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ABSTRACT

The Internet of Wearable Things (IoWT) or Wearable Internet of Things (WIoT) is a new paradigm that combines
IoT and wearable technology. Advances in IoT technology have enabled the miniaturization of sensors embedded
in wearable devices and the ability to communicate data and access real-time information over low-power mobile
networks. IoWT devices are highly interdependent with mobile devices. However, due to their limited processing
power and bandwidth, IoWT devices are vulnerable to cyberattacks due to their low level of security. Threat
modeling and frameworks for analyzing cyber threats against existing IoT or low-power protocols have been
actively researched. The threat analysis framework used in existing studies was limited to specific protocols and
did not target IoWT devices. In addition, In the literature surveyed to date, no cyber threat analysis framework
is targeting IoWT. Therefore, the threat model presented in the existing research on cyber threat analysis and
modeling for IoWT is specialized for specific devices. In addition, because it does not present standardized
attack tactics and techniques, there is a limitation in that it is difficult to identify attacks quickly. In this paper,
we propose an Internet of Wearable Things threat analysis frameWork (IWTW) framework that can derive
security threats through systematic analysis of IoWT attack cases and possible security threats and perform cyber
threat analysis based on them. The methodology for developing the IWTW framework consists of three steps:
Analysis, Standardization, and Compilation. IoWT attack cases and potential security threats are analyzed in the
analysis stage. In the standardization stage, attack tactics and techniques derived from the analysis of attack cases
and potential security threats are standardized, resulting in 3 attack categories, 18 attack tactics, and 68 attack
techniques. In the compilation stage, standardized security threats are combined to develop the IWTW framework
ultimately. We present four case studies targeting MiBand 2, Fitbit Charge HR/Surge, Samsung Gear 3, Xiaomi
Amazifit, Honor Band 5, Honor Watch ES, and Senbono CF-58 devices to validate the proposed IWTW framework.
We analyzed the attack process through a case study and applied the IWTW framework to derive standardized
attack categories, tactics, and techniques effectively. By applying the IWTW framework to cyber threat analysis
targeting IoWT, security threats can be standardized, and the attack process can be quickly derived, enabling
effective attack analysis on IoWT.
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Nomenclature

IoT Internet of Things
IoWT Internet of Wearable Things
BLE Bluetooth Low Energy
LTE-M Long Term Evolution for MTC
NB-IoT Narrowband-IoT
NR-REDCAP New Radio-Reduced Capability
NFC Near-Field Communication
W2H Wearables-to-Hub
W2I Wearables-to-Infrastructure
W2W Wearables-to-Wearables
GATT Generic Attribute Profile

1 Introduction

The Internet of Wearable Things (IoWT) or Wearable Internet of Things (WIoT) is a new
paradigm that combines IoT and wearable technologies. Advances in IoT technology have enabled
the miniaturization of sensors embedded in wearable devices and the ability to communicate data
and access real-time information over low-power mobile networks [1]. These advantages have led to
a proliferation of personal wearable devices and the application of IoWT technology in various fields
such as medicine, healthcare, and sports [2,3]. IoWT devices are interconnected by pairing with mobile
devices to communicate with external servers to synchronize data, use web and phone services, and so
on [4]. As such, mobile devices such as smartphones and tablets are highly interdependent as they serve
as convenient gateways to IoT and wearable objects [5]. However, IoWT devices have difficulty using
high computing security mechanisms such as Advanced Encryption Standard (AES), Rivest, Shamir,
and Adleman (RSA) due to their limited processing power and bandwidth [6]. These characteristics
make IoWT devices less secure than other devices, making them vulnerable to cyberattacks [7]. There
are various attack methods against IoWT devices, including device disabling, unauthorized traffic
access and analysis, and Man-in-The-Middle (MiTM) Attack.

There is an active research effort to analyze cyber threats targeting existing IoT or low-power
protocols. Barua et al. [8] proposed the Bluetooth Low Energy (BLE) Threat Model, a comprehensive
taxonomy of possible security and privacy threats to the BLE protocol, assuming it communicates with
low-power, computationally constrained sensors and IoT devices rather than regular Bluetooth. They
categorize security threats into eight categories based on the attacker’s approach and the severity of
the attack. Griffy-Brown et al. [9] proposed the Enterprise Risk Management Optimization (ERMO)
framework, which describes cybersecurity in terms of risk for biodigital systems and represents a
lifecycle approach to cyber risk management. The ERMO process consists of eight steps and includes
two main goals: risk prioritization through risk analysis and organizational protection and evolution.
It also provides a semi-quantitative method to score both risk and reward. The MITRE ATT&CK
Framework is a security framework developed by MITRE Corporation that categorizes information
about different attack techniques [10]. Based on actual cyber-attack cases, the attacker’s behavior is
categorized into various tactics and techniques. In addition, there are frameworks suitable for different
network environments, such as Enterprise and Industrial Control System (ICS). Cybersecurity Com-
petency for Research and Innovation (CMTMF) is a threat modeling framework for mobile systems
created by the Cyber security cOmpeteNC fOr Research anD InnovAtion (CONCORDIA) project
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to highlight the importance of cyber threat intelligence skills [11]. The Wearable Smart Health Device
(WSHD) Threat Model examines exploitable aspects of wearable smart health devices, such as sensors
connected to the Internet, to monitor the wearer’s health and exchange data [12]. The threat model
targets the WSHD device-companion app and companion app-cloud communication sections and
includes security threats that may occur in WSHD communication. The MEDICALHARM is a threat
modeling methodology tailored to identify threats in Modern Medical Devices (MMD) systems [13].
The proposed methodology combines security threats and risk analysis.

However, the following problems exist with IoWT in existing research. Since the threat model is
limited to BLE, applying it to security threats in other wireless communication protocols is difficult.
The ERMO model is too comprehensive a concept to derive attack tactics and techniques, so it is
difficult to classify cyber threats properly. CMTMF is divided into 105 attack actions and 14 tactical
categories, but unlike MITER ATT&CK, there are no unique tactics. The WSHD Threat Model did
not standardize security threats’ attack tactics and techniques. This renders it impossible to define the
scope and characteristics of security threats properly and causes low accuracy in attack identification.
The MEDICALHARM has a total of 11 distinguishable attack tactics and techniques, which is very
small. Additionally, the selected security threats have inaccurate attack tactics and techniques. For
this reason, a cyber threat analysis framework that is specialized for IoWT and can standardize
various attack tactics and techniques is needed. Therefore, the low power and communication protocol
characteristics of IoWT devices must be considered. Additionally, reliable classification criteria must
be selected to identify attack tactics and techniques in IoWT security threats accurately.

In this paper, we propose the Internet of Wearable Things threat analysis frameWork (IWTW)
framework, which derives security threats through systematic analysis of IoWT attack cases and possi-
ble security threats and performs cyber threat analysis based on them. The methodology for developing
the IWTW framework consists of three stages: Analysis, Standardization, and Compilation. In the
Analysis phase, we analyze the attack cases performed against IoWT devices and derive the attack
process and security threats. It includes the IoWT Attack Cases course, which analyzes possible attack
cases against IoWT, and the IoWT Security Threat course, which analyzes potential security threats
that may occur in IoWT. In the Standardization step, the data derived from the analysis of attack
cases and potential security threats is organized into 3 attack categories, 18 attack tactics, and 68
attack techniques. The IWTW framework is developed in the Compilation step by combining the
security threats organized in the previous step. The IWTW framework comprises 18 standardized
attack tactics and 68 detailed attack techniques based on three attack categories: Launch on Attack,
Expand Attack, and Attack Result. We applied case studies on MiBand 2, Fitbit Charge HR/Surge,
Samsung Gear 3, Xiaomi Amazifit, Honor Band 5, Honor Watch ES, and Senbono CF-58 devices to
validate the proposed IWTW framework. Afterward, the evaluation results are compared with existing
studies, and study limitations are discussed.

The primary contributions of this paper are as follows:

• We propose a methodology and the IWTW framework based on IoWT attack cases and
possible security threats to analyze cyber threats against IoWTs. Through the IWTW frame-
work, security threats can be classified into 3 attack categories, 18 attack tactics, and 68
attack techniques.

• The proposed framework accurately defines the scope and characteristics of attacks by stan-
dardizing various attack tactics and techniques used in security threats occurring in the IoWT
environment, leading to more accurate attack identification.
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• We validated the IWTW framework through case studies that performed attacks targeting
actual IoWT devices and derived the strengths and weaknesses of our framework.

This paper is organized as follows. Section 2 provides an overview of IoWT, IoWT network
structure, and differences between IoWT and IT networks. Section 3 analyzes existing research related
to cyber threat analysis and frameworks for IoWT. Section 4 presents the methodology and IWTW
framework we developed for analyzing cyber threats targeting IoWT. Section 5 presents a case study
of the IWTW framework. Section 6 provides a discussion of this study. Section 7 presents conclusions
and future work.

2 Background

Section 2 reviews the literature on IoWT overview and reference architecture, possible security
threats to IoWT devices, and existing threat modeling frameworks.

Fig. 1 provides an overview of wearable devices’ typical components and communication processes
[14–16]. The wearable device’s sensors, such as accelerometer, gyroscope, and magnetometer, allow
you to input data or monitor your activity. Then, it connects with the mobile device by performing
a pairing process such as Bluetooth’s Generic Attribute Profile (GATT) and Generic Access Profile
(GAP). After that, the information from the mobile device, such as a smartphone, is transmitted to the
server or Personal Computer (PC) via wireless communication. Finally, the processed data is returned
to the paired wearable device or smartphone. The wearable device can directly connect with the mobile
device or PC via Wi-Fi (WLAN) based on the wireless module.

Figure 1: Overview of wearable device structure and communication
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Meanwhile, wearable devices support different communication ranges. They use various wireless
communication protocols such as Near Field Communication (NFC), Wi-Fi, Bluetooth Security
measures for wireless data access are essential as they often involve transmitting personal information,
such as financial payments, healthcare. However, resource constraints in the form of limited battery,
CPU, memory, and device form factors of wearable devices limit the implementation of high-level
security mechanisms.

IoWT network topologies are generally classified into three categories based on the network
connection structure. Table 1 provides information on the technologies typically used for wireless
communication in IoWT devices, categorized by interaction method, connection time, and data
processing speed. IoWT network topologies are generally categorized into three types based on the
network connectivity structure.

Table 1: IoWT wireless communication technology

Ref. Connection
technology

Interconnection
method

Connection distance Data transfer
speed

[17] Wi-Fi direct W2H, W2I, W2W ≤200 m ≤250 Mbps
[18] BLE W2H, W2W ≤300 m ≤50 Mbps
[19] NFC W2H ≤0.2 m ≤424 kbps
[20] Zigbee W2H, W2W ≤100 m ≤250 kbps
[21] LTE-M W2I ≤10 km ≤1 Mbps
[21] NB-IoT W2I ≤15 m ≤250 kbps
[22] NR-REDCAP W2I ≤10 km ≤150 Mbps

Wearable to Hub (W2H): Interconnected with a hub, such as a smartphone, PC, or tablet. The
purpose is to collect data from IoWT devices and connect them to the external Internet. The hub
requires high computing capacity to process the data, including storing and distributing the collected
data. It also requires at least two interfaces for data collection and internet connection [16].

Wearble to Infrastructure (W2I): IoWT devices are directly interconnected to network base
stations such as NodeB/eNodeB/gNodeB, or to the Internet such as 3G/4G/5G, Wi-Fi, and each device
includes Wi-Fi or cellular connectivity. For example, applications on smartwatches process data sensed
by IoWT devices locally and then interact directly with central servers on the Internet [23].

Wearable to Wearable (W2W): This is the interconnection between wearable devices. It aims to
communicate directly between IoWT devices to exchange information. It has good dash time and
responsiveness in communication, but it has limitations in resource capacity due to the nature of
connecting wearable devices [10,24].

Table 2 summarizes the differences between IT and wearable networks [25–30]. The differences
between IT and wearable network communications are as follows: IT networks vary in size depending
on whether they are home or business networks and consist of computers, servers, and other
interconnected devices to send and receive data and resources [31]. Wearable networks, on the other
hand, include wearable devices such as smartwatches, smart glasses, smart bands, and fitness trackers
and are smaller than IT networks because they are primarily human-centric connections that monitor
the user’s physical condition [1,25,26]. Wearable devices also prioritize low power consumption due
to battery size constraints, so they often use protocols such as BLE, which are designed to minimize
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power usage during the communication process [27]. Wearable communications also connect with
mobile devices to improve processing performance, as they operate over shorter distances than typical
IT communications and have slower data processing speeds due to the miniaturization of the devices
[25,28–30]. Wearable devices used for health or medical purposes send and receive sensitive data, such
as bodily information, making security for wearable networks important [25].

Table 2: Summary of differences between IT and wearable network communications

Difference IT network Wearable network

Network size • Various • Usually small
(e.g., Personal area network (PAN))

Network performance • High • Low
Power consumption • High • Low
Data processing speed • Very fast • Slow
Connection distance • Very long • Short
Transmission and
reception data

• Various • Limited

3 Related Works

Section 3 reviews the research related to cyber threat analysis and frameworks for IoWT.

A cyber threat analysis framework is a systematic approach to quickly identifying and managing
security threats to a system from external cyberattacks. It is necessary to analyze attack vectors, design
defensive techniques against security threats, and implement countermeasures and follow-up actions.

As shown in Table 3, Sections 3.1 and 3.2 categorize existing research according to the target
of threat modeling. Afterwards, we provide examples of cyber threat analysis frameworks and
model studies related to medical devices and IoT, including the BLE Threat Model, ERMO,
MITRE ATT&CK, CONCORDIA–CMTMF, Emerging Miniaturized Wireless Biomedical Devices
(MWBD), Bhadra, WSHD Threat Model, and MEDICALHARM.

Table 3: Related literature

Ref. Main idea Framework/model
name

Advantage Disadvantage

[8] • Categorizes security
threats targeting
low-power BLE

BLE threat model • Attack techniques
and detailed
technical
representations

• Limited to
BLE only

[9] • Provides a foundation
and methodology for
analyzing
cyber-biological risks

ERMO • Identify security
threats to
categorize
attack vectors

• Too comprehensive
methodology

(Continued)
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Table 3 (continued)

Ref. Main idea Framework/model
name

Advantage Disadvantage

[10] • Categorizes attacker
behavior into different
tactics and techniques
based on real-world
cyberattack cases

MITRE ATT&CK • Systematic
approach
categorized
by attack
tactics and
techniques

• Does not
consider IoWT

[11] • Threat modeling
framework for mobile
systems

CONCORDIA–
CMTMF

• Systematic
approach in mobile
systems

• Does not
consider IoWT

[12] • Threat modeling for
WSHD devices

WSHD threat
model

• Identify
vulnerabilities in
WSHD devices

• Unstandardized
attack tactics and
techniques

[13] • Threat modeling
methodology
for MMDs

MEDICALHARM • Systematic
approach in
medical devices

• Few classifiable
attack tactics and
techniques

[32] • Propose threat
modeling for mobile
healthcare devices

Emerging MWBD • Security threat
identification and
risk management

• Too comprehensive
modeling

[33] • Threat modeling
framework for mobile
networks

Bhadra • Systematic
approach in mobile
networks

• Does not
consider IoWT

3.1 IT, IoT, and Mobile Threat Model & Framework
The ERMO framework [9] describes cybersecurity in terms of risk for biodigital systems and

points to a lifecycle approach for cyber risk management. Since biodigital systems encompass both
life sciences and cybersecurity, risk analysis through this framework includes digital, hardware, and
biological assets. Risk in the ERMO process includes two main goals: prioritizing risks through
analysis, protecting and evolving the organization, and providing a semi-quantitative way to score
both risk and reward. It also provides an initial identification of key exposure variables and loss drivers
for biodigital systems. The ERMO Framework’s methodology consists of eight steps. Steps 1 and 2
prioritize risks, including cyberbio assets, operations, and liabilities. Step 3 identifies the causes of loss
or risk that impact Steps 1 and 2. Step 4 is the consequences of the impacted risks. Step 5 includes
controls to minimize loss frequency and/or severity. Steps 6 and 7 assess the damage to components,
such as cyberbio systems, subsystems. Step 8 includes implementing and monitoring risk controls
and risk financing plans and programs. Based on the proposed methodology, key exposures, exposure
variables, and sources of loss can be identified and developed into a risk registry. However, the ERMO
model is too broad to categorize the tactics and techniques used against cyber threats properly. Since
the threat model does not classify detailed attack tactics and techniques, in-depth cyber-attack analysis
is difficult. The study did not include specific attack tactics and techniques to classify. In addition, the
proposed framework does not have a validation process, and thus its reliability is low.
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The MITRE ATT&CK Framework [10] is a security framework developed by MITRE Cor-
poration that categorizes information about different attack techniques. The attacker’s behavior is
categorized into different tactics and techniques based on actual cyber-attack cases. This framework
is used to analyze attack patterns and derive attack behaviors to improve the ability to detect
advanced attacks. The MITRE ATT&CK database contains useful information on threat modeling
languages, such as assets (e.g., computers, services, internal and external networks), attack phases (e.g.,
spearphishing attachments, user execution), and threat modeling languages. The data can be used to
develop various threat models and methodologies. Some frameworks, such as Enterprise and ICS, are
appropriate for different network environments. However, the MITER ATT&CK Framework does
not specialize in IoWT. Because IoWT devices operate in a unique environment due to limitations
such as low processing power and bandwidth, applying all attack techniques proposed in existing IT
and ICS frameworks is difficult.

CMTMF [11] is a threat modeling framework for mobile systems created by the CONCORDIA
project to highlight the importance of cyber threat intelligence techniques. This study focusing on
threats to the mobile network itself, the entry points for carrying out attacks were analyzed as follows:
the mobile device, the SIM Card, the mobile app, the gNodeB, the IPUPS, the SEPP, and the Network
Exposure Function (NEF)-CAPIF. It was developed to address the difficulties in applying existing
threat modeling frameworks such as MITRE ATT&CK and Bhadra framework to mobile networks.
CMTMF is compatible with sub-frameworks of MITRE ATT&CK, such as MITRE ATT&CK for
Enterprise, Mobile, and ICS. CMTMF is divided into 105 attack behaviors and 14 tactic categories,
but unlike MITRE ATT&CK, there are no unique tactics. Instead, the attacks are characterized by the
use of multiple devices on a mobile network and the repetitive nature of the attacks, so the attacks are
documented in a step-by-step loop. However, it does not consider the wearable environment. IoWT
devices perform special network communications such as BLE, NFC, and Zigbee and operate in
the unique environment of wearables. This indicates that existing IT and ICS target threat analysis
techniques cannot be applied accurately.

MWBDs [32] are miniaturized mobile healthcare devices used in healthcare services such as
telemedicine and have limited resources (size, power, processing, and storage). Due to these charac-
teristics, they pose security risks to the privacy of users while collecting and transmitting patients’
sensitive personal information. Therefore, this study proposed a methodology to counter cyberattacks
on MWBDs. In MWBD, threat modeling, assets, vulnerabilities, threats, attacks, risk classification,
and risk assessment are performed. First, assemble a team to perform threat modeling. The threat
modeling team should include at least one member from each engineering group involved in hardware,
radio links, and software to ensure a solid understanding of the underlying technology. Next, the
security assumptions and constraints against which the threat modeling is performed to capture
information at the appropriate level of abstraction are identified. The operating environment is
analyzed during this process, and security domains/perimeters/use cases are defined. Later, attackers
are defined, followed by a systematic analysis of security threats. Finally, once the risks to the system
are defined, risk management is performed to assess, monitor, and respond to the risks. This study
validated the proposed MWBD threat modeling by conducting a case study on MWBD devices with
the following characteristics: Injectable, Ingestible, Implantable, and Wearable. However, this threat
modeling methodology is too broad a concept for detailed threat analysis. The proposed threat model
did not provide detailed information about attack tactics and techniques to classify cyberattacks in
detail. For example, no specific classification has been performed on attacks that occurred during the
BLE pairing process between a wireless implantable neural interface system on a chip (SoC) and an
external terminal.
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The Bhadra framework [33] is a threat modeling framework that classifies publicly known security
threats to mobile networks into nine tactical and 55 technical categories. It focuses on 2G, 3G, and 4G
technologies based on 3GPP standards. The BHADRA framework identifies a wide range of potential
attackers by modeling even attacks that have not been observed in practice. The threat modeling
methodology consists of three phases, and the attack lifecycle proceeds in the following order: attack
mounting, attack execution, and attack consequences. Attack mounting is when an attacker finds
a target’s weaknesses, gains initial access to the target, and establishes a persistent presence. Attack
execution is where the attacker exploits vulnerabilities in the system to extend control from initial
access to the target. Attack results are when the attacker achieves their tactical objectives, primarily
related to information gathering and other attack impacts. However, the proposed Bhadra framework
has limitations when applied to IoWT. For example, Attack Progression’s SS7-based techniques
include protocols such as the Signaling Connection Control Part (SCCP) and Transaction Capabilities
Application Part (TCAP). Security threats cannot be identified since IoWT devices do not support
these protocols.

3.2 IoWT Threat Model & Framework
The BLE Threat Model [8] represents a comprehensive categorization of security and privacy

threats to the BLE protocol, which is based on communicating with low-power, computationally
limited sensors and IoT devices rather than regular Bluetooth. First, we categorize the security threats
into eight categories based on the attacker’s approach and the severity of the attack. Attacks that
perform similar attack techniques are combined into one category. The security threats are classified
as follows: Passive Eavesdropping, which occur due to the simplified and predictable design of BLE
channel hopping; Active Eavesdropping, where an attacker positions itself in the BLE communication
path to steal information; and Device Cloning, where an attacker causes damage by pretending to be
a trusted device of the target, cryptographic vulnerability, which exploits cryptographic weaknesses
and flaws in the BLE protocol; DoS, which occurs at the physical and network layers to prevent the
intended user from using system resources; Distortion, which attacks the services of a BLE device by
exploiting vulnerabilities in BLE protocol services and BLE data packets; and Surveillance, which is
used to identify BLE devices. However, since the BLE threat model targets only a single protocol, it is
unsuitable for security threats to various protocols used in IoWT. Many communication protocols are
used between wearable devices and mobile devices, such as NFC, Zigbee, Wi-Fi Direct, and NB-IoT.
Therefore, it must be possible to target multiple protocols.

The WSHD Threat Model [12] examines exploitable aspects of wearable smart health devices,
such as sensors connected to the Internet, to monitor the wearer’s health and exchange data. The
proposed threat model represents the companion apps, cloud, and communication protocols of the
WSHD system. The threat model targets the following two communication sections, which include
security threats that may occur in communications established in the WSHD system: WSHD device-
companion app and companion app-cloud. This study selected Garmin Connect, Polar Beat, Mysugr,
and Finger Oximeter-SpO2 companion apps to verify the proposed threat model and analyze their
vulnerabilities. The programs and tools used are Wireshark, BLECryptracer, and Logcat. The security
threats identified include network packet sniffing, traffic capture and manipulation, data collection
using valid APIs, and encryption vulnerabilities. However, a formalization process was not performed
on the attack tactics and techniques used in security threats. If there is no formalization process for
attacks, the scope and characteristics of security threats cannot be properly defined, which reduces the
accuracy of attack identification.
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The MEDICALHARM [13] is a threat modeling methodology tailored to identify threats in
MMD systems. The proposed methodology combines security threats and risk analysis. The primary
security threats are security and privacy threats and include Modification breach, Exposure of sensitive
or personal data, Denial of service, Impact of threat, Component threat, Access breach, Likelihood of
threat, Harm to the patient, Assumptions and constraints about the system, Relevant in-depth threat,
Monitoring and logging. The risk analysis adopts the semi-quantitative analysis recommended by the
National Institute of Standards and Technology (NIST). This study uses CVSS scores to assess the risk
of all identified vulnerabilities, combined with qualitative likelihood and impact measures. However,
the proposed threat modeling has few distinguishable attack tactics and techniques, totaling 11. In
addition, the selected security threats are not at the same level, so the scope of analysis is different. For
example, Denial of service is included in the attack technique, but the Component threat is included in
the attack tactic. Therefore, the number of attack tactics and techniques that can actually be classified
is smaller.

4 Framework for IoWT Cyber Threat Analysis

Section 4 introduces IWTW, a cyber threat analysis framework. Existing cyber threat analysis
frameworks are not specialized for IoWT environments, which makes it difficult to analyze attacks.
Therefore, we propose IWTW, a framework for analyzing cyber threats targeting IoWT. Section 4
consists of the development methodology, the analysis of IoWT attack cases, the formalization of
attack tactics and techniques in threat data, and a detailed description of the developed IWTW
framework. Most attack tactical categories applied in the IWTW framework are based on the MITRE
ATT&CK framework. However, MITRE ATT&CK does not cover frameworks based on IoT or IoWT
systems, so it cannot properly evaluate IoWT attacks. Therefore, the IWTW Framework modifies
existing attack tactics and techniques or adds new attack tactics to fit the IoWT environment. The
IWTW Framework may be regularly updated with data on attack tactics and techniques in the future.

4.1 Methodology for Developing IWTW Framework
Section 4.1 describes the IWTW cyber threat analysis framework. IoWT attack cases, IoWT

security threats, and attack tactics and techniques were derived from a variety of literature, including
technical reports, white papers, studies, and academic publications. The methodology is divided into
three phases. Fig. 2 shows an overview of the IWTW framework development methodology.

Figure 2: Methodology for developing IWTW framework
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Step 1 Analysis: Analyze the attack cases and derive the attack process performed against IoWT
devices.

Step 2 Standardization: Standardize attack tactics and techniques derived from the analysis of
attack cases and potential security threats.

Step 3 Compilation: Combining the security threats formalized in the previous step to propose an
IWTW framework.

The proposed methodology is divided into two areas: Clustering and Development. First, the
Clustering area stores data derived from the analysis of attack cases targeting IoWT and potential
security threats that may occur in IoWT. The clustering area requires continuous updates in response
to new cyber-attacks. In addition, it consists of two parts: Analysis and Standardization. First, the
Analysis part includes IoWT Attack Cases, which analyzes attack cases that can occur against IoWT,
and IoWT Security Threat, which analyzes potential security threats that can occur in IoWT. IoWT
Attack Cases is based on actual attacks against IoWT and analyzes the attack process and security
threats. IoWT Security Threat is not derived from the attack cases that were previously analyzed,
but it analyzes the security threats that can be caused by potential attackers targeting IoWT. The
Standardization part performs the process of standardizing the attack categories, attack tactics, and
attack techniques derived from the Analysis part.

The equation for the proposed methodology is as follows: The set of security threats derived
through IoWT Attack Case and IoWT Security Threat are X and Y. IoWT attack data is collected as
much as i. Z means set in which duplicates of the derived security threats have been removed. The set Z
is defined as follows: Z = ⋃n

i=1(Xi ∪ Yi). Attack categories are defined as follows: Launch on Attack,
Expand Attack, and Attack Result are expressed as a1, a2, a3. The elements zk of set Z can be classified
into ai. The relationship between zk and ai is defined as follows: ∀zk ∈ Z, ∃ai ∈ {a1, a2, a3}: zk ∈ ai.
Attack tactics classified within attack category ai are b1 to bn. Attack Techniques classified within
attack tactics bj are c1 to cn. ai contains attack tactics bj, and bj contains attack techniques ck. The
relational expressions for ai, bj, and ck are defined as follows: ∀ai∃b1, . . . , bn ⊆ ai : ∀bj, ∃c1, . . . , cn ⊆ bj

In the development area, a cyber threat analysis framework for IoWT is developed based on threat
analysis data from the clustering area. By combining the standardized attack categories, attack tactics,
and attack techniques, the IWTW framework is finally developed.

4.2 Step 1: Analyze IoWT Attack Cases and Possible IoWT Security Threats
Section 4.2 reviews IoWT attack cases and analyzes potential IoWT security threats.

4.2.1 IoWT Attack Cases

IoWT devices typically collect data and process important information from clients. Popular types
of IoWT devices include NFC Smart Ring, Smart Posture Trainer, Gaming Simulator, Smart Shoes,
Smart Jewelry, Fitness Tracker, Smart Band for Blinds, Smart Clothing, GPS Tracking Band [19,20].
Table 4 analyzes the attack cases against these IoWT assets. The attacks are categorized into IoWT
assets, attack processes, and threat techniques based on the targets and attack methods.
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Table 4: Cases of cyber-attack targeting IoWT device

Ref. IoWT asset Attack process Security threats

[8] Smart watch • Through the GATT protocol,
neighboring wearable devices
broadcast a signal, and the master
(Mobile) connects to the signal.

• Exploit a vulnerability in the
internal mechanism of the GATT
protocol where services can be
easily cloned and spoofed.

• The attacker uses a fake mobile
app to impersonate a BLE
wearable device, and the master
connects to the malicious device.

• The malicious device propagates
the connection with the original
device and performs an ITM
attack.

• Man-in-the-middle
attack, protocol
vulnerability,
eavesdropping

[34] Smart watch • Use the Bluefruit LE sniffer tool
to capture BLE traffic.

• Analyze the data packets using
wireshark, an open-source packet
analyzer.

• Identify smart wearable device
type and version via static
addresses in the analyzed
packet data.

• Passive sniffing attack,
traffic capture

[35] Smart band • Normal use between wearable
devices and mobile (gateway).

• The cracked app is installed on the
attacker’s smartphone.

• Forced pairing between wearable
device and attacker smartphone
via cracked app.

• Exploitation of a vulnerability
where the wearable device and
smartphone do not authenticate
each other every time they
connect, preventing the wearable
device from distinguishing
between the real user’s smartphone
and the attacker’s smartphone.

• Malicious app, illegal
device pairing, absence of
certification

(Continued)



CMES, 2024, vol.141, no.2 1587

Table 4 (continued)

Ref. IoWT asset Attack process Security threats

• Collecting health data from the
wearable device, such as the user’s
heart rate, physical activity, and
calorie consumption.

• The collected data is sent to the
attacker’s smartphone.

[36] Smart band • Detect smart band devices using
vulnerability scanning tools.

• Eavesdropping the BLE protocol.
• Using the Adafruit BLE sniffer

nRF51822 in an Ubuntu virtual
machine on VMWare to sniff
packets exchanged during BLE
communication.

• Performed healthcare-related data
exfiltration and packet injection,
including user steps, distance
traveled, calories burned.

• Scanning, sniffing, data
extraction, packet
injection

[37] Smart watch • Performing active scanning
utilizing the Nmap security
scanner tool modified to run in an
android wear environment.

• A ZGPAX S8 smartwatch/phone
device runs a malicious access
point using the same SSID name
as an HP OfficeJet 8610 Wi-Fi
direct printer.

• Selecting and connecting to a fake
Wi-Fi direct printer based on its
SSID name when a victim
attempts to send a print job from
their laptop.

• Sending a printout containing
sensitive data to the attacker in a
file format such
as PDF.

• Scanning, malicious app,
eavesdroppinl

(Continued)
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Table 4 (continued)

Ref. IoWT asset Attack process Security threats

[38] Fitness tracker • Tracking the victim using a
vulnerability in the Fitbit tracker
that always uses the same device
address.

• Connect to a Fitbit tracker paired
to a mobile device using the
GattTool utility.

• Automated shell script that
continuously reads the tracker’s
characteristics and causes it to
respond to all requests (DoS
attack, reducing availability).

• Same device address,
protocol vulnerability,
vulnerability tool,
automated shell script,
DoS, preventing service

[39] Fitness tracker • Blocks multiple services, including
phone, increasing battery
utilization and causing pairing
blocking.

• The microprocessor does not have
the necessary protection to lock
out external reads and writes to
internal flash, targets
Nike+Fuelband devices with USB
connectors.

• Uses standard ST microelectronic
development tools to communicate
with the STM32 system and obtain
the device’s firmware.

• USB connect, corrupted
firmware, string
replacement

(Continued)
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Table 4 (continued)

Ref. IoWT asset Attack process Security threats

[40] Fitness tracker,
smart watch

• Apply the modified firmware via
the USB connector to perform
the attack (change strings).

• Ubertooth one is a BLE antenna
that provides spectrum analysis
(similar to sniffing) of the 2.4 GHz
radio band in a simple
plug-and-play USB dongle.

• Targets Jawbone UP, pebble steel,
and Fitbit charge HR wearables.

• Enable Ubertooth on the attack
system using the command
ubertooth-btle-fc/tmp/pipe.

• Activate mobile’s bluetooth
feature to pair the phone to the
device using the specific pairing
process for each wearable device.

• Ubertooth is actually responsible
for sending data from the wearable
to the vendor-specific app on the
phone, while Ubertooth continues
to sniff and capture the packets
going back and forth.

• Protocol vulnerability,
USB connect, sniffing,
data extraction, MITM
attack

4.2.2 IoWT Security Threat

In addition to the examples of IoWT attacks analyzed in Section 4.2.1, we also considered IoWT
attacks that potential attackers or security threats could cause. Table 5 shows the potential security
threats and their descriptions for IoWT, derived from a literature review of papers, studies, and
technical reports related to cybersecurity threats to IoWT. The possible security threats were analyzed
by considering confidentiality, integrity, and availability issues for IoWT [41,42]. Confidentiality
breaches include unauthorized access to resources by unauthorized users, and related security threats
include access to user information, such as accessing and analyzing communication traffic between
wearable devices, eavesdropping, and information-gathering attacks. Integrity breaches involve mod-
ifying sensitive information collected from wearable devices, such as user physical and medical
information, and related security threats include reply, modification, and masquerade attacks on
wireless communications. Availability breaches involve causing a wearable device to behave erratically
or block communication, and related security threats include denial-of-service attacks.
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Table 5: Potential security threats targeting IoWT device

Ref. Security threat Description

[43] Active sniffing • An attacker impersonates a legitimate device or actively
manipulates connection parameters.

[44] Authentication
bypass

• Successful exploitation of this vulnerability will cause the
access control functionality of certain applications to fail.

• (e.g., Huawei children smart watch (Simba-AL00)
1.1.1.274).

[45] Automated
shell script

• Mimics a DoS attack to initiate a connection request and
read the characteristics of the wearable device.

[46] Bluebugging • Allow an attacker to take control of a Bluetooth-enabled
device without the user’s knowledge. Exploit vulnerabilities
in the Bluetooth protocol or device firmware to remotely
execute commands.

[47] Command
injection

• An attack that aims to execute arbitrary commands on the
host operating system through a vulnerable application.

[48] Data
extraction

• Used by attackers to steal data from the network.

[49] Denial of
service

• Sends many requests to the target device in a short time or
sends requests to the target device that it does not know
how to process.

[50] Firmware
access

• Successful access to firmware, which can lead to future
updates and increased privileges for the attacker.

[51] Firmware
corruption

• The attacker manipulates, overwrites, or corrupts the
firmware to deny use of the system or device.

[52] Fixed device
address

• Random address programmed or generated by the device
at runtime on a BLE device.

[53] Illegal device
pairing

• The attacker attempts to connect to a BLE-enabled device
without user knowledge or consent.

[54] Illegal filming • Abuse the recording capabilities of smart glasses to illegally
take photos and videos.

[55] Information
gathering

• Gather information about wearable devices and use the
information to analyze the vulnerabilities of the device and
increase the number of possible ways to attack it.

[56] Leaky BTLE • The number of TKs that can be used to generate STK in
the STK generation stage is small.

[57] Location
tracking

• Leveraging BLE used in wearable devices to track users by
intercepting and analyzing signals emitted for legitimate
functions such as device location services.

[58] Malicious app • Malicious apps are installed on mobile devices and forced
to connect with wearable devices, compromising data
security.

(Continued)
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Table 5 (continued)

Ref. Security threat Description

[59] Malware
attack

• Malware is installed on a mobile device and forced to
connect with a wearable device, compromising the wearable
device’s sensors.

[60] Masquerade
attack

• The attacker impersonates a legitimate IoWT device or
user to gain unauthorized access or manipulate the system.

[61] MITM attack • Occurs when an attacker intercepts and alters
communications between two parties, acting as an
unwitting intermediary. Used to intercept authentication
credentials, session keys, or other sensitive data exchanged
during the pairing process.

[62] Modification
attack

• Since data transfer between wearable devices is performed
over the air, an attacker can intercept the wearable device’s
traffic exchange or modify the contents of the exchange
packets after gaining access to the information.

[63] Non-
authentication

• Wearable devices lack authentication mechanisms.

[64] Non-
encrypted
data

• Poor implementation of encryption in communication
protocols used in wearable devices

[65] Packet
injection

• Intentionally sending altered or manipulated data packets
to manipulate or disrupt the normal operation of the
wearable device.

[66] Passive
sniffing

• The attacker passively intercepts communications without
actively participating in the connection. Use of specialized
hardware or software tools that can capture packets.

[67] Physical access • Physically accessing the wearable device, such as via USB,
to perform physical compromise and spoofing attacks.

[68] Replay attack • An attacker captures packets and retransmits them to the
target for malicious purposes.

[69] Service stop • The attacker stops or disables services on the system so that
legitimate users cannot use those services.

[70] Third-party • Passing key information such as personal information and
wearable device key information to third parties, but the
data is stored in plain text and is vulnerable.

[71] Traffic analysis • Analyze communication traffic from captured wearable
devices to gain access to sensitive data, such as user activity
in network traffic.

(Continued)
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Table 5 (continued)

Ref. Security threat Description

[72] Traffic capture • A tool like pcap can be used to capture communication
traffic from a wearable device.

[73] Unauthorized
access

• Gain unauthorized access to the wearable device or
network to prepare for further attacks.

[74] Unsecure
network

• Data is transmitted over an unsecured network or
in an unencrypted format.

[75] Unsecure PIN • Lack of authentication due to unsecured PIN systems
within the wearable device.

[76] Vulnerable
protocol

• Security vulnerabilities in communication protocols
between wearable devices, such as MQTT, BLE.

[77] Weaponization • Attacking a wearable device, such as a wearable medical
device, and then manipulating it to perform malicious
behavior causing actual damage.

[78] Wireless access • Communication methods based on wireless LAN
standards such as Wi-Fi Direct and BLE. Wearable devices
connected to these wireless access points can be attacked.

4.3 Step 2: Standardization of Attack Tactics and Techniques
In this session, we will formalize the attack tactics and techniques derived from our analysis of

attack cases and potential security threats against IoWT devices in Section 3.2. Attack categories
represent the initiation, progression, and consequence phases of an attack. Attack tactics represent the
attacker’s behavior in accordance with the attack goal. Attack techniques represent how the attacker
achieves the attack tactic against the goal, and there are various attack techniques for each attack
tactic. This study referenced the MITRE ATT&CK Framework to formalize attack tactics and attack
techniques but did not include them in the formalization process if they are not applicable or not
applicable to IoWT devices.

4.3.1 Launch on Attack

Launch on Attack is categorized into three attack tactics: Reconnaissance, Resource Develop-
ment, and Initial Access. It represents a possible security threat in the early stages of an attack, such
as when an attacker discovers a security weakness in a target. The attack can be expanded based on
the information gained during this phase.

Reconnaissance is an attack tactic that gathers information that can be used in an attack. It
includes the Exploitation of Wireless Device Configuration, Active Scanning, and Passive Scan-
ning attack techniques. Table 6 shows the attack techniques used in the Reconnaissance tactic and
their descriptions.
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Table 6: Attack techniques and detailed descriptions used in Reconnaissance

Attack tactics Ref. Attack techniques Description

Reconnaissance [79] Exploitation of wireless
device configuration

• It filters and analyzes wireless network
traffic to leverage specific components
such as source and destination addresses,
protocols used, and data payloads.

[80] Active scanning • Unlike other forms of reconnaissance
that do not involve direct interaction,
scanning attacks involve the attacker
probing the victim’s infrastructure through
network traffic.

[81] Passive scanning • In a scanning attack, the attacker sends
standard communication messages to the
target’s wearable device and gathers the
necessary public information from the
returned response messages.

Resource Development is an attack tactic in which an attacker creates, purchases, compromises, or
steals resources such as tools or vulnerabilities that can be used in an attack, and includes the Obtain
Capabilities, Develop Capabilities, and Stage Capabilities attack techniques. Table 7 shows the attack
techniques used in the Reconnaissance attack tactic and their detailed descriptions.

Table 7: Attack techniques and detailed descriptions used in resource development

Attack tactics Ref. Attack techniques Description

Resource development [82] Obtain
capabilities

• The attacker obtains information
about software tools or
vulnerabilities needed for the
attack
(e.g., purchased, downloaded,
stolen).

[83] Develop
capabilities

• The attacker builds the software
tools needed for the attack or
discovers vulnerabilities.

[84] Stage
capabilities

• The attacker deploys the
capabilities required for the attack
into the target’s network
infrastructure.

Initial Access is an attack tactic for attack vectors used to gain an initial foothold within a mobile
or wearable device network. It includes the Exploit Public-Facing Application, Deliver Malicious
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App, Network Configuration Manipulation, and Replication Through Removable Media attack
techniques. Table 8 shows the attack techniques used in the Initial Access attack tactic and their
detailed descriptions.

Table 8: Attack techniques and detailed descriptions used in initial access

Attack tactics Ref. Attack techniques Description

Initial access [85] Exploit public-facing
application

• An attacker attempts to exploit a
weakness in a host or system
connected to the internet to gain
initial access to a network. This
includes vulnerabilities in
communication protocols (e.g.,
GATT) and applications for
wearable devices.

[86] Deliver malicious app • Malicious or cracked applications
are installed on a wearable or
mobile device through legitimate
channels.

[87] Network configuration
manipulation

• An attacker can manipulate the
configuration of a network to run
a malicious access point by
manipulating the SSID name of a
malicious wearable device to be the
same SSID as the target’s Wi-Fi
direct printer.

[88] Replication through
removable media

• The attacker exploits or copies
malicious code onto a device
connected via USB and moves it to
the wearable device. The attacker
can then attempt to exploit the
device by accessing stored data.

4.3.2 Expand Attack

The Expand Attack phase extends the attack process to the attacker’s intended goal through
various methods, including vulnerability exploitation, after successful initial access to the target.
Expand Attack is categorized into nine attack tactics: Execution, Persistence, Privilege Escala-
tion, Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, and Command
and Control.

Execution is an attack tactic that involves executing code and files to control a wearable device
and includes the Application Layer Protocol, Native API, Command and Scripting Interpreter, Device
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Synchronization, and Firmware Update attack techniques. Table 9 shows the attack techniques used
in executing the attack tactics and their detailed descriptions.

Table 9: Attack techniques and detailed descriptions used in execution

Attack tactics Ref. Attack techniques Description

Execution [89] Application layer
protocol

• Installing and running malicious or
cracked applications to perform
unauthorized activities.

[90] Native API • Execute basic system commands or
API calls to enable packet capture on
the Ubertooth device, which is
responsible for executing functions on
the wearable device.

[91] Command and scripting
interpreter

• Exploit vulnerabilities in applications
to execute arbitrary commands.

[92] Device synchronization • During the synchronization process
between a wearable device and a
paired mobile device, if the data being
synchronized contains an executable
file, malicious code can be delivered
under the guise of a synchronization
operation.

[93] Firmware
update

• The attacker spoofs update
notifications or compromises the
wearable device’s update mechanism
to execute a malicious firmware
installation of the attacker’s choosing.

Persistence is an attack tactic for accessing, working with, or changing the configuration of a
wearable device that requires an attacker to have a persistent presence on the device. It includes Boot or
Logon Autostart Execution and Subvert Trust Controls attack techniques. Table 10 shows the attack
techniques used in the Persistence attack tactic and their detailed descriptions.

Privilege Escalation is an attack tactic that allows an attacker to gain higher levels of privileges
on a device and includes Weaken Authentication, Process Injection, and Manipulated Authentication
attack techniques. Table 11 shows the attack techniques used in the Privilege Escalation attack tactic
and their detailed descriptions.
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Table 10: Attack techniques and detailed descriptions used in persistence

Attack tactics Ref. Attack techniques Description

Persistence [94] Boot or logon autostart
execution

• An attacker configures system
settings to automatically run a
program during system boot or logon
to maintain persistence on a
compromised system or gain a higher
privilege level. A wearable device is
connected to a USB or other device to
autorun.

[95] Subvert trust controls • Weaken security controls that warn of
untrusted activity or prevent
untrusted applications from running.

Table 11: Attack techniques and detailed descriptions used in privilege escalation

Attack tactics Ref. Attack techniques Description

Privilege
escalation

[96] Weaken
authentication

• No authentication is performed between
wearables and mobile devices, making
distinguishing between the attacker’s
mobile device and the actual user’s
mobile device is impossible. This allows
for persistence or escalation of privileges
without re-authentication.

[97] Process injection • Injects a malicious process into a
legitimate process to allow the attacker
to take control of a Bluetooth-enabled
device without the user’s knowledge.

[98] Manipulated
authentication

• To gain user privileges, the attacker
manipulates authentication tokens to
maintain sessions between wearables and
mobile devices.

Defense Evasion is an attack tactic allowing an attacker to evade detection or other defense
mechanisms. It includes Weaken Encryption, Disk Content Wipe, Valid Accounts, and Masquerading
attack techniques. Table 12 shows the attack techniques used in Defense Evasion attack tactics and
their detailed descriptions.
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Table 12: Attack techniques and detailed descriptions used in defense evasion

Attack tactics Ref. Attack techniques Description

Defense evasion [99] Weaken encryption • Exploit a vulnerability in the protocol’s
internal encryption mechanism to
compromise the encryption function.

[100] Disk content wipe • It bypasses security features that protect
sensitive data by deleting sections
responsible for protections needed to
lock out external reads and writes to
internal flash.

[101] Valid accounts • By bypassing authentication
mechanisms, the attacker gains
unauthorized access using legitimate
credentials without being detected.

[102] Masquerading • Attackers manipulate an object’s name,
location, or appearance, whether
legitimate or malicious, to make it
appear legitimate. Examples include
phishing firmware update processes and
manipulating file metadata.

Credential Access is an attack tactic attackers use to gain unauthorized access to resources. It
includes the Unsecured Credentials and Steal Application Access Token attack techniques. Table 13
shows the attack techniques used in the Credential Access attack tactic and their detailed descriptions.

Table 13: Attack techniques and detailed descriptions used in credential access

Attack tactics Ref. Attack techniques Description

Credential access [103] Unsecured
credentials

• The attacker sniffs wireless
communication packets, such as BLE, to
access unencrypted credentials or
sensitive information transmitted
between the wearable device and the
paired mobile device.

[104] Steal application
access token

• The attacker obtains credentials by
hijacking the authentication token used
to maintain a session between the
wearable and mobile device.

Discovery is an attack tactic for gaining information about wearable devices and other network
systems. It includes System Information Discovery, Network Service Scanning, Location Tracking,
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Passive Sniffing, and Active Sniffing attack techniques. Table 14 shows the attack techniques used in
the Discovery tactic and their detailed descriptions.

Table 14: Attack techniques and detailed descriptions used in discovery

Attack tactics Ref. Attack techniques Description

Discovery [105] System information
discovery

• Obtain information about the system
and its components, such as device type
and firmware version. Based on this, the
attack method is tailored to the
vulnerabilities of that version of the
wearable device.

[106] Network service
scanning

• The attacker analyzes packets to retrieve
operational details about the device, such
as communication protocols or device
capabilities.

[107] Location tracking • Through a malicious or exploited
application on a compromised wearable
device, the attacker can track the device’s
physical location using standard
operating system APIs.

[108] Passive sniffing • The attacker passively intercepts
communications without actively
participating in the connection. It uses
specialized hardware or software tools
that can capture packets, but they are
difficult to detect.

[109] Active sniffing • Intercepting packages are sent over a
network that uses switches.

Lateral Movement is an attack tactic that allows an attacker to gain unauthorized access to and
control of remote systems on a network and includes the Use of Alternate Authentication Material,
Replication Through Wireless and Remote Services attack techniques. Table 15 shows the attack
techniques used in the Lateral Movement attack tactic and their descriptions.

Table 15: Attack techniques and detailed descriptions used in lateral movement

Attack tactics Ref. Attack techniques Description

Lateral movement [110] Use alternate
authentication
material

• An attacker can bypass the standard
authentication process to establish
control over a wearable device by
forcibly pairing it using spoofed
authentication credentials.

(Continued)
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Table 15 (continued)

Attack tactics Ref. Attack techniques Description

[111] Replication through
wireless

• Cloning methods via Bluetooth,
BLE, WLAN.

[112] Remote services • Exploit vulnerabilities in communication
protocols to gain unauthorized access or
execute attacks.

Collection is an attack tactic used to identify and collect key information from the target network,
such as sensitive files, including user personal information. It includes the Data Local System, Data
from Removable Media, Video Capture, Capture Bluetooth Traffic, Adversary-in-the-Middle, and
Replay Attack techniques. Table 16 shows the attack techniques and detailed descriptions used in the
Collection attack tactic.

Table 16: Attack techniques and detailed descriptions used in collection

Attack tactics Ref. Attack techniques Description

Collection [113] Data from local
system

• Includes methods that allow the attacker
to collect data from the local system. The
purpose of this technique is to collect
sensitive data that can be used in
subsequent phases of the attack. In this
technique, the local system is a wearable
device.

[114] Data from removable
media

• It collects sensitive data from all
removable media. Data collection can be
done automatically by scanning for
connected removable media.

[115] Video capture • An attacker can utilize the device’s
camera to capture video recordings to
gather information. Instead of video
files, images can be captured at specified
intervals.

[116] Capture Bluetooth
traffic

• Capture Bluetooth traffic from a
wearable device using a tool like pcap to
collect data without authorization.

[117] Adversary-in-the-
middle

• Intercept and alter a wearable device’s
communications. This allows them to
manipulate data or collect sensitive data,
compromising its integrity and
availability.

(Continued)
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Table 16 (continued)

Attack tactics Ref. Attack techniques Description

[118] Replay attack • Replay attacks are a common form of
attack on wireless communications
where an attacker captures legitimate
communication packets and later
retransmits them with malicious intent.
Attacks can include unlocking, sending
fake notifications.

Command and Control is an attack tactic for how an attacker communicates with a compro-
mised wearable device or system within a targeted network and includes Communication Through
Removable Media, Communication via Bluetooth, and Communication via WLAN attack techniques.
Table 17 shows the attack techniques used in the Command and Control attack tactic and their detailed
descriptions.

Table 17: Attack techniques and detailed descriptions used in command and control

Attack tactics Ref. Attack techniques Description

Command and
control

[119] Communication
through removable
media

• An attacker uses removable media to
transmit commands from system to
system to perform command and control
between compromised hosts on a
network that may be disconnected.

[120] Communication via
Bluetooth

• Command and control via Bluetooth
communication.

[121] Communication via
WLAN

• Command and control via WLAN
communication.

4.3.3 Attack Result

The Attack Result phase is the final part of the attack process, where the attacker achieves their
intended goal. It is related to the state of damage caused by the attack and the impact of the attack
and may cause additional damage. Attack Result is categorized into six attack tactics: Exfiltration,
Impact, Wearable IoT Service, Wearable IoT Device, Protocol Exploitation, and Effect.

Exfiltration is an attack tactic in which an attacker exfiltrates or causes the removal of sensitive
data from a target wearable or mobile device and includes the Transfer Data and Exfiltration Over C2
Channel attack techniques. Table 18 shows the attack techniques used in the Exfiltration attack tactic
and their detailed descriptions.
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Table 18: Attack techniques and detailed descriptions used in exfiltration

Attack tactics Ref. Attack techniques Description

Exfiltration [122] Transfer data • The collected data is exfiltrated to
another device or location controlled by
the attacker (the attacker’s mobile
device).

[123] Exfiltration over C2
channel

• When a device connects to a maliciou
saccess point, sensitive data intended for
a legitimate printer can be redirected and
exfiltrated by the attacker. The
exfiltrated data is typically sent to an
attacker-controlled control and
command (C2) setup.

Impact is an attack tactic used by attackers to compromise the availability and integrity of the
attack target. It can disrupt or destroy data and systems. It includes the following attack techniques:
Delete Device Data, Data Manipulation, Endpoint Denial of Service, Data Encrypted for Impact,
Inhibit System Recovery, and Firmware Corruption. Table 19 shows the attack techniques used in the
Impact attack tactic and their detailed descriptions.

Table 19: Attack techniques and detailed descriptions used in impact

Attack tactics Ref. Attack techniques Description

Impact [124] Delete device data • Corrupting or disabling sensor data on a
wearable device.

[125] Data manipulation • The attacker injects packets to change or
add malicious and invalid data, which
reduces user confidence in the accuracy
and privacy of data on the wearable
device.

[126] Endpoint denial of
service

• The attacker performs an endpoint
denial-of-service (DoS) attack on the
wearable device to degrade or block
service availability to the user.

[127] Data encrypted for
impact

• The attacker encrypts files stored on the
wearable device to prevent users from
accessing them.

[128] Inhibit system
recovery

• The attacker blocks phone service and
causes pairing issues, disrupting normal
operation and potentially impacting
device usability.

(Continued)
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Table 19 (continued)

Attack tactics Ref. Attack techniques Description

[129] Firmware corruption • The attacker overwrites or corrupts the
contents of flash memory in the system
BIOS or other firmware of a
system-connected device, rendering the
device inoperable or unbootable, thus
denying device and/or system usability.

Wearable IoT Service represents the type of service supported by the device. It includes the fol-
lowing attack techniques: Fitness, Medical, Infotainment, Industrial, and Military attack techniques.
Table 20 shows the attack techniques used in the Wearable IoT Service attack tactic and their detailed
descriptions.

Table 20: Attack techniques and detailed descriptions used in wearable IoT service

Attack tactics Ref. Attack techniques Description

Wearable IoT
service

[122] Fitness • Target, manipulate or exfiltrate
quantified data collected during exercise
(e.g., distance, speed, calories burned,
heart rate).

[130] Medical • A wearable device that combines wireless
body area network (wBAN) and
Ubiquitous healthcare technologies.
Attacks can prevent them from
accurately measuring and
communicating the user’s physical
condition to patients and doctors.

[131] Infotainment • Exploit vulnerabilities in smart glasses,
smart watches, to take illegal photos or
display false data on the screen
interface.

[132] Industrial • Attacks cause problems protecting the
body or performing sophisticated tasks
in industrial settings.

[133] Military • Wearable devices used for military
purposes, such as heart rate monitoring,
power delivery, enemy identification,
cameras.
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Wearable IoT Device represents a type of IoWT device. It includes Accessory, Attachable, and
Edible attack techniques. Table 21 shows the attack techniques used in the Wearable IoT Device attack
tactic and their detailed descriptions.

Table 21: Attack techniques and detailed descriptions used in wearable IoT device

Attack tactics Ref. Attack techniques Description

Wearable IoT
device

[134] Accessory • A wearable device in the form of a watch
or band, such as a smartwatch, smart
band, or smart glasses, is attacked. The
attack manipulates the device’s data or
causes abnormal behavior.

[135] Attachable • A device that is worn on the skin, such
as a patch, or in the form of clothing,
such as smart shoes or clothing, is a
smart device. When an attack
is executed, the device’s data is
manipulated to show false output
values.

[136] Eatable • Devices that are implanted or taken
directly into the body, such as smart pills,
can be attacked, resulting in actual
human harm.

Protocol Exploitation is an attack tactic for exploiting vulnerable protocols in wearable device
communications. It includes BLE, Wi-Fi Direct, NFC, Zigbee, LTE-M, NB-IoT, and NR-REDCAP
attack techniques. Table 22 shows the attack techniques used in the Protocol Exploitation attack tactic
and their detailed descriptions.

Table 22: Attack techniques and detailed descriptions used in protocol exploitation

Attack tactics Ref. Attack techniques Description

Protocol
exploitation

[137] BLE • Attacks that exploit vulnerabilities
in BLE.

[138] Wi-Fi direct • Attacks that exploit vulnerabilities in
Wi-Fi direct.

[139] NFC • Attacks that exploit vulnerabilities
in NFC.

[140] Zigbee • Attacks that exploit vulnerabilities in
Zigbee.

[141] LTE-M • Attacks that exploit vulnerabilities
in LTE.

[142] NB-IoT • Attacks that exploit vulnerabilities in
NB-IoT.

(Continued)
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Table 22 (continued)

Attack tactics Ref. Attack techniques Description

[143] NR-REDCAP • Attacks that exploit vulnerabilities in
NR-REDCAP.

Effect is an attack tactic related to damage caused by a wearable device attack and includes the
IoWT Device Damage and Physical Injury attack techniques. Table 23 shows the attack techniques
used in the Effect attack tactic and their detailed descriptions.

Table 23: Attack techniques and detailed descriptions used in effect

Attack tactics Ref. Attack techniques Description

Effect [144] IoWT device damage • IoWT device data is corrupted or
disabled, preventing the device from
being used normally
(e.g., displaying inaccurate
measurements due to health data
manipulation).

[114] Physical injury • Actual physical harm is caused to a
person due to an attack on an IoWT
device
(e.g., medical errors due to abnormal
behavior of a medical device)

4.4 Step 3: Developed IWTW Framework
Fig. 3 shows the IWTW framework developed by combining the 3 Attack Categories, 18 Attack

Tactics, and 68 Attack Techniques for the attack flows derived from Sections 4.2 and 4.3. The attack
categories are organized as follows: Launch on Attack, Expand Attack, Attack Result. Launch on
Attack indicates a security threat that may occur in the early stages of an attack. Therefore, the sub-
sections are organized as follows: Reconnaissance, Resource Development, and Initial Access. Expand
Attack refers to expanding the attack process to the attacker’s intended target. Accordingly, the
subsections are organized as follows: Execution, Persistence, Privilege Escalation, Defense Evasion,
Credential Access, Discovery, Lateral Movement, Collection, Command and Control. Attack Result
indicates the damage caused by the attack and its impact. Therefore, the subsections are organized
as follows: Exfiltration, Impact, Wearable IoT Service, Wearable IoT Device, Protocol Exploitation,
and Effect. IoWT attack techniques included in each subsection were derived and mapped to attack
tactics through the following process: 1. Analyze attack cases targeting IoWT assets. 2. Categorize
IoWT by asset type, attack process, and security threat. 3. Classify potential security threats that may
occur targeting IoWT. 4. Analyze and standardize the main functions that constitute security threats.
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Figure 3: Overview of IWTW framework

Figs. 4–6 show the IWTW framework’s attack categories: Launch on Attack, Expand Attack,
Attack Result, and Components.

Launch on Attack is a category of security threats and attacks that can occur at the beginning
of an attack in the IWTW framework. Its attack tactics are Reconnaissance, Resource Development,
and Initial Access. The Launch on Attack category has 10 attack techniques, including the information
and tools used to carry out the attack, and represents the attack vector for initial access.

Expand Attack is a category of attacks that extends the attack process to the attacker’s intended
target after initial access in the IWTW framework. It consists of the following attack tactics: Execution,
Persistence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement,
Collection, and Command and Control. There is a total of 33 attack tactics that fall under the
Expand Attack category. They perform tasks to achieve the attack goal, such as remotely executing
malicious actions against IoWT devices or gaining high privileges and persisting in the system based on
them, avoiding attack detection, or communicating with and controlling systems inside the network,
collecting key data within the IoWT device, or obtaining information.
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Figure 4: Attack category of IWTW framework, launch on attack

Figure 5: Attack category of IWTW framework, expand attack

Attack Result is a category of attack that achieves the attacker’s intended goal in the IWTW
framework. It is composed of the following attack tactics: Exfiltration, Impact, Wearable IoT Service,
Wearable IoT Device, Protocol Exploitation, and Effect. There is a total of 25 attack tactics in the
Attack Result attack category, which compromise the availability and integrity of services and data in
IoWT devices.

The IWTW framework is highly reliable because it only includes attack techniques that can
be performed against IoWT devices. The addition of new attack tactics allows for more detailed
cybersecurity threat analysis.
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Figure 6: Attack category of IWTW framework, attack result

5 Case Study

Section 5 verifies the proposed method by applying the proposed IWTW framework to three
actual attack cases targeting various IoWT devices. Through a case study, we confirm whether the
IWTW framework can classify IoWT assets, attack processes, security threats, and attack tactics and
techniques.

5.1 Case Study 1: MiBand 2
Fig. 7 illustrates how the MiBand 2 smart band attack case is applied to the IWTW framework.

Exploitation of Wireless Device Configuration: Filtered and analyzed BLE communication wireless
network traffic to analyze source and destination addresses. Active Scanning: Discovered wearable
devices through the discovery capabilities of BLE sniffers. Obtain Capabilities: Uses the application
and hardware sniffers required for the attack. Masquerading: Display a user authentication screen
with fake commands. Passive Sniffing: Sniffs the MiBand 2’s packets through the SmartRF Sniffer.
Data from Local System: Using BLETestTool to collect sports and heart rate data from MiBand 2.
Capture Bluetooth Traffic: Capture BLE communication packets. Adversary-in-the-Middle: Intercept
sensitive data between wearable device communications. Replay Attack: vibrates the MiBand 2 with a
fake notification. Communication via Bluetooth: Communicates with the attacker based on Bluetooth.
Transfer Data: Leaks collected data to the attacker’s device. Inhibit System Recovery: Prevents phone
and text services from functioning normally through fake notifications. Fitness: Fitness data related to
exercise is leaked. Infotainment: Vulnerabilities in smart bands are exploited. Accessory: A wearable
device in a wearable form. BLE: An attack that exploits a vulnerability in BLE communication.
IoWT Device Damage: The MiBand was physically damaged by the constant vibration caused by the
fake notifications.
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Figure 7: IWTW framework applied to MiBand 2 smart band attack

Zhang et al. [145] used the CC2540 USB, TI SmartRF, and BLETestTool to remotely sniff and
analyze traffic on the MiBand 2 wearable smartband. Fig. 8 shows an overview of the attack process
for MiBand 2. The CC2540 USB dongle is used as a hardware sniffer, TI SmartRF Packet Sniffer
is a software application that sniffs BLE communication packets between the smartphone and the
wearable device, and BLETestTool is an attack tool that runs on an Android smartphone to test attacks
against the wearable device. First, the hardware sniffer, smartphone, and smart wristband are placed
close to Bluetooth discovery so the smartphone can discover the MiBand 2 via Bluetooth. Then, turn
on the TI SmartRF Packet Sniffer on your PC and launch the MiBand 2’s official support application
on your Android phone. The packets are sniffed once connected to the MiBand 2 through the
application, and the information is displayed on the TI SmartRF Packet Sniffer. All sniffed packets are
stored in hexadecimal, and the commands in the packets are analyzed by converting them to decimal,
ASCII code, Unicode, or UTF-8 code. After running BLETestTool on an Android smartphone and
using it to connect to the MiBand 2, send some commands recorded using BLETestTool to the
MiBand 2 and fake commands written by the attacker to bypass the authentication process. Once the
authentication process is complete, the attacker uses BLETestTool to perform attacks such as getting
sports and heart rate data or vibrating this MiBand 2 with fake notifications.

Figure 8: Overview of the MiBand 2 attack process
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5.2 Case Study 2: Fitbit Charge HR/Surge, Samsung Gear 3, Xiaomi Amazifit
Fig. 9 illustrates how the Smartwatch/band based on BLE 4.0 and 4.2 attack case is applied

to the IWTW framework. Exploitation of Wireless Device Configuration: Filtered and analyzed
BLE communication wireless network traffic to analyze source and destination addresses. Active
Scanning: Scanned for wearable devices through a BLE sniffer. Obtain Capabilities: the HCI snoop
log is the tool used in the attack. The Native API enables packet capture from Ubertooth devices.
Weaken Encryption: Weaknesses in the data encryption mechanism result in plaintext transmission.
Unsecured Credentials: Uses the user’s digital signature. System Information Discovery: Identifies
devices through packet analysis. Passive Sniffing: Sniffs packets from the wearable device through an
Adafruit sniffer. Use Alternate Authentication Material: Use a spoofed digital signature to maintain
connectivity between devices. Data from Local System: Perform follow-up attacks based on sender and
receiver MAC addresses and identifying devices derived through WireShark. Capture Bluetooth Traf-
fic: Captures BLE communication packets. Adversary-in-the-Middle: Intercept sensitive information
such as sender and receiver static MAC addresses and communication messages between wearable
device communications. Communication via Bluetooth: Communicates with the attacker based on
Bluetooth. Transfer Data collects data information about the wearer’s movements and habits. Fitness:
Fitness data related to the wearer’s movements is compromised. Infotainment: A vulnerability in the
smartwatch or band has been exploited. Accessory: A wearable device in a wearable form. BLE: The
attack exploits a vulnerability in BLE communication.

Figure 9: IWTW framework applied to smartwatch/band based on BLE 4.0 and 4.2 attack

Cusack et al. [146] used BLE sniffers to capture and analyze communication packets from Fitbit
Charge HR/Surge, Samsung Gear 3, Xiaomi Amazifit smartwatches, and smartbands using BLE 4.0
and 4.2 to extract sensitive information. Fig. 10 shows an overview of the attack process for Fitbit
Charge HR/Surge, Samsung Gear 3, and Xiaomi Amazifit attack process. First, use Ubertooth, the
HCI snoop log, and the Adafruit sniffer tool to dump the pairing-related packets of the wearable
devices into pcapng and pcap files. The dumped files are analyzed using Wireshark to check whether
the data is text-encrypted and to collect essential information such as digital signatures, device
identification, mapping of the wearer’s movements and habits, and device logs. As a result, sensitive
information, such as static MAC addresses of the sender and receiver, and communications messages,
were sent in plain text, and message logs (Email, SMS, and Facebook) were checked. The vulnerability
allows for blueprinting attacks against each wearable device. Analysis showed that all wearable devices
had credential data that provided access.



1610 CMES, 2024, vol.141, no.2

Figure 10: Overview of the Fitbit Charge HR/Surge, Samsung Gear 3, Xiaomi Amazifit attack process

5.3 Case Study 3: Honor Band 5 Honor Watch ES
Fig. 11 illustrates how the Honor Band 5 and Honor watch ES smart watch attack case is applied

to the IWTW framework. Exploitation of Wireless Device Configuration: Filtered and analyzed
BLE communication wireless network traffic. Active Scanning: Discovered wearable devices through
the BLE sniffer’s discovery capabilities. Obtain Capabilities: The Nordic Semiconductor nRF52 DK
Sniffer tool was used in the attack. Weaken Authentication: No encryption during the pairing process.
System Information Discovery: Identifies devices by deriving plain text data through packet analysis.
Passive Sniffing: Sniffing packets through a BLE sniffer. Data from Local System: The attacker used
Wireshark to collect plain text data about personal information from a series of Honor devices.
Capture Bluetooth Traffic: Capture BLE communication packets. Adversary-in-the-Middle: Intercept
sensitive information such as physical activity data, synchronization, connection, and reconnection
data between wearable device communications. Communication via Bluetooth: Communicates with
an attacker based on Bluetooth. Transfer Data: Collect sensitive personal information. Infotainment:
Vulnerabilities in the smartwatch/band are exploited. Accessory: A wearable device that can be worn.
BLE: An attack that exploits a vulnerability in BLE communication.

Figure 11: IWTW framework applied to Honor Band 5 and Honor watch ES smart watch attack
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Fuster et al. [70] used the Nordic Semiconductor nRF52 DK Sniffer to capture and analyze
communication packets from various wearable smartwatches/bands to derive privacy and security
vulnerabilities. In Case Study 3, They focus on the Honor Band 5 and Honor Watch ES devices. Fig. 12
shows an overview of the attack process for Honor Band 5 and Honor Watch ES attack process. First,
capture BLE communication between wearable and mobile devices using the Nordic Semiconductor
nRF52 DK tool and then analyze it using WireShark. BLE communication is performed via pairing,
and physical activity data, synchronization, connection, and reconnection data are collected and
analyzed. Honor device series require a separate Huawei ID and Huawei Health service to use. The
devices use unencrypted pairing methods and communication, which expose personal data in plain
text. In addition, wearable devices can be identified by using static MAC addresses.

Figure 12: Overview of the Honor Band 5 and Honor Watch ES attack process

5.4 Case Study 4: Senbono CF-58
Fig. 13 illustrates how the Senbono CF-58 smart watch attack case is applied to the IWTW

framework. Exploitation of Wireless Device Configuration: Filtered and analyzed BLE commu-
nication wireless network traffic. Active Scanning: Discovered wearable devices through the BLE
sniffer’s discovery capabilities. Obtain Capabilities: The BetterCap Sniffer tool was used in the
attack. Command and Scripting Interpreter: Gather details using the BLE.enum command. Weaken
Encryption: No encryption during network connection. System Information Discovery: Identifies
devices by deriving plain text data through packet analysis. Passive Sniffing: Sniffing packets through
the BetterCap sniffer. Data from Local System: The attacker used Wireshark to collect plain text data
about personal information from the Senbono CF-58 devices. Capture Bluetooth Traffic: Capture BLE
communication packets. Adversary-in-the-Middle: Intercept sensitive information such as physical
activity data, synchronization, connection, and reconnection data between wearable device commu-
nications. Communication via Bluetooth: Communicates with an attacker based on Bluetooth. Data
Manipulation: Change data by modifying the descriptor of the UUID. Infotainment: Vulnerabilities
in the smartwatch/band are exploited. Accessory: A wearable device that can be worn. BLE: An attack
that exploits a vulnerability in BLE communication.

Khan et al. [147] used BetterCap Sniffer to capture smartwatch communication packets and
GattTool to establish and control connections between BLE gadgets. In Case Study 4, They focus
on Senbono CF-58 devices. Fig. 14 shows an overview of the attack process for the Senbono CF-58
devices attack process. First, install the BetterCap BLE scanning tool on your Kali Linux machine and
enable the Bluetooth service. After identifying the BLE device through BetterCap, find the Senbono
CF-58 device in the list of scanned BLE devices and record its MAC address. Afterward, the Mac
address is collected, and the BLE.enum command collects detailed information. After completing
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attack reconnaissance, check the data packets through Wireshark. Send a ping to the BLE gadget to
capture packets and analyze the gadget’s UUID descriptor model. Check what type of data the gadget’s
UUID descriptor corresponds to. Connect your CF58 smartwatch and Kali Linux machine using
GATTTOOL. Also, access the terminal and check all UUIDs associated with the device. Afterward,
used Wireshark to cross-reference the previously identified UUIDs to identify specific UUIDs to
target. Finally, the data on the smartwatch is altered by modifying the value of the target UUID.

Figure 13: IWTW framework applied to Senbono CF-58 smart watch attack

Figure 14: Overview of the Senbono CF-58 attack process

6 Discussion

In this session, we compare and analyze IWTW and existing cyber threat framework research. We
selected evaluation items that could compare threat modeling and framework characteristics for com-
parative analysis: compare domain, Threat granularity, Threat, Standardization, and Applicability in
the IoWT. Table 24 compares the proposed framework with existing research.

Table 24: Comparison of cyber threat framework, including ours

Reference Domain Threat
granularity

Threat Standardization Applicability
in the IoWT

BLE threat model [8] IoWT High 17 O O
ERMO [9] IT, IoT Low 2 X X

(Continued)
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Table 24 (continued)

Reference Domain Threat
granularity

Threat Standardization Applicability
in the IoWT

MITRE ATT&CK
[10]

IT, mobile High 86
(mobile)

O �

CONCORDIA–
CMTMF
[11]

Mobile High 47 O �

WSHD threat model
[12]

IoWT Low 7 X O

MEDICALHARM
[13]

IoWT Low 11 O O

Emerging MWBD
[30]

IT, IoT Low 8 X X

Bhadra [31] Mobile High 55 O �
Ours (IWTW) IoWT High 68 O O

This research proposed IWTW framework to analyze cyber threats targeting IoWT devices. The
proposed IWTW was studied in cyber threat frameworks (BLE Threat Model [8], ERMO [9], MITER
ATT&CK [10], CONCORDIA–CMTMF [11], WSHD Threat Model [12], MEDICALHARM [13],
Emerging MWBD [30], Bhadra [31]), as shown in Table 24.

ERMO, Emerging MWBD, MITER ATT&CK, and CONCORDIA–CMTMF analyze security
threats targeting IT, IoT, and mobile. Although some attack tactics and techniques were suitable for use
in an IoWT environment, not all components could be applied. ERMO, Emerging MWBD, WSHD
Threat Model, and WSHD Threat Model did not perform a too comprehensive threat modeling
process or provide detailed information on detailed attack tactics and techniques for security threats.
Most frameworks with low threat granularity had a small number of threats. In the case of the BLE
Threat Model, the threat granularity is high, but the number of threats is small because a limited threat
model targeting only a single protocol was proposed. ERMO, Emerging MWBD, and WSHD Threat
Model do not consider the formalization process for security threat analysis, so it is unclear whether
accurate threat identification is possible.

The IWTW framework presented in this research is designed to analyze cybersecurity threats
targeting IoWT devices. For detailed analysis of security threats, IoWT assets, attack processes, and
security threats from actual IoWT attack cases were derived. Additionally, a standardization was
conducted to classify attack tactics and techniques. In addition, through a case study on actual IoWT
attack cases, we verified that the IWTW framework can effectively classify IoWT security threats.

The IWTW framework allows detailed analysis of cyber threats to IoWT. However, the IWTW
framework has several limitations. In this research, we investigated actual IoWT attack cases and
potential security threats that could occur in IoWT to derive security threats. As attack methods
become more sophisticated and new attack techniques are used, the existing IWTW framework alone
may have a negative impact on analyzing cyber-attacks. Additionally, there are limits to the attack
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tactics and techniques that can be analyzed depending on the attack cases investigated and the scale
of the security threat. Therefore, continuous updating of the IWTW framework is necessary.

7 Conclusion

As IoWT technology has evolved, the sensors embedded in wearable devices have become smaller
and more accessible through low-power mobile networks. However, these features also give IoWT
devices limited processing power and bandwidth, which prevents the use of high computational
security mechanisms such as AES and RSA. Existing works propose threat modeling or frameworks
targeting IoT or low-power protocols. However, the proposed techniques only apply to specific
protocols, the models are too comprehensive, and they do not consider the IoWT environment.
Therefore, the threat model presented in the existing research on cyber threat analysis and modeling for
IoWT is specialized for specific devices. In addition, it is difficult to identify attacks quickly because it
does not present standardized attack tactics and techniques. For these reasons, this research proposes
IWTW, a framework for cyber threat analysis for IoWTs. The methodology for developing the IWTW
framework is divided into two areas: Clustering and Development. Clustering stores data derived
from analyzing attack cases against IoWTs and potential security threats that may occur in IoWTs. It
consists of two parts: Analysis and Standardization. The Analysis part includes IoWT Attack Cases,
which analyzes attack cases that can occur against IoWT, and IoWT Security Threat, which analyzes
potential security threats that can occur in IoWT. IoWT Attack Cases is based on actual attacks
against IoWT and analyzes the attack process and security threats. IoWT Security Threat analyzes
the security threats that can be caused by potential attackers targeting IoWT. The Standardization
part performs the process of standardizing the attack categories, attack tactics, and attack techniques
derived from the Analysis part. The development combines the formalized attack categories, attack
tactics, and attack techniques from the Clustering section to derive an IWTW framework. ITWT
framework was validated through four case studies targeting MiBand 2, Fitbit Charge HR/Surge,
Samsung Gear 3, Xiaomi Amazifit, Honor Band 5, Honor Watch ES, and Senbono CF-58 devices. For
the comparative analysis of IWTW and existing cyber threat framework studies, we selected evaluation
items that allow us to compare threat modeling and framework characteristics: comparison domain,
threat granularity, threat, standardization, and IoWT applicability. We confirmed that the IWTW
framework can classify IoWT security threats more effectively than existing studies. We discussed the
attack cases investigated for security threats and the limitations of the attack techniques that can be
analyzed when the scale is small. As attack methods become more sophisticated and new techniques
are used, the existing IWTW framework alone may negatively impact the analysis process. Therefore,
continuous updating of the IWTW framework is necessary.

In future research, we will regularly update the IWTW framework to increase the scale of attack
tactics and techniques that can be analyzed. Meanwhile, we will develop a new framework for
advancing IoWT attack technology and responding to IoWT security threats by building an IoWT
testbed and conducting vulnerability analysis research through attack simulation.
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