
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.054238

ARTICLE

A Fast and Memory-Efficient Direct Rendering Method for Polynomial-Based
Implicit Surfaces

Jiayu Ren1,* and Susumu Nakata2

1Graduate School of Information Science and Engineering, Ritsumeikan University, Ibaraki, Osaka, 567-8570, Japan
2College School of Information Science and Engineering, Ritsumeikan University, Ibaraki, Osaka, 567-8570, Japan

*Corresponding Author: Jiayu Ren. Email: gr0450ek@ed.ritsumei.ac.jp

Received: 22 May 2024 Accepted: 12 August 2024 Published: 27 September 2024

ABSTRACT

Three-dimensional surfaces are typically modeled as implicit surfaces. However, direct rendering of implicit
surfaces is not simple, especially when such surfaces contain finely detailed shapes. One approach is ray-casting,
where the field of the implicit surface is assumed to be piecewise polynomials defined on the grid of a rectangular
domain. A critical issue for direct rendering based on ray-casting is the computational cost of finding intersections
between surfaces and rays. In particular, ray-casting requires many function evaluations along each ray, severely
slowing the rendering speed. In this paper, a method is proposed to achieve direct rendering of polynomial-based
implicit surfaces in real-time by strategically narrowing the search range and designing the shader to exploit the
structure of piecewise polynomials. In experiments, the proposed method achieved a high framerate performance
for different test cases, with a speed-up factor ranging from 1.1 to 218.2. In addition, the proposed method
demonstrated better efficiency with high cell resolution. In terms of memory consumption, the proposed method
saved between 90.94% and 99.64% in different test cases. Generally, the proposed method became more memory-
efficient as the cell resolution increased.

KEYWORDS
Implicit surfaces; direct rendering; ray marching

1 Introduction

Surface modeling from three-dimensional (3D) scattered points has many important applications
including computer graphics, physics-based simulations, and medical imaging. A target object can be
expressed by the implicit surface f (x) = 0, where f (x) is a field comprising piecewise polynomials.
Unlike the polygonal representation commonly employed in computer graphics, implicit surfaces
are not always suitable for high-speed rendering because of their lack of explicit predefined surface
geometry. Over the past few decades, various methods for generating implicit surfaces have been
proposed, which can be roughly categorized into mathematical and machine learning approaches.
Among the mathematical methods, one approach is to interpolate scattered surface points using radial
basis functions (RBFs) [1–4]. The field is obtained as a linear combination of RFBs by solving a linear
system of interpolating conditions. An alternative approach is to derive the signed distance function

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.054238
https://www.techscience.com/doi/10.32604/cmes.2024.054238
mailto:gr0450ek@ed.ritsumei.ac.jp


1034 CMES, 2024, vol.141, no.2

(SDF) for generating a field as a weighted sum of local fields [5,6]. Poisson surface reconstruction [7,8]
involves creating a field based on the Poisson equation with hierarchical bases. Another approach
is to approximate the field by using splines, from which piecewise polynomials can be extracted for
fast rendering [9,10]. In particular, hierarchical B-splines [11] are efficient at representing a field
on an adaptive grid. Recently, robust techniques have been proposed that can reconstruct surfaces
from sparse and/or noisy point clouds [12]. Among machine learning methods, models are trained
by using deep neural networks to express SDFs [13–16] or occupancy fields [17–20]. In particular,
Huang et al. surveyed the current state of the art of machine learning methods [21].

Meanwhile, various methods have also been developed for visualizing implicit surfaces. A com-
mon strategy is polygonization or indirect rendering, which involves converting implicit surfaces to
polygonal surfaces by using the marching cubes algorithm [22] or other advanced techniques [23,24].
Visualization is then performed by using standard polygonal rendering techniques. In contrast, direct
rendering utilizes ray-casting to detect points on the original surface that correspond to screen pixels
at the rendering stage. The simplest form of direct rendering is ray marching [25], which involves
detecting the closest point on a surface corresponding to a single pixel by tracing a ray from the camera.
More advanced direct rendering techniques such as sphere tracing [26] and adaptive marching points
[27] help reduce the cost of finding intersections. In general, however, direct rendering suffers from
high computational costs because surface points are searched iteratively for all screen pixels in every
rendering frame. Thus, this approach is not suitable for fast rendering applications, especially when
the field has a complicated expression.

In this paper, we propose a method for fast direct rendering of implicit surfaces that does not
use intermediate polygonal representations. The proposed method comprises two main strategies:
reducing the computational cost and narrowing the search range. For the first strategy, we employ
piecewise polynomials [9,10] to represent the field of the implicit surface. For the second strategy, we
limit the domain of the field to cells that intersect with the surface to exclude cells far from the surface.
Fast rendering is achieved by designing the shader to exploit the structure of piecewise polynomials
for efficient execution. The proposed method has several similarities with real-time ray casting [28],
particularly in its capability for fast direct rendering of isosurfaces from discretely sampled fields
such as volume data. This resemblance stems from the strategies of detecting cells intersecting the
implicit surface and restricting the ray marching range to the detected cells. The proposed method
is distinctive because it was designed for fields represented by piecewise polynomials. This design
enables compatibility not only with standard grid cells but also with more general structures such
as hierarchical B-splines.

2 Standard Rendering of Polynomial-Based Implicit Surfaces
2.1 Representing the Field of an Implicit Surface as Piecewise Polynomials

An implicit surface can be defined as f (x) = 0, where x = (x, y, z) is an arbitrary point within the
bounding box domain � and f (x) is the field. f (x) can be defined as a 3D uniform quadratic spline:

f (x) = ∑Nx
i=−1

∑Ny
j=−1

∑Nz
k=−1 cijkbi(x)bj(y)bk(z) (x ∈ �), (1)

where bi(t) are the standard quadratic B-spline bases, cijk are the spline coefficients, and Nx, Ny, and
Nz are the numbers of cells along x, y, and z axes, respectively. bi(t) are further defined as defined as:

bi(t) = b(t − i),



CMES, 2024, vol.141, no.2 1035

b(t) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t + 1)2/2 (−1 ≤ t < 0)

−t2 + t + 1/2 (0 ≤ t < 1)

(t − 2)2/2 (1 ≤ t < 2)

0 (otherwise)

. (2)

In this paper, we assume that the field is positive inside the implicit surface and negative outside
the implicit surface. An arbitrary field defined in � can be approximated by the spline as defined in
(1) using the technique described in [9]. The local field of a specific cell can then be expressed as a
sixth-order polynomial:

fijk(x) = ∑2

p=0

∑2

q=0

∑2

r=0 α
(p,q,r)
ijk xpyqzr (x ∈ �ijk), (3)

when 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1, and 0 ≤ k ≤ Nz − 1, where �ijk is the domain of the
(i, j, k)-th local cell and α

(p,q,r)
ijk represents the coefficient of the term xpyqzr. In other words, the local

field can be expressed as a sixth-order polynomial with 27 terms, and it is defined independently
from the other neighboring cells. Consequently, the number of polynomial coefficients to represent
the field is 27NxNyNz in total. Fig. 1 shows an example of a polynomial-based field with 163 cells
that is reconstructed from the point cloud of Stanford Bunny provided by the Stanford 3D Scanning
Repository using the previously described technique [9]. The principal advantage of employing the
polynomials is the simplicity of evaluating the field. Given a point x ∈ �, the cell corresponding to
x can be easily identified by making use of the uniformity of the grid. Furthermore, the number of
arithmetic operations required to evaluate the field remains constant regardless of the grid resolution.

Figure 1: A polynomial-based field consisting of 163 local polynomials constructed from the Stanford
Bunny point cloud using the grid of polynomials method [9]. The field is colored red and blue to
indicate positive and negative values, respectively

2.2 The Ray Marching Algorithm
As shown in Fig. 2, ray marching renders the implicit surface f (x) = 0, by tracing each ray until

it intersects with the surface or exits the boundary of the domain. The tracing starts at the near-end



1036 CMES, 2024, vol.141, no.2

of the domain x0, which is determined by the camera location c and position of the (i, j)-th screen
pixel pij. Sampling is done at xk = x0 + k�dv, where v is the direction of the ray and �d is the
ray marching interval length. The interval length can be optimized to balance the tradeoff between
rendering accuracy and processing speed. Although there is no obvious criterion for determining an
appropriate interval length in general, a reasonable guideline is to select an interval length smaller
than the cell size owing to the grid structure of the piecewise polynomials. The sampling continues
until the ray crosses the implicit surface or reaches the far end of the domain. If k-th and (k + 1)-th
samples satisfy f (xk) < 0 and f (xk+1) > 0, respectively, an intersection is confirmed to exist within the
interval between xk and xk+1. Thus, intervals with different signs at both ends can be detected, and the
detection accuracy depends on the interval length. The intersection can be specified more accurately
by applying the bisection method to the interval between xk and xk+1, which yields the final estimation
of the intersection, xd. Finally, the pixel color is determined by the relation between the surface normal,
the light source, and the material properties.

Figure 2: Conventional ray marching. If pij represents a screen pixel, then ray marching starts at the
near end of the domain x0, and the ray is traced along the field at different sampling points until it
intersects with the surface or the far end of the domain is reached

For fast rendering, the ray marching process should be parallelized on a graphics processing unit
(GPU) shader. The conventional rendering method [9] is to parallelize the entire rendering process for a
single frame, which is executed by a fragment shader of the GPU. If f (x) is defined within the bounding
box �, this box is projected onto the screen for every frame, and the fragment shader is activated at
all pixels within the projected area. Ray marching is then executed for each active fragment shader
to determine the final color of each pixel. During this process, the cell index (i, j, k) of each sampling
point should be identified to retrieve the 27 polynomial coefficients α

(p,q,r)
ijk for evaluating the field at

the (i, j, k)-th cell according to (3). If the coefficients of all cells are densely packed and stored in
GPU memory, the cell index can be easily identified through a simple index operation [9]. However,
the simple index operation is not feasible if the coefficients are stored sparsely, and an alternative
approach is needed.

3 Proposed Method: Efficient Rendering for Polynomial Implicit Surfaces

The proposed method achieves fast direct rendering using piecewise polynomials and by limiting
the ray marching range to around the surface. If the piecewise polynomials fijk(x) are given for all cells
of the grid as detailed in Section 2.1, the range of ray marching and consequently the memory usage



CMES, 2024, vol.141, no.2 1037

can be greatly reduced by limiting the cells to those that intersect with the surface. Fig. 3 illustrates
the concept behind the method. The ray marching range is limited to cells intersecting the surface
(i.e., active cells) by dividing the entire range into multiple segments based on cell boundaries and
performing ray marching for every segment of the active cells. In the figure, a ray is segmented
into three parts according to the active cells, and ray marching is performed at the three segments
individually. Marching along a single ray provides not only the closest intersection but also other
unnecessary intersections behind the closest intersection. Consequently, an additional process is
needed to detect the closest intersection among all intersections after ray marching, for which we
applied the standard depth test in OpenGL to the starting points of the segments. In the following
subsections, we present the three main steps of the proposed method: identifying the active cells,
developing a data structure for efficiently managing sparse active cells, and developing an algorithm
for parallel execution on a GPU.

Figure 3: Example geometry for ray marching to render the implicit surface f (x) = 0. The left side
shows the conventional method [9], where the ray marching range is defined by the entire domain �.
The right side shows the proposed method, where the ray marching range is defined by the active cells
that intersect the ray, and ray marching is performed for each range segment with a starting point
outside the surface

3.1 Identifying Active Cells
Active cells are identified by uniformly sampling each cell and evaluating the field. A cell is

classified as active if its sampling points exhibit both positive and negative values and inactive
otherwise. The sampling point density can be adjusted to balance the tradeoff between computational
speed and accuracy. This process is performed during preprocessing, which is followed by sending the
polynomial coefficients of the active cells to the GPU. Therefore, the time required for preprocessing
is only needed once at the modeling and does not affect the subsequent actual rendering process. Fig. 4
summarizes rendering examples using different sampling resolution. The sampling density represents
a trade-off between computational complexity and accuracy. In general, fine sampling is preferred in
most cases because the time spent on preprocessing is required only during the modeling phase.



1038 CMES, 2024, vol.141, no.2

3.2 Efficient Data Structure
In the conventional method [9], piecewise polynomials are defined for all cells of the grid,

and their coefficients are densely flattened into an array. For each sampling point xk along a ray,
the cell index (i, j, k) corresponding to the sampling point is calculated. Then, the 27 coefficients
α

(p,q,r)
ijk corresponding to the current cell are retrieved from the flattened array, and the piecewise

polynomial fijk(xk) is evaluated for the sign. The dense array benefits from a straightforward retrieval
process because its layout reflects a regular grid structure, which allows coefficients to be located
by using i, j, and k. However, the proposed method results in only a limited number of polynomial
coefficients being stored, which makes accessing these coefficients more complex because the regular
grid structure is not preserved. To realize an efficient data structure for accessing the sparsely stored
polynomial coefficients, we introduce a supplementary mapping that correlates each cell index with
its corresponding array index. Moreover, access to these coefficients can be optimized to GPU
shaders. Fig. 5 illustrates the relation between active cells and the array of sparsely stored polynomial
coefficients. In the proposed method, ray marching is performed within a single segment, which
eliminates the need to access coefficients outside the targeted array segment.

Figure 4: Rendering examples using different sampling resolutions for searching active cells. The
resolution of the grid is 1283. The sampling resolution represents a trade-off between speed and
accuracy



CMES, 2024, vol.141, no.2 1039

Figure 5: Two-dimensional example of extracting cells and the array of polynomial coefficients. The
left side shows the extracted cells that intersect with f (x) = 0. The right side shows the coefficients
stored in an array after flattening and compression. Cell indices need to be mapped to array indices
to allow the polynomial coefficients to be accessed

The ray marching process along a single ray segment is assigned to a fragment shader. The array
of polynomial coefficients should satisfy the following two requirements:

• A certain amount of memory space is required to store the polynomial coefficients of active
cells in the GPU buffer, and each element of the array should be accessed efficiently from the
fragment shader.

• The fragment shader requires the current cell to be mapped to the array of polynomial
coefficients stored on the GPU buffer.

For the first requirement, we send the array of polynomial coefficients to the GPU by using the
shader storage buffer object (SSBO). Although other options are available such as the uniform buffer
object (UBO) and vertex buffer object (VBO), the SSBO supports the sending of large arrays. Thus,
the array can be sent to the SSBO prior to the rendering process and the elements can be accessed
by the fragment shader. For the second requirement, we attach the index of the coefficient array to
the attributes of all vertices and send the array index to the fragment shader so that it can access the
polynomial coefficients at the current cell. Fig. 6 illustrates an example situation. Suppose that the
polynomial coefficients of the (i, j, k)-th cell are stored at the IC-th element of the coefficient array and
that each cell is composed of 12 triangles with 36 vertices, as shown on the right side. By adding the
array index as an extra attribute, each of the 36 vertices now processes the attributes of the position,
normal, and array index. The vertex shader receives the array index IC through the VBO, and the array
index is sent from the vertex shader to the fragment shader as is. Thus, the fragment shader can access
the polynomial coefficients at the current cell by using IC, which allows it to evaluate the piecewise
polynomial fijk(x). Consequently, the sparse coefficient array α

(p,q,r)
ijk comprising 27nactive floats is stored

in the SSBO, and the vertex attributes (xl, yl, zl, nx
l , ny

l , nz
l , IC), comprising 7 · 36nactive floats in total is

stored in the VBO, where nactive is the number of active cells. All components should be sent to the
GPU only once before the render loop.

3.3 Ray-Marching in Fragment Shader
The final ray marching is done in the render loop. Specifically, the 36nactive triangles comprising the

active cells are projected onto the screen. Ray marching is executed if the projected triangle is facing



1040 CMES, 2024, vol.141, no.2

forward, and it is discarded if the projected triangle is facing backward. This facilitates back-face
culling and so that ray marching is executed for all fragments only on the front face. Ray marching at
a single rasterized fragment requires the starting point x0, ray direction v, and polynomial coefficients
α

(p,q,r)
ijk at the cell. The starting point x0 is equivalent to the fragment position, and it is provided by

default in the fragment shader owing to the projection of the triangles. The ray direction, v, can be
derived from the camera and fragment positions. The polynomial coefficients α

(p,q,r)
ijk can be retrieved

from the array stored in the SSBO by using the index IC received from the vertex shader. Then, ray
marching can be performed by repeatedly evaluating the local polynomial fijk(x) at the sampling points
x0 + k�dv, where k = 0, 1, 2 . . ., until the sampling points cross the surface or exceed the current cell.
One difference from the conventional ray marching is that a pixel can have multiple intersections, as
shown in Fig. 7. In this case, the intersection closest to the screen should be selected, and the others
should be discarded. To render only the closest point, we applied the standard depth test in OpenGL
to the fragment positions. Although the depth at a fragment position is not that of an intersection, the
depth test still works because the fragment positions are in the same order as the intersections.

Figure 6: Example illustration of setting the attributes at each vertex of a cell. The coefficients of the
(i, j, k)-th cell (left side) are stored at the IC-th element of the coefficient array, which is set as the array
index at each vertex (right side)

Figure 7: Example situation when a depth test is required. In this case, two intersections are found.
Intersection 2 should be discarded, and intersection 1 should be used to determine the pixel color

4 Performance Evaluation

Experiments were performed to evaluate the rendering results of the proposed method compared
with conventional ray marching. All experiments were performed by using a NVIDIA GeForce RTX



CMES, 2024, vol.141, no.2 1041

3090. The bisection method was fixed to 10 iterations, and the screen size was fixed to 1440 × 1440
pixels. Three example surfaces were used: Venus, Stanford Armadillo, and Holey Sphere. Venus is a
relatively simple and smooth surface generated by a 3D scanning system [9], which should result in an
accurate surface rendering even at a relatively low grid resolution. Stanford Armadillo was generated
using the Stanford 3D Scanning Repository dataset, which has fine bumps on its surface. A Holey
Sphere is an artificially generated spherical surface with holes. It has a very thin shape, so the grid
resolution should be sufficient for accurate rendering. All implicit surfaces f (x) = 0 were generated as
a grid of piecewise polynomial method [9], and the local piecewise polynomials fijk(x) = 0 was defined
for each cell as given in (3). Three different grid resolutions were tested to examine the relationship
between the accuracy and rendering speed: 323, 1283, and 5123. The ray-marching interval length �d is
another important factor that affects the accuracy and rendering speed. We define the interval length
as �d = dia�/M, where dia� is the diagonal of the entire domain and M is a user parameter that
indicates the number of ray marching steps. Three values of M were tested corresponding to large
(M = 50), medium (M = 500), and small (M = 5000) interval lengths.

Figs. 8–10 show the rendering results of the proposed method. At M = 50, the rendering resulted
in missing portions of the surface and many pixels being shaded with the background color. This may
be because the interval length was too large, and the ray marching skipped the limited active cells. This
indicates that the proposed method requires a relatively small interval length to match the restricted
ray marching range. Fig. 10 shows that a grid resolution of 323 was insufficient to accurately capture
the thin shape. However, the rendering accuracy increased with M. These results indicate that the ray
marching interval length should be adjusted depending on the fineness and thickness of the target
object. In practice, accurate rendering was achieved with a sufficiently small ray marching interval
length and sufficiently high grid resolution.

Table 1 compares the rendering speeds of the proposed method and conventional ray marching in
terms of the framerate (FPS). The proposed method demonstrated speedup factors of 1.1–218.2 in the
test cases, which indicated that it was fast enough for real-time rendering even at high grid resolutions.
The rendering speed of conventional ray marching for the grid resolution of 5123 cells was left blank
because the memory usage exceeded the limits of the test environment.

Although many elements determine the speedup factor such as the distance from the bounding
box to the surface and the projected area on the screen, a major factor is the ratio of active cells to the
total number of cells. If the ratio is small, high computational efficiency can be expected because most
of the sampling process in ray marching can be eliminated. Table 2 summarizes the number of active
cells and their ratio to the total number of cells for each surface. A correlation was observed between
the speedup factor and ratio. The GPU memory consumption can be derived from the number of active
cells. For example, the maximum number of active cells in the experiments was about 1.1 million for the
surface Holey Sphere at a grid resolution of 5123 cells. Considering that each cell has 27 polynomial
coefficients, the SSBO required a total memory space of about 116 MB. Because each cell has 36
vertices, each with seven attributes (i.e., three coordinates, three normal components, and an index), the
VBO requires a memory space of about 271 MB. These memory space requirements are manageable
for typical GPUs, so the performance of the proposed method should be relatively independent of the
computing environment. Thus, the proposed method is effective at reducing the ray marching range
and memory consumption. These results confirm that the introduction of piecewise polynomials and
restriction of the ray marching range greatly accelerated the direct rendering performance.



1042 CMES, 2024, vol.141, no.2

Figure 8: Rendering results for the shape Venus according to the grid resolution and interval length

Figure 9: Rendering results for the shape Stanford Armadillo according to the grid resolution and
interval length



CMES, 2024, vol.141, no.2 1043

Figure 10: Rendering results for the shape Holey Sphere according to the grid resolution and interval
length

Table 1: Rendering speeds (FPS) of conventional ray marching and the proposed method according to
the ray marching steps and grid resolution. The parenthetical values for the proposed method represent
the speedup factor compared with conventional ray marching

Conventional ray marching [9] Proposed method

Steps (M) 323 cells 1283 cells 5123 cells 323 cells 1283 cells 5123 cells

(a) Rendering speed in FPS for shape 1: Venus

50 2200 1800 – 4100 (1.9×) 2050 (1.1×) 390 (−)
500 300 260 – 2950 (9.8×) 2050 (7.9×) 390 (−)
5000 25 25 – 745 (29.8×) 1050 (42.0×) 390 (−)

(b) Rendering speed in FPS for shape 2: Stanford Armadillo

50 1200 1075 – 4100 (3.4×) 2450 (2.3×) 610 (−)
500 150 140 – 2700 (18.0×) 2350 (16.8×) 620 (−)
5000 15 15 – 615 (41.0×) 1125 (75.0×) 615 (−)

(c) Rendering speed in FPS for shape 3: Holey Sphere

50 1100 900 – 8000 (7.3×) 2100 (2.3×) 265 (−)
500 125 135 – 8000 (64.0×) 1800 (13.3×) 290 (−)
5000 11 13 – 2400 (218.2×) 785 (60.4×) 275 (−)



1044 CMES, 2024, vol.141, no.2

Table 2: Number of active cells for each surface according to the grid resolution. The parenthetical
values indicate the ratio of active cells to the total number of cells

323 cells 1283 cells 5123 cells

Venus 2971 (9.06%) 49,443 (2.35%) 794,593 (0.59%)
Stanford Armadillo 1765 (5.38%) 30,243 (1.44%) 496,067 (0.36%)
Holey Sphere 163 (0.49%) 34,343 (1.63%) 1,127,673 (0.84%)

5 Conclusions and Future Work

Our proposed method accelerates the direct rendering of implicit surfaces by identifying active
cells that intersect with the surface and performing ray marching in these cells rather than the whole
domain, which greatly reduces the number of calculations compared to conventional ray marching.
We developed a data structure specific to OpenGL shaders that uses both the SSBO and VBO.
The fragment shader requires the polynomial coefficients for ray marching so the data structure
was designed to allow efficient access of the coefficients by the fragment shader. The polynomial
coefficients are stored in the SSBO and the index information that maps each cell to the corresponding
coefficients is stored in the VBO. The experimental results showed that the proposed method achieved
fast and direct rendering of various implicit surfaces. The results confirmed that the proposed method
and data structure were effective, and reliable rendering results were obtained at a low computational
cost when an appropriate ray marching interval length was selected. Moreover, we present a rendering
procedure optimized for efficient execution on GPU shaders. The proposed method is specifically
designed for polynomial-based implicit surfaces and is not applicable to general implicit surfaces
unless they are converted to polynomial expressions with cubic cells. Although ray marching is a
straightforward technique, it is expected to work effectively for finding intersections in each local cell.
Additionally, this proposed method has the potential to be extended to a hierarchical cell structure
using hierarchical B-splines in the future.

The proposed method limits ray marching to the vicinity of the implicit surface. Thus, its appli-
cability is subject to certain limitations. For example, it cannot represent time-varying surfaces, which
usually require polynomials over a larger range. Additionally, some operations that are characteristic
of implicit surfaces, such as morphing and constructive solid geometry, require the full domain of
the field, for which the proposed method is inapplicable. Future work will involve rendering implicit
surfaces using piecewise polynomials representing not just the limited domain but also the entire
domain. A possible solution would be to use an adaptive grid.

Acknowledgement: None.

Funding Statement: This work was supported by JSPS KAKENHI Grant Number 21K11928.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Jiayu Ren, Susumu Nakata; analysis and interpretation of results: Jiayu Ren, Susumu
Nakata; draft manuscript preparation: Jiayu Ren; draft manuscript revision: Susumu Nakata. All
authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data are available on request.



CMES, 2024, vol.141, no.2 1045

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum BC, et al. Reconstruction and

representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’01, 2001; New York, NY, USA: Association
for Computing Machinery; p. 67–76.

2. Turk G, O’Brien JF. Modelling with implicit surfaces that interpolate. ACM Trans Graph. 2002;21(4):
855–73. doi:10.1145/571647.571650.

3. Morse BS, Yoo TS, Rheingans P, Chen DT, Subramanian KR. Interpolating implicit surfaces from
scattered surface data using compactly supported radial basis functions. In: Proceedings of the International
Conference on Shape Modeling and Applications, 2001; Genova, Italy: IEEE Computer Society; p. 89–98.
doi:10.1109/SMA.2001.923379.

4. Zeng Y, Zhu Y. Implicit surface reconstruction based on a new interpolation/approximation radial basis
function. Comput Aided Geom Des. 2022;92(4):102062. doi:10.1016/j.cagd.2021.102062.

5. Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP. Multi-level partition of unity implicits. ACM Trans
Graph. 2003;22(3):463–70. doi:10.1145/882262.882293.

6. Tobor I, Reuter P, Schlick C. Reconstructing multi-scale variational partition of unity implicit surfaces with
attributes. Graph Models. 2006;68(1):25–41. doi:10.1016/j.gmod.2005.09.003.

7. Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. In: Proceedings of the Fourth Euro-
graphics Symposium on Geometry Processing, 2006; Cagliari, Sardinia, Italy: Eurographics Association;
vol. 7 no. 4, p. 61–70.

8. Manson J, Petrova G, Schaefer S. Streaming surface reconstruction using wavelets. Comput Graph Forum.
2008;27:1411–20.

9. Nakata S, Aoyama S, Makino R, Hasegawa K, Tanaka S. Real-time isosurface rendering of smooth fields.
J Vis. 2012;15(2):179–87. doi:10.1007/s12650-011-0119-5.

10. Itoh T, Nakata S. Fast generation of smooth implicit surface based on piecewise polynomial. Comput Model
Eng & Sci. 2015;107(3):187–99. doi:10.3970/cmes.2015.107.187.

11. Pan M, Tong W, Chen F. Phase-field guided surface reconstruction based on implicit hierarchical B-splines.
Comput Aided Geom Des. 2017;52–53(6):154–69. doi:10.1016/j.cagd.2017.03.009.

12. Liu XY, Wang H, Chen CS, Wang Q, Zhou X, Wang Y. Implicit surface reconstruction with radial
basis functions via PDEs. Eng Anal Bound Elem. 2020;110(4–5):95–103. doi:10.1016/j.enganabound.
2019.09.021.

13. Erler P, Guerrero P, Ohrhallinger S, Mitra NJ, Wimmer M. POINTS2SURF learning implicit surfaces from
point clouds. arXiv:2007104532020. 2020.

14. Liu SL, Guo HX, Pan H, Wang PS, Tong X, Liu Y. Deep implicit moving least-squares functions for 3D
reconstruction. arXiv:2103122662021. 2021.

15. Ma B, Han Z, Liu YS, Zwicker M. Neural-pull: learning signed distance functions from point clouds by
learning to pull space onto surfaces. arXiv:2011134952021. 2021.

16. Ma B, Liu YS, Han Z. Reconstructing surfaces for sparse point clouds with on-surface priors.
arXiv:2204106032022. 2022.

17. Jia M, Kyan MJ. Learning occupancy function from point clouds for surface reconstruction.
arXiv:2010113782020. 2020.

https://doi.org/10.1145/571647.571650
https://doi.org/10.1109/SMA.2001.923379
https://doi.org/10.1016/j.cagd.2021.102062
https://doi.org/10.1145/882262.882293
https://doi.org/10.1016/j.gmod.2005.09.003
https://doi.org/10.1007/s12650-011-0119-5
https://doi.org/10.3970/cmes.2015.107.187
https://doi.org/10.1016/j.cagd.2017.03.009
https://doi.org/10.1016/j.enganabound.2019.09.021


1046 CMES, 2024, vol.141, no.2

18. Peng S, Niemeyer M, Mescheder L, Pollefeys M, Geiger A. Convolutional occupancy networks.
arXiv:2003046182020. 2020.

19. Martel JN, Lindell DB, Lin CZ, Chan ER, Monteiro M, Wetzstein G. ACORN: adaptive coordinate
networks for neural scene representation. arXiv:2105027882021. 2021.

20. Takikawa T, Litalien J, Yin K, Kreis K, Loop C, Nowrouzezahrai D, et al. Neural geometric level of detail:
real-time rendering with implicit 3D shapes. arXiv:2101109942021. 2021.

21. Huang Z, Wen Y, Wang Z, Ren J, Jia K. Surface reconstruction from point clouds: a survey and a
benchmark. arXiv:2205024132022. 2022.

22. Newman TS, Yi H. A survey of the marching cubes algorithm. Comput Graph. 2006;30(5):854–79.
doi:10.1016/j.cag.2006.07.021.

23. Stander BT, Hart JC. Guaranteeing the topology of an implicit surface polygonization for interactive mod-
eling. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’97, 1997; USA: ACM Press/Addison-Wesley Publishing Co.; p. 279–86.

24. Gelas A, Valette S, Prost R, Nowinski WL. Variational implicit surface meshing. Comput Graph.
2009;33(3):312–20.

25. Perlin K, Hoffert EM. Hypertexture. ACM SIGGRAPH Comput Graph. 1989;23(3):253–62.
26. Hart JC. Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces. Vis Comput.

1996;12(10):527–45.
27. Singh JM, Narayanan PJ. Real-time ray tracing of implicit surfaces on the GPU. IEEE Trans Vis & Comput

Graph. 2010;16(2):261–72.
28. Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross MH. Real-time ray-casting and advanced shading of

discrete isosurfaces. Comput Graph Forum. 2005;24(3):303–12.

https://doi.org/10.1016/j.cag.2006.07.021

	A Fast and Memory-Efficient Direct Rendering Method for Polynomial-Based Implicit Surfaces
	1 Introduction
	2 Standard Rendering of Polynomial-Based Implicit Surfaces
	3 Proposed Method: Efficient Rendering for Polynomial Implicit Surfaces
	4 Performance Evaluation
	5 Conclusions and Future Work
	References


