order 4 (RK-4) are also applied in the present research.
Some significant properties, such as convergence, positivity, boundedness, and consistency, are explored, and the
proposed scheme preserves all the mentioned properties. The theoretical validation is conducted on how NSFD
outperforms other methods in emulating key aspects of the continuous model, such as positive solution, stability,
and equilibrium about delay. Hence, the above analysis also shows some of the limitations of the conventional finite
difference methods, such as forward Euler and RK-4 in simulating such critical behaviors. This becomes more
apparent when using larger steps. This indicated that NSFD is beneficial in identifying the essential characteristics
of the continuous model with higher accuracy than the traditional approaches.
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1 Introduction

Infectious diseases can be transmitted directly or indirectly between individuals. These illnesses
emerge when microorganisms enter the body, increase, and trigger a resistant reaction. Typhoid fever,
whenever left untreated, represents a severe gamble, possibly harming various organs and prompting
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deadly entanglements. It is brought about by Salmonella Typhi [1], frequently present in sullied food
or water. Ingesting sullied substances presents the microorganisms, causing sickness. Notwithstanding
upgrades in water neatness, typhoid fever remains a critical worry in many non-industrial countries [2].
Normal side effects incorporate migraines, queasiness, heaving, looseness of the bowels, rashes, fever,
joint and muscle torment, and loss of hunger. Untreated, it can rise, influencing the bloodstream and
causing stomach tissue contamination [3]. Numerical models have played a crucial role in disentangling
typhoid fever’s transmission components and assessing the viability of preventive measures. Although
some explicitly tackle direct human-to-human transmission [4–6], others additionally consider the job
of debased food and water in aberrant transmission [7–9].

Far-reaching models have provided a more profound comprehension by investigating both
immediate and roundabout transmission methods [10–12]. These models have fundamentally sup-
ported evaluating intercessions, for example, sickness therapy [13,14], sterilization rehearsal [15,16],
instructive missions [17], and media drives [18] pointed toward forestalling typhoid flare-ups. Their bits
of knowledge are instrumental in contriving effective control measures for typhoid fever. For example,
Musa et al. [19] fostered a plague model to investigate typhoid fever transmission and evaluate the
effect of general Wellbeing instruction crusades on bringing down infection rates. Using information
from Taiwan and China, they adjusted the model, laying out security measures for endemic and
illness-free harmony. Utilizing wavelet examination, they distinguished urgent occasional examples in
episodes and decided critical boundaries for typhoid disease the executives. Peter et al. [20] introduced
a numerical model to investigate typhoid transmission elements and the impacts of immunization,
incorporating immediate and circuitous effects, like group invulnerability. They showed that while
inoculation could briefly offer backhanded assurance and decrease sickness occurrence, destroying
Typhoid exclusively through immunization appeared to be unrealistic. Edward et al. [21] created a
numerical model thinking about both immediate and backhanded transmissions of typhoid fever. They
assessed medications such as treatment, inoculation inclusion, and water disinfection. They focused
on the significance of restricting contact with typhoid patients and forestalling water pollution with
fertilizer as the essential strategies to stop typhoid scourges. Inside the range of enteritis problems,
typhoid fever remains a common irresistible sickness set off by Salmonella Typhi microorganisms in
the human body.

This sickness normally spreads through sullied food and water corrupted by a contaminated
person’s dung or pee [22]. It is remarkably more pervasive in immature locales because of unfortunate
food disinfection, debased water sources, and deficient ecological cleanliness. Side effects manifest
during the seven to fourteen-day hatching period and incorporate migraines, stomach inconvenience,
joint and back torments, muscle throbs, decreased craving, retching, runs, rashes, and fever [23–
25]. According to the World Wellbeing Association’s assessments, Typhoid fever generally represents
0.6 million passings and 17 million cases annually [26]. Over the past two decades, numerous
studies have resulted in the development of diverse mathematical models. For instance, a model is
formulated featuring four compartments: susceptible, infected, asymptomatic carriers, and recovered
individuals [27,28].

Delay in mathematical epidemic models refers to the time it takes for an individual to become
infectious after being infected. This delay is crucial in understanding the spread of diseases and is
incorporated into models through time-delay differential equations. Based on the most recent research,
time delays favorably impact the dynamics of epidemic models by influencing time delay pattern
creation and the emergence of variational patterns, as well as guiding the spectrum of dynamical
phenomena of epidemic models. Time delay plays an important part in modeling numerous aspects
of disease transmission, such as the quarantine period in an infectious condition, which provides a
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more valuable portrayal of epidemic scenarios [29–31]. Time delays are advantageous in epidemics by
emphasizing patterns and their dynamic analysis, executing model findings and regulating techniques
for the distinct management of illness, and providing a thorough grasp of disease propagation
dynamics compared to older models. Many new researchers have a remarkable insight that favors
the application of delay differential equations in epidemics modeling. Delay dynamics in transmission
rates can aid in anticipating the transmission rates of disease spread and control measures. In addition,
delays can be considered for the intervention and majorly impact regulating tactics. These findings
highlighted the importance of including delays in mathematical epidemic models to improve prediction
behavior and assist public health decision-making [32]. Goel et al. [33] studied a new nonlinear time
delay SIR (Susceptible-Infectious-Recovered) model with a Beddington-DeAngelis incidence rate, and
Hill’s functional-type saturated recovery rate was developed to study the epidemic control, which
further contributed to the development of a two-strain epidemic model considered the distributed
recovery and death rates and involving delay equations.

Compared to standard models, epidemic models with delays provide a more practical knowledge
of disease dynamics by encompassing the temporal components of transmission and control methods.
Ghosh et al. [34] highlighted that time delay can improve time lags on epidemic outcomes, evaluate the
effectiveness of control strategies, and optimize resource allocation in mathematical epidemic models
present infectious disease, allowing for more accurate examination of epidemic risk and assisting in
taking precautions for public health. The NSFD scheme is employed to obtain reliable solutions
in delayed stochastic and fuzzy extensions [35–39], to mention a few. Cheng et al. [40] developed
and examined a network-based SIQS (susceptible-infected-quarantined-susceptible) infectious disease
model featuring a nonmonotone incidence rate. The basic reproduction number and the equilibria
of the model are determined analytically, global stability is explored, and numerical simulations are
conducted to support the theoretical findings.

This study aims to increase the reliability of the mathematical models of typhoid fever transmission
by including time delays in the equation because they strongly affect the trends of the infection.
This kind of modeling can enhance prediction and public health efforts to tackle typhoid fever
outbreaks. The SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) model and the SEIRS
delay model are made up of the same structural parts, but the time delay function distinguishes them. In
its baseline model, SEIRS makes no provision for delays; rather, compartments Susceptible, Exposed,
Infectious, Recovered, and Susceptible are described by ODEs (ordinary differential equation) that
do not include time delays when an individual shifts from the former compartment to the latter
one or vice versa. However, the SEIRS delay model introduces the concept of delay using DDEs
(delayed differential equation) to capture a given incubation period and other temporal delays better
than the basic SEIRS model. This addition enhances projection performance for disease type with a
long latency time and enhances computational calculation. The delay Susceptible-Exposed-Infectious-
Recovered (SEIR) model is a better version that demonstrates how the diseases progress over time and
can deliver more specifics for implementing a plan to prevent the spread of diseases. The novelty of the
proposed approach is the construction, implementation, and analysis of a first-order explicit numerical
scheme in non-standard finite difference settings for Typhoid fever with time delay.

This research looks at several aspects of Typhoid virus transmission among communities.
Section 2 offers a mathematical model that depicts the dynamics of the propagation. This section
addresses the virus’s reproductive characteristics and immediate transmission without delay. It also
investigates the existence of endemic equilibrium and evaluates its local stability. Section 3 contains
the delayed epidemic model and conducts a stability analysis considering delays. Sections 4 and 5 are
dedicated to presenting mathematical modeling and numerical simulations that validate the outcomes
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of our proposed system to corroborate the results obtained. Sections 6 and 7 contain parameter
estimation analysis and conclusions, respectively.

2 Modified SEIR Epidemic Model

The system of differential equations derived from [41] is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= ∝ −βSI + ωR − μS,

dE
dt

= βSI − ϕE − μE,

dI
dt

= ϕE − σ I − δI − μI ,

dR
dt

= σ I − ωR − μR.

(1)

These factors are inherent in an epidemiological model, frequently associated with the SEIR
model used in disease transmission research. Within this approach, S symbolizes the susceptible
population that has not yet been impacted by the disease, whereas E represents the exposed population
of individuals who have been exposed to the disease but are not yet contagious. I indicates people
actively infected and spreading the disease, whereas R represents those who have recovered and gained
immunity. The symbol ∝ reflects the recruiting rate, indicating new people joining the vulnerable
group. μ represents the post-infection mortality rate, whereas β represents infection rates among
vulnerable individuals. ϕ denotes the rate of transition from exposed to infected, σ denotes the
rate of transition from infected to recovered, δ represents post-infection mortality rate. Finally, ω

reflects the rate of change from recovered to susceptible, which may indicate diminishing immunity
or susceptibility to reinfection. These factors are critical in mathematical models for simulating
disease transmission patterns and forecasting population outbreaks. This study added the concept
of susceptibility to the improved SEIRS epidemic model. The rate indicates that individuals who
recovered will transition back to the susceptible group after being infectious. This explains why they
are less likely to develop the same infection again. The flowchart of the model is shown in Fig. 1.

Figure 1: Flowchart of the model

2.1 The Basic Reproductive Number (BRN)

Let X = (E, I)t then
dx
dt

= F (x) − Δ(x) and F (x) =
[
βSI

0

]
, Δ (x) =

[
(ϕ + μ)E

−ϕE + (σ + δ + μ)I

]
.

Further, F and Δ are the Jacobians of F (x) and Δ (x) respectively at disease-free equilibrium point

Ed1
(
S0, E0, I 0, R0

) =
(∝

μ
, 0, 0, 0

)
and are given as follows:
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F =
⎡
⎣0

β ∝
μ

0 0

⎤
⎦ , Δ =

[
(ϕ + μ) 0

−ϕ (σ + δ + μ)

]
.

Now

T = F�−1 =

⎡
⎢⎢⎣

0
β ∝

μ(ϕ + μ)

0
βϕ ∝

μ (ϕ + μ) (σ + δ + μ)

⎤
⎥⎥⎦ .

The spectral radius of F�−1 is

�
(
F�−1

) = βϕ ∝
μ (ϕ + μ) (σ + δ + μ)

The BRN Ro is given by

Ro = βϕ ∝
μ (ϕ + μ) (σ + δ + μ)

. (2)

2.2 Equilibrium Analysis

The system (1) has a disease-free equilibrium (DFE) point E1(So, Eo, Io, Ro) =
(∝

μ
, 0, 0, 0

)

and an endemic equilibrium point E2 (S∗, E∗, I ∗, R∗) , where

S∗ = ∝
μRo

,

E∗ = k3(μ ∝ (1 − Ro) k3)

ϕ(μωRo − β ∝ k3)
,

I ∗ = μ ∝ (1 − Ro)k3

μωRo − β ∝ k3

,

R∗ = σ(μ ∝ (1 − Ro))

μωRo − β ∝ k3

, where k1 = (ϕ + μ), k2 = (σ + δ + μ) and k3 = (μ + ω).

2.3 Stability of Modified SEIR Model
The local stability of the modified SIER model is performed at E1(So, Eo, Io, Ro) =(∝

μ
, 0, 0, 0

)
. The eigenvalues of the system are λ1 = −0.9000, λ2 = −0.9500, λ3 = −2.8248,

and λ4 = −0.4252. As all the eigenvalues are less than zero, it concluded that the system of differential
equations of the SEIR model is locally asymptotically stable.

3 SEIR Model Modified with Time Delay

This section introduces a time delay parameter τ .
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3.1 Delay Differential Equation Model
Incorporating the impact of time delay in infected populations, model (1) assumes the following

structure:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= ∝ −βSI + ωR − μS,

dE
dt

= βS(t − τ)I(t − τ)e−μτ − ϕE − μE,

dI
dt

= ϕE − σ I − δI − μI ,

dR
dt

= σ I − ωR − μR.

(3)

The symbol τ is the latency period, indicating how long it takes for infected individuals to reach a
contagious state, thus contributing to the ongoing spread of the virus. Within system (3), the expression
βS(t − τ)I(t − τ)e−μτ at time ‘t’ reflects the transition of susceptible individuals to the infected group.
The presence of e−μτ stems from presuming that population decline follows a linear pattern governed
by μτ , signifying the decrease in population during that specific duration due to factors like mortality
or recovery.

3.2 The Basic Reproductive Number of Delayed Epidemic Model

Let X = (E, I)t then
dx
dt

= F (x)−Δ(x) andF (x) =
[
βSIe−μτ

0

]
, Δ (x) =

[
(ϕ + μ)E

−ϕE + (σ + δ + μ)I

]
.

Further, F and Δ are now the Jacobians of F (x) andΔ (x) respectively at disease-free equilibrium

point Ed1 (S′, E ′, I ′, R′) =
(∝

μ
, 0, 0, 0

)
such that

F =
⎡
⎣0

β ∝ e−μτ

μ
0 0

⎤
⎦ , � =

[
(ϕ + μ) 0

−ϕ (σ + δ + μ)

]
.

Now,

T = F�−1 =

⎡
⎢⎢⎣

0
β ∝ e−μτ

μ(ϕ + μ)

0
βϕ ∝ e−μτ

μ (ϕ + μ) (σ + δ + μ)

⎤
⎥⎥⎦ .

The spectral radius of FΔ−1 is

�
(
F�−1

) = βϕ ∝ e−μτ

μ (ϕ + μ) (σ + δ + μ)

The BRN of the delayed epidemic model Rdo is given by

Rdo = ϕ ∝ βe−μτ

μ (ϕ + μ) (σ + δ + μ)
(4)
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3.3 Equilibrium Analysis

The system (3) has a disease-free equilibrium point Ed1 (S′, E ′, I ′, R′) =
(∝

μ
, 0, 0, 0

)
and an

endemic equilibrium point Ed2 (S′′, E ′′, I ′′, R′′), where

S′′ = ∝
μRdo

,

E ′′ = k3(μ ∝ (1 − Rdo) k3)

ϕ(μωRdo − β ∝ k3)
,

I ′′ = μ ∝ (1 − Rdo)k3

μωRdo − β ∝ k3

,

R′′ = σ(μ ∝ (1 − Rdo))

μωRdo − β ∝ k3

, where k1 = (ϕ + μ) , k2 = (σ + δ + μ) and k3 = (μ + ω) .

3.4 Stability of Modified SEIR Delayed Model

The local stability of the modified SIER model is performed at Ed1 (S′, E ′, I ′, R′) =
(∝

μ
, 0, 0, 0

)
.

The eigenvalues of the system are; λ1 = −0.9000, λ2 = −0.9500, λ3 = −2.2412 and λ4 = −1.0088.
As all the eigenvalues are less than zero, it concluded that the system of differential equations of the
SEIR model is locally asymptotically stable.

4 Numerical Computation of Delayed Epidemic Model
4.1 Forward Euler’s Method

The forward Euler scheme utilized for the model under study method involves making the
following supposition can be expressed as follows:

Suppositions: S (t) ≈ Sn, S (t − τ) ≈ Sn−m, I (t) ≈ In andI (t − τ) ≈ In−m.

Sn+1 = Sn + h [∝ −βSnIn + ωRn − μSn], (5)

En+1 = En + h [βSn−mIn−me−μτ − (ϕ + μ)En], (6)

In+1 = In + h [ϕEn − (σ + δ + μ)In], (7)

Rn+1 = Rn + h [σ In − (μ + ω)Rn. (8)

4.2 Fourth Order Runge Kutta Scheme (RK-4)
Considering the equations of system (3), the study develops an explicit RK-4 method. A numerical

scheme for the RK-4 method is constructed as follows:

Step 1

k1 = h [∝ −βSnIn + ωRn − μSn] , (9)
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l1 = h [βSn−mIn−me−μτ − (ϕ + μ) En] , (10)

p1 = h [ϕEn − (σ + δ + μ) In] , (11)

m1 = h [σ In − (μ + ω) Rn] . (12)

Step 2

k2 = h
[
∝ −β

(
Sn + k1

2

) (
In + p1

2

)
+ ω

(
Rn + m1

2

)
− μ

(
Sn + k1

2

)]
, (13)

l2 = h
[
β

(
Sn−m + k1

2

) (
In−m + p1

2

)
e−μτ − (ϕ + μ)

(
En + l1

2

)]
, (14)

p2 = h
[
ϕ

(
En + l1

2

)
− (σ + δ + μ)

(
In + p1

2

)]
, (15)

m2 = h
[
σ

(
In + p1

2

)
− (μ + ω)

(
Rn + m1

2

)]
. (16)

Step 3

k3 = h
[
∝ −β

(
Sn + k2

2

) (
In + p2

2

)
+ ω

(
Rn + m2

2

)
− μ

(
Sn + k2

2

)]
, (17)

l3 = h
[
β

(
Sn−m + k2

2

) (
In−m + p2

2

)
e−μτ − (ϕ + μ)

(
En + l2

2

)]
, (18)

p3 = h
[
ϕ

(
En + l2

2

)
− (σ + δ + μ)

(
In + p2

2

)]
, (19)

m3 = h
[
σ(In + p2

2
) − (μ + ω)

(
Rn + m2

2

)]
. (20)

Step 4

k4 = h [∝ −β(Sn + k3)(In + p3) + ω(Rn + m3) − μ(Sn + k3)], (21)

l4 = h [β(Sn−m + k3)(In−m + p3)e−μτ − (ϕ + μ)(En + l3)], (22)

p4 = h [ϕ(En + l3) − (σ + δ + μ)(In + p3)], (23)

m4 = h [σ (In + p3) − (μ + ω) (Rn + m3)] . (24)

Final Step

Sn+1 = Sn + 1
6

[k1 + 2k2 + 2k3 + k4] , (25)

En+1 = En + 1
6

[l1 + 2l2 + 2l3 + l4] , (26)
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In+1 = In + 1
6

[p1 + 2p2 + 2p3 + p4] , (27)

Rn+1 = Rn + 1
6

[m1 + 2m2 + 2m3 + m4] . (28)

4.3 Non-Standard Finite Difference (NSFD) Scheme
The NSFD approach corresponding to (3) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn + h ∝ +hωRn

((1 + h(βIn + μ))
,

En+1 = En + hβSn−m+1(t − τ)In−m(t − τ)e−μτ

1 + h (ϕ + μ)
,

In+1 = In + hϕEn

1 + h (σ + δ + μ)
,

Rn+1 = Rn + hσ In

1 + h (μ + ω)
.

(29)

4.4 Positivity of the NSFD Scheme
Since all state variables within the model represent proportions of a population, it follows

that something like one of them should be positive, while the others should remain non-negative
consistently. In this context, the theorem presented below provides valuable insight.

Theorem: Assume that S ≥ 0, E ≥ 0, I ≥ 0, and R ≥ 0 are all positive at t = 0; furthermore,
∝ ≥ 0, δ ≥ 0, μ ≥ 0, ω ≥ 0, σ ≥ 0, ϕ ≥ 0, τ ≥ 0, and β ≥ 0 then Sn+1 ≥ 0, En+1 ≥ 0, In+1 ≥
0, and Rn+1 ≥ 0. ∀nεZ+ = {0, 1, 2, 3, . . .}.

Proof: Now for n = 0, system (29) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = S0 + h ∝ + hωR0

((1 + h(βI 0 + μ))
≥ 0,

E1 = E0 + hβS0I 0e−μτ

1 + h (ϕ + μ)
≥ 0,

I 1 = I 0 + hϕE0

1 + h (σ + δ + μ)
≥ 0,

R1 = R0 + hσ I 0

1 + h (μ + ω)
≥ 0.

(30)
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Now for n = 1, system (29) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S2 = S1 + h ∝ + hωR1

((1 + h(βI 1 + μ))
≥ 0,

E2 = E1 + hβS1I 1e−μτ

1 + h (ϕ + μ)
≥ 0,

I 2 = I 1 + hϕE1

1 + h (σ + δ + μ)
≥ 0,

R2 = R1 + hσ I 1

1 + h (μ + ω)
≥ 0.

(31)

The study assumes that the preceding set of equations guarantees that the values of S, E, I and R
have the property of positivity for n = 2, 3, 4, . . . , n − 1. In other words, for n = 2, 3, 4, . . . , n − 1,
Sn+1 ≥ 0, En+1 ≥ 0, In+1 ≥ 0 and Rn+1 ≥ 0. The positivity will now be investigated for a random
positive integer n, and the system (29) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn + h ∝ + hωRn

((1 + h(βIn + μ))
≥ 0,

En+1 = En + hβSnIne−μτ

1 + h (ϕ + μ)
≥ 0,

In+1 = In + hϕEn

1 + h (σ + δ + μ)
≥ 0,

Rn+1 = Rn + hσ In

1 + h (μ + ω)
≥ 0.

(32)

Obviously, Sn+1 ≥ 0, En+1 ≥ 0, In+1 ≥ 0, and Rn+1 ≥ 0, hence the proof.

4.5 Boundedness of NSFD Scheme
Given that the model is about the human population, it is critical to ensure that at any given time

‘t’, the sum of populations in all compartments does not exceed the overall population. The following
theorem addresses this condition effectively:

Theorem: Let S ≥ 0, E ≥ 0, I ≥ 0 and R ≥ 0 are finite, such that S +E + I +R ≤ N; furthermore,
∝ ≥ 0, δ ≥ 0, μ ≥ 0, ω ≥ 0, σ ≥ 0, ϕ ≥ 0, τ ≥ 0, and β ≥ 0 then there is a constant such that
Sn+1 + En+1 + In+1 + Rn+1 ≤ Nn for all n∀ ∈ Z+.

Proof: For bondedness of the proposed NSFD scheme from above, the following can be obtained:

Sn+1 (1 + h(βIn + μ) + En+1(1 + h (ϕ + μ) + In+1(1 + h (σ + δ + μ) + Rn+1(1 + h (μ + ω)

= Sn + h ∝ +hωRn + En + hβSnIne−μτ + In + hϕEn + Rn + hσ In, (33)

(Sn+1 + In+1 + En+1 + Rn+1) (1 + hμ) + hβIn + h (ϕ + σ + δ + ω)

= (Sn + In + En + Rn) + h (∝ +hωRn) + h(βSnIne−μτ + δIn + ϕEn + σ In), (34)
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(Sn+1+In+1+En+1+Rn+1)+C = (Sn + In + En + Rn) + h (∝ +hωRn) + h(βSnIne−μτ + δIn + ϕEn + σ In)

(1 + hμ)
,

Now for n = 0 system, the above equation becomes

(S1 + I 1 + E1 + R1) + C = (S0 + I 0 + E0 + R0) + h
(∝ + hωR0

) + h(βS0I 0e−μτ + δI 0 + ϕE0 + σ I 0)

(1 + hμ)
,

Since N1 = S0 + E0 + I 0 + R0, and S1 + E1 + I 1 + R1 ≤ N1. Similarly, for nεz+, the above equation
becomes

(Sn+1+ In+1+ En+1+ Rn+1) + C = (Sn + In + En + Rn) + h (∝ + hωRn) + h (βSnIne−μτ + δIn + ϕEn + σ In)

(1 + hμ)
.

Consequently Sn+1 ≤ Nn, En+1 ≤ Nn, In+1 ≤ Nn and Rn+1 ≤ Nn, hence the proof.

4.6 Convergence Analysis of NSFD Scheme
Let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ∗ = S + h ∝ + hωR
((1 + h(βI + μ))

,

g∗ = E + hβSIe−μτ

1 + h (ϕ + μ)
,

q∗ = I + hϕE
1 + h (σ + δ + μ)

,

r∗ = R + hσ I
1 + h (μ + ω)

.

(35)

The Jacobian matrix of the system (35) at the DFE point is given below:

J∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(1 + hμ)

0
−hβ ∝

μ(1 + hμ)

hω

1 + hμ

0
μ + hβ ∝ e−μτ

μ(1 + hk1)

1
1 + hk1

0

0
hϕ

1 + hk2

1
1 + hk2

0

0 0
hσ

1 + hk3

1
1 + hk3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the above Jacobian matrix, it has eigenvalues λd1 = 0.7385, λd2 = 0.7279, λd3 = 0.4003 and
λd4 = 0.9902. Clearly, λd1 < 1, λd2 < 1, λd3 < 1 and λd4 < 1. Hence, the proposed NSFD scheme is
convergent.

4.7 Consistency of NSFD Scheme
Beginning with the first equation in the system (29), then

Sn+1 (1 + h(βIn + μ) = Sn + h ∝ +hωRn, (36)
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The Taylor’s series expansion of the Sn+1 is as follows:

Sn+1 =
(

Sn + h
dS
dt

+ h2

2!
d2S
dt2

+ h3

3!
d3S
dt3

+ . . .

)
. (37)

The following can be obtained from Eq. (36):(
Sn + h

dS
dt

+ h2

2!
d2S
dt2

+ h3

3!
d3S
dt3

+ . . .

)
(1 + h(βIn + μ) = Sn + h ∝ +hωRn,

After some simplification and applying h → 0, then

Sn(βIn + μ) + dS
dt

= ∝ +ωRn,

dS
dt

= ∝ −βSnIn + ωRn − μSn,

�⇒ dS
dt

= ∝ −βSnIn + ωRn − μSn.

From the second equation of the NSFD scheme, it can have

En+1(1 + h (ϕ + μ)) = En + hβSnIne−μτ , (38)

The Taylor’s series expansion of the En+1 is as follows:

En+1 =
(

En + h
dE
dt

+ h2

2!
d2E
dt2

+ h3

3!
d3E
dt3

+ . . .

)
. (39)

Substituting the value of En+1 in (38), it can obtain(
En + h

dE
dt

+ h2

2!
d2E
dt2

+ h3

3!
d3E
dt3

+ . . .

)
(1 + h (ϕ + μ)) = En + hβSnIne−μτ ,

Apply h → 0, then

En (ϕ + μ) + dE
dt

= βSnIne−μτ ,

dE
dt

= βSnIne−μτ − En(ϕ + μ),

�⇒ dE
dt

= βSnIne−μτ − En(ϕ + μ)

From the third equation of the NSFD scheme, the following can be obtained:

In+1 (1 + h (σ + δ + μ)) = In + hϕEn, (40)

The Taylor’s series expansion of the In+1 is as follows:

In+1 =
(

In + h
dI
dt

+ h2

2!
d2I
dt2

+ h3

3!
d3I
dt3

+ . . .

)
, (41)
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(
In + h

dI
dt

+ h2

2!
d2I
dt2

+ h3

3!
d3I
dt3

+ . . .

)
(1 + h (σ + δ + μ)) = In + hϕEn,

By applying h → 0, the following can be obtained:

In (σ + δ + μ) + dI
dt

= ϕEn,

dI
dt

= ϕEn − In (σ + δ + μ) .

�⇒ dI
dt

= ϕEn − In (σ + δ + μ) .

From the fourth equation of the NSFD scheme, it can have

Rn+1(1 + h (μ + ω)) = Rn + hσ In, (42)

The Taylor’s series expansion of the Rn+1 is as follows:

Rn+1 =
(

Rn + h
dR
dt

+ h2

2!
d2R
dt2

+ h3

3!
d3R
dt3

+ . . .

)
, (43)

Similarly,

dR
dt

= δIn − Rn (μ + ω)

by substituting (42) in (43) and simplifying it. Hence, the proposed NSFD scheme with the delay effect
is consistent with the first order.

4.8 Global Stability
By demonstrating global stability, the study provides strong theoretical support for using time-

delayed models to understand and manage typhoid fever outbreaks.

Case 1: Trivial Case

Consider a candidate Lyapunov function as follows:

L1 (t) = S (t) + E (t) + I (t) + R (t) , (44)

L1 (t) = dS
dt

+ dE
dt

+ dI
dt

+ dR
dt

, (45)

L1 (t) =∝ −μ (S + E + I + R) − δI , (46)

L1 (t) =∝ −μN − δI , (47)

L1 (t) ≤ 0.

Case 2: Disease-Free Equilibrium

Consider Volterra type Lyapunov function it can have

dΔ

dt
= d

dt
(S − S∗lnS) + dE

dt
+ dI

dt
+ dR

dt
, (48)
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dΔ

dt
≤

(
1 − S∗

S

)
dS
dt

+ dE
dt

+ dI
dt

+ dR
dt

,

dΔ

dt
≤

(
−S∗

S

)
dS
dt

+ dE
dt

+ dI
dt

+ dR
dt

,

d�

dt
≤

(
−S∗

S

)
dS
dt

+ 0,

d�

dt
≤ 0.

Case 3: Endemic Equilibrium

� (S, E, I , R) = K1 (S − S∗lnS) + K2 (E − E∗lnE) + K3 (I − I ∗lnI) + K4 (R − R∗lnR) , (49)

d
dt

Δ (S, E, I , R) =K1

d
dt

(S − S∗lnS) + K2

d
dt

(E − E∗lnE)

+ K3

d
dt

+ K4

d
dt

(R − R∗lnR) + K4

d
dt

(R − R∗lnR) , (50)

d�

dt
≤ K1

(
1 − S∗

S

)
dS
dt

+ K2

(
1 − E∗

E

)
dE
dt

+ K3

(
1 − I ∗

I

)
dI
dt

+ K4

(
1 − R∗

R

)
dR
dt

,

d�

dt
≤ K1

(
S − S∗

S

)
dS
dt

+ K2

(
E − E∗

E

)
dE
dt

+ K3

(
I − I ∗

I

)
dI
dt

+ K4

(
R − R∗

R

)
dR
dt

,

dΔ

dt
≤ K1 (S − S∗)

(∝
S

+ ωR
S

− (βI + μ)

)
+ K2 (E − E∗)

(
βSIe−μτ

E
− (ϕ + μ)

)
+

K3 (I − I ∗)

(
ϕE
I

− (σ + δ + μ)

)
+ K4 (R − R∗)

(
σ I
R

− (ω + μ)

)
.

From the first equations of system (3)

∝ −βS∗I + ωR − μS∗ = 0,

βI + μ = ∝
S∗ + ωR

S∗ .

From the second equation of system (3)

βSIe−μτ − ϕE∗ − μE∗ = 0,

ϕ + μ = βSIe−μτ

E∗ .

From the third equation of system (3)

ϕE − σ I∗ − δI ∗ − μI ∗ = 0,
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σ + δ + μ = ϕE
I ∗ .

From the forth equation of system (3)

σ I − ωR∗ − μR∗ = 0,

ω + μ = σ I
R∗ .

Now, it can have

d�

dt
≤ K1 (S − S∗)

(∝
S

+ ωR
S

− ∝
S∗ + ωR

S∗

)
+ K2 (E − E∗)

(
βSIe−μτ

E
− βSIe−μτ

E∗

)

+ K3 (I − I ∗)

(
ϕE
I

− ϕE
I ∗

)
+ K4 (R − R∗)

(
σ I
R

− σ I
R∗

)
,

d�

dt
≤ − K1 (S − S∗)2

(∝ +ωR
SS∗

)
− K2 (E − E∗)2

(
βSIe−μτ

EE∗

)
− K3 (I − I ∗)2

(
ϕE
II ∗

)

− K4 (R − R∗)2

(
σ I

RR∗

)
.

Hence, set K1 = K2 = K3 = K4 = 1.

5 Numerical Simulations

Table 1 lists the parameters employed in numerical simulations, while Table 2 details the initial
conditions. The figures illustrate the dynamics of a delayed SEIR model.

In Fig. 2, the forward Euler techniquedisplays favorable behavior,converging at the DFE point
with a small step size h = 0.5. However, as the step size increases in Fig. 3, the forward Euler method
startsgenerating non-physical oscillations,which are irrelevant in disease dynamics due to the impos-
sibility of negative counts. Fig. 4 indicates that the RK-4 technique exhibits commendablebehavior,
converging at the DFE point with a small step size h = 0.5. Nevertheless, in Fig. 5, as the step size
increases, the RK-4 technique introduces negative aspects that are incongruent with disease dynamics
since negativecounts are implausible. Even though the approach to equilibrium states is gradual and
has small step sizes, even a slight increase causes a deviation from this pattern. The test of RK-4
in keeping up with energy with bigger step sizes highlights its constraints in evaluatinglong-haul viral
plague elements. In contrast, the NSFD scheme is insensitive to changes in step size because it remains
positive, stable, and convergent regardless of step size. This particular capability is separated from
customary methodologies. Fig. 6 exhibits the positive way of behaving and the combination of the
NSFD technique at the DFE point with a small step size h = 0.5. In addition, Fig. 7 demonstrates
the superiority of the NSFD method by confirming its effectiveness in modeling disease dynamics and
demonstrating constant convergence across step size variations.
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Table 1: Values of parameters

Parameters Values

∝ 5
β 0.5 (DFE)

4.5 (EE)
δ 0.05
μ 0.9
ω 0.05
σ 0.9
ϕ 0.5
τ ≥0

Table 2: Values of initial conditions

Symbols Values

S (0) 0.2
E (0) 0.3
I (0) 0.4
R (0) 0.5

Figure 2: Infected populations at various step sizes employing the Euler approach. (a) h = 0.5,
(b) h = 0.7
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Figure 3: Infected populations at various step sizes employing the Euler approach. (a) h = 0.5,
(b) h = 0.7

Figure 4: Infected populations at various step sizes employing the RK-4 approach. (a) h = 0.5,
(b) h = 0.7

Figs. 8 and 9 compare the infected population of a model with and without a time delay factor.
The Euler Method demonstrates that introducing a delay can control the endemic status. On the
other hand, Figs. 10 and 11 show the behavior of the infected population using the RK-4 approach,
resulting in a delay in people getting infected after adding a delay factor in the exposed compartment.
In addition, Figs. 12 and 13 indicate that the NSFD scheme is more convergent in a delayed model
than without a delay. Fig. 14 outlines charts of infected populations for different values of τ . A
reliable perception arose through these mathematical tests: The exposed population decreases as the
delay factor increases. Finally, Fig. 15 shows a comparison of Rd0

and demonstrates that an increase
in τ can transform an endemic state into a disease-free one. Fig. 16 clearly illustrates that the time
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delay factor τ is more beneficial in controlling the disease spread rate. This situation reflects genuine
circumstances where a worldly postponement in transmitting any infectious infection can support
its remediation or disposal, possibly impacted by factors like antivirus programming, programming
refreshes, or the reception of deterrent measures. In synopsis, all approaches combine to a similar
balance position at small step sizes. Euler and RK-4 methods, on the other hand, fail to converge as
step sizes increase, exhibiting oscillations and negatives. In contrast, the NSFD method maintains con-
vergence even at significantly larger step sizes, demonstrating its dependability in accurately describing
disease dynamics.

Figure 5: Infected populations at various step sizes employing the RK-4 approach. (a) h = 0.5,
(b) h = 0.7

Figure 6: Infected populations at various step sizes employing the NSFD approach. (a) h = 0.5,
(b) h = 0.7
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Figure 7: Infected populations at various step sizes employing the NSFD approach. (a) h = 0.5,
(b) h = 0.7

Figure 8: Comparison of the infected population at various step sizes employing the Euler approach.
(a) h = 0.5, (b) h = 0.7
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Figure 9: Comparison of the infected population at various step sizes employing the Euler approach.
(a) h = 0.5, (b) h = 0.7

Figure 10: Comparison of the infected population at various step sizes employing the RK-4 approach.
(a) h = 0.5, (b) h = 0.7
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Figure 11: Comparison of the infected population at various step sizes employing the RK-4 approach.
(a) h = 0.5, (b) h = 0.7

Figure 12: Comparison of Infected population at various step sizes employing NSFD approach.
(a) h = 0.5, (b) h = 0.7
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Figure 13: Comparison of the infected population at various step sizes employing NSFD approach.
(a) h = 0.5, (b) h = 0.7

Figure 14: Effect of different values of τ on population dynamics. (a) Effect on exposed population,
(b) Effect on infected population
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Figure 15: Comparison of Rd0 and τ

Figure 16: Comparison of Rd0 and R0 for different values of τ

6 Parameter Estimation Analysis

A helpful way to validate the Typhoid delayed epidemic model is by fitting the model parameters
to data obtained on the actual typhoid epidemics. All the data for Typhoid fever is collected and
compiled from the Integrated Disease Surveillance & Response (IDSR) Report, Center of Disease
Control, National Institute of Health, Islamabad. The data consists of the cases reported all over the
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country for 2023 [42]. It enhances the model, hence a better appreciation of the disease pattern and
a better prediction of the future status of the disease. The least squares method of curve fitting is
employed to estimate the model’s parameters. Now, it is possible to fit the model’s parameters using
the least squares approach using actual data regarding the newly infected typhoid cases in 2023, as
indicated in Table 3. Among them, this study selected two parameters, incidence rate ϕ, and time delay
τ , and the remaining parameters provide better estimation based on the actual cases of typhoid fever
in Pakistan. It was evident from the fitted model of the number of infected cases per month that
the model was accurate in the sense that it predicted the number of infected cases each month. In
Fig. 17, the red-filled circles represent the observed values explained in the previous section, while
the continuous blue line shows the model’s nonlinear least square curve fitting. This graph appears
to indicate that the model in question works quite well in terms of how it addresses the numerical
progression of the epidemics of typhoid fever in reality. When it was pointed out that the least squares
method was used and the data was real, this ensures that the Typhoid delayed epidemic model indeed
simulates the epidemic. In addition, the model can offer information regarding what can prevent the
emergence of similar diseases in society in the future.

Table 3: Number of Typhoid fever surveillance reports in Pakistan in 2023

Months Infected typhoid cases

January 3598
February 4669
March 6251
April 5446
May 12,166
June 17,527
July 27,176
August 42,321
September 29,414
October 23,257
November 29,200
December 23,383
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Figure 17: The monthly Typhoid fever cases time series in Pakistan for 2023 and the proposed model’s
best-fitted curve

7 Conclusion

The transmission of typhoid fever caused by Salmonella typhi is examined using a mathematical
model that emphasizes the importance of delay in its effectiveness. Time delays can influence the
nature of patterns and slow the emergence of patterns in the density of the infected population. The
analyzed model is further expanded with equilibrium analysis, reproduction number calculation, and
stability analysis. Three numerical techniques, forward Euler, RK-4, and NSFD, are employed to solve
the proposed model. Some essential characteristics such as convergence, positivity, boundedness, and
consistency are studied, and the developed scheme preserves all these essential features. The calculated
results demonstrated the usefulness of the NSFD method in accurately capturing and preserving
the essential characteristics of the continuous delayed model. It demonstrated that the proposed
NSFD scheme maintains the integrity of the continuous delayed model’s characteristics, positivity,
boundedness, and asymptotic stability over all finite step sizes. As a result, it produces dependable
approximations, whereas several traditional techniques fail to maintain the critical mathematical
properties of the continuous model. As a result, these strategies create solutions that are not just
unstable but also negative. Finally, numerical simulations were run to validate the results of the
analytical research. This study intends to explore the development of higher-order NSFD schemes
tailored for typhoid transmission models. Future directions could include stochastic, fractional, and
fuzzy extensions, among other possibilities.

Limitation of study: In the present work, the previous mathematical model of the transmission of
Typhoid fever is vindicated using time delay and the NSFD scheme. Some of the limitations include
the following: This is a model that is built on some assumptions, and therefore, when obtaining such
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data in real life, it is essential to check the credibility of the mentioned benchmarks. Still, it is as
accurate as the epidemiological data with which the model was supplied, which might be limited or
of uneven quality. The utilization of the NSFD scheme can be complex, especially in assigning it, and
perhaps more complicated for those with little quantitative proficiency or in places with few resources
since the modulated method entails some calculation. NSFD is superior to makeshift solutions, yet
there is a specific aspect to consider when choosing a step size. Also, the model does not incorporate
geographical factors and other aspects of the environment, which may be disadvantageous in a specific
scenario. In order to address these limitations in subsequent studies, it is essential to continuously
improve and validate the model to further enhance its usefulness in finding the right strategy for
eradicating this health complication.
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