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ABSTRACT

Identification of ocean eddies from a large amount of ocean data provided by satellite measurements and numerical
simulations is crucial, while the academia has invented many traditional physical methods with accurate detection
capability, but their detection computational efficiency is low. In recent years, with the increasing application of
deep learning in ocean feature detection, many deep learning-based eddy detection models have been developed
for more effective eddy detection from ocean data. But it is difficult for them to precisely fit some physical features
implicit in traditional methods, leading to inaccurate identification of ocean eddies. In this study, to address the
low efficiency of traditional physical methods and the low detection accuracy of deep learning models, we propose
a solution that combines the target detection model Faster Region with CNN feature (Faster R-CNN) with the
traditional dynamic algorithm Angular Momentum Eddy Detection and Tracking Algorithm (AMEDA). We use
Faster R-CNN to detect and generate bounding boxes for eddies, allowing AMEDA to detect the eddy center within
these bounding boxes, thus reducing the complexity of center detection. To demonstrate the detection efficiency
and accuracy of this model, this paper compares the experimental results with AMEDA and the deep learning-
based eddy detection method eddyNet. The results show that the eddy detection results of this paper are more
accurate than eddyNet and have higher execution efficiency than AMEDA.
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1 Introduction

Ocean eddies are important mesoscale phenomena in the ocean, presenting irregular oval struc-
tures [1]. Their spatial scales can range from tens to hundreds of kilometers, with lifetimes extending
from tens to hundreds of days [2,3]. From a global perspective, mesoscale eddies in the ocean make
significant contributions to the horizontal transport of heat and salt [3–6], and also impact the
atmospheric system. Currently, many methods have been developed for identifying ocean eddies, which
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are based on satellite remote sensing data. They are commonly classified into traditional physical
methods and machine learning methods [7].

Traditional methods for detecting mesoscale eddies are mainly based on physical parameters and
geometric contours [8]. Nencioli et al. [9] regarded eddies as elliptical entities and proposed the Vector
Geometry algorithm (VG) using a closed contour strategy. However, the recognition performance of
mesoscale eddies with incomplete geometric attributes is poor. Le et al. proposed the AMEDA [10]
based on physical parameters and the geometric characteristics of the velocity field. It is capable of
accurately identifying the formation area and dynamic evolution of eddies, which is a mesoscale eddy
detection method recognized by relevant fields. There are a large number of physical parameters, and
spatial geometric features, and their interconnections need to be considered, so the computational
efficiency of the above traditional physical methods is relatively low.

With the rapid development of artificial intelligence, deep learning techniques are gradually
entering the field of ocean remote sensing [8]. So far, deep learning, especially in computer vision, has
been widely applied in the field of ocean eddies, with a large number of scholars conducting related
research. Xu et al. [11] used the Pyramid Scene Parsing Network (PSPNet) to locate ocean eddies, and
observed an improvement in detection capabilities, especially for smaller eddies. Lguensat et al. [12]
first applied deep learning algorithms based on encoder-decoder networks to detect ocean eddies as
semantic segmentation. Duo et al. [13] constructed a mesoscale eddy automatic identification and
positioning network—OEDNet—based on an object detection network. Zi et al. [14] proposed a deep-
learning network, named EOLO, to automatically detect ocean Eddies observed in C-band spaceborne
SAR imagery, based on the You-Only-Look-Once (YOLO) deep learning algorithm.

For the field of oceanic eddy detection, compared to traditional methods, the aforementioned
deep learning-based network models have the advantage of high computational efficiency. These deep
learning models are often trained based on the detection results obtained from traditional physical
methods. Nevertheless, it is hard for the models to precisely fit some of the physical features inherent
in traditional methods. Therefore, the detection results of pure deep learning network models often
contain obvious errors, as compared to the ground truth in training dataset, i.e., the detection results
of traditional algorithms.

In order to address the aforementioned issues, we propose to use a novel embedded deep
learning module to improve computational efficiency by replacing the least efficient part in AMEDA
with a faster object detection model. More specifically, we train a Faster R-CNN [15] network to
accelerate the detection of potential eddy center points. We first calculate local and normalized angular
momentum [16] (LNAM) of the targeted ocean area from sea surface velocity in AVISO [17,18], and
then convert LNAM to an image, feeding it into the Faster R-CNN network. After retrieving the
detection results as several bounding boxes, the longitude and latitude information guides AMEDA
to find the centers of potential eddies. Finally, we collect all recognized centers, and use AMEDA’s eddy
shape construction method to build the specific contours of the eddies. Inspired by existing studies,
we consider the eddies detected by the original AMEDA as ground truth to train our bounding box
detection network and validate our detection results. Meanwhile, the computational complexity of our
method is analyzed and verified.

Overall, our work mainly contributes in the following aspects:

1. To the best of our knowledge, we for the first time integrate deep network model with traditional
physical eddy detection method. This solution simultaneously exploits the efficiency of machine
learning algorithms and the reliability of traditional algorithms in identifying eddies.
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2. At the eddy center identification phase, we use fast machine learning methods to generate eddy
bounding boxes, reducing the computational workload for AMEDA and significantly improving the
speed of eddy detection in global scale.

3. Because our method is mainly based on traditional physics, it effectively reveals eddy physical
dynamics and geometric features. Therefore, our method maintains good interpretability while pro-
viding highly reliable detection results.

4. Through extensive experiments and according to certain metrics, the errors identified by our
algorithm compared to AMEDA are generally around 1%. The RMSE for eddy center identification
ranges from 0.001 degrees to 0.0025 degrees. In the global-scale eddy detection task, the computational
expense of our method is less than one-fourth of AMEDA’s. In summary, the experiments indicate that
our method significantly improves detection speed within smaller detection errors.

The structure of this article is as follows: Part 2 briefly outlines the frontier achievements in the
field of ocean eddy detection. Part 3 provides detailed introduction of the dataset and algorithm
structure, including the overall model structure and operational details of each module. Part 4
describes the experiments and results, including the experimental environment, evaluation metrics,
and analysis and comparison of experimental results. Finally, Part 5 presents the conclusion of this
article.

2 Related Works

In recent years, the academic community has made significant efforts to introduce automation
methods for detecting and classifying eddies. These methods can be broadly categorized into two
main types: one type is based on traditional mesoscale eddy detection techniques, while the other
type utilizes deep learning to achieve the same goal.

2.1 Traditional Physics-Based Mesoscale Eddy Detection Methods
Traditional methodologies for detecting mesoscale eddies can be primarily classified into three

categories: those relying on physical parameters, those utilizing geometric contour delineation, and
hybrid algorithms that combine both approaches. Among these, the Okubo-Weiss (OW) parameter
technique [19,20] has found extensive application in the field of mesoscale eddy detection. However,
it suffers from a significant limitation, namely, heightened sensitivity to data perturbations. While
the VG algorithm demonstrates improved robustness, it relies on treating eddies as elliptical entities
and employs a closed contour strategy. This inherent characteristic causes it to perform poorly in
accurately identifying mesoscale eddies with fuzzy or incomplete geometric attributes, leading to
detection omissions.

Hybrid approaches, as demonstrated in works by Chelton et al. [21], Chaigneau et al. [22],
Zhang et al. [23], utilize exceptional data of Sea Surface Height (SSH) and Sea Surface Temperature
(SST) to identify eddies. A study conducted by Xing et al. [24] subjected both physical parameter-based
and geometric methodologies to empirical examination, utilizing the South China Sea as a reference.
Le et al. [10] proposed the AMEDA algorithm, which integrates physical parameters and geometric
characteristics of velocity fields for detecting and tracking eddies in two-dimensional velocity fields.
However, these methods often entail prolonged detection times and are sensitive to specific parameter
thresholds, frequently relying heavily on specialized expertise.
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2.2 Deep Learning-Based Mesoscale Eddy Detection Methods
To mitigate the limitations of traditional algorithms, researchers have increasingly turned to deep

learning techniques for detecting mesoscale eddies. Deep learning has achieved notable advancements
in image analysis, spanning domains like object detection, semantic segmentation, and image recog-
nition [8]. In recent years, there has been a specific adaptation of these methodologies for ocean
eddy detection. This involves converting Sea Surface Height (SSH) data into two-dimensional visual
representations, followed by semantic segmentation processes applied to these visuals.

Models tailored for mesoscale eddy detection are increasingly adopting intricate architectures.
For example, in 2019, the Pyramid Scene Parsing Network (PSPNet) was utilized, resulting in
improved detection capabilities, especially for smaller eddies. Yu et al. [25] introduced the BiSeNet
(Bilateral Segmentation Network) algorithm, comprising a spatial pathway, context pathway, and
feature fusion module. By incorporating the spatial pathway to preserve eddy edge information,
BiSeNet can detect larger-scale eddies more effectively. Sun et al. [26] applied DeepLabv3+ [27]
for semantic segmentation of mesoscale eddies based on the PET algorithm, and introduced a new
eddy detection dataset. Saida et al. [28–30] proposed a mesoscale eddy detection strategy centered on
attention mechanisms, combining Unet to enhance accuracy. Zhao et al. [31] introduced an end-to-
end mesoscale eddy detection method based on multimodal data fusion, developing a novel network
named SymmetricNet, which demonstrates advantages in mesoscale eddy detection.

Nevertheless, more complex network structures may lead to the loss of important mesoscale eddy
details. In response, Lguensat et al. introduced EddyNet [12], a lightweight network architecture rooted
in deep learning, specifically designed for the detection and classification of eddies from sea SSH
maps. Santana et al. [32,33] have developed several neural network models to detect ocean eddies
from satellite images and proposed a straightforward network architecture incorporating only one
or two under-sampling operations to mitigate the risk of losing mesoscale eddy edges. Additionally,
Saida et al. [29] simplified the network complexity by employing convolutional networks, achieving
comparable accuracy without unnecessary intricacy.

In summary, while deep learning-based methods offer significant improvements in overcoming
the speed limitations of traditional approaches, it’s essential to strike a balance in network complexity.
Overly complex or overly simplified networks can both potentially compromise the accuracy of eddy
detection [8].

3 Data and Methods
3.1 Data

We obtained ocean grid data from Archiving, Validation and Interpretation of Satellite Oceano-
graphic data (AVISO). The AVISO dataset is primarily based on satellite observations, including
altimeters, radiometers, and buoys, used to monitor global sea surface height and dynamic changes.
This article employs AVISO data with a resolution of 0.25°, which were observed on 1 January, 2000.
The data includes these variables we need to use:

1. Absolute Dynamic Topography (ADT), which measures the sea surface height relative to the
geoid. In contrast to the seal level anomaly (SLA) that signifies the fluctuating component of
sea surface height, the ADT is calculated as the combined total of this fluctuating component
and the stable component averaged over a 20-year reference period. It can more comprehen-
sively reflect actual changes in the ocean surface, including local structures like eddies [34].
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2. Surface geostrophic eastward sea water velocity (UGOS) and northward sea water velocity
(VGOS) refer to the horizontal movement of ocean water at the sea surface, driven by the
balance between the Coriolis force and the pressure gradient force. UGOS represents the
eastward component, while VGOS represents the northward component of this velocity.
These velocities are critical for understanding ocean circulation patterns and are derived from
oceanographic measurements and models, providing insights into global climate systems and
marine dynamics.

3.2 Structure
To make the detection of ocean eddies more rapidly, we have developed a model that combines

Faster R-CNN and AMEDA. Fig. 1 shows the architecture of our eddy detection model. The model
takes a series of previously observed SSH, UGOS, and VGOS data as the data source, and calculates
LNAM. Then we have created images from the computed two-dimensional LNAM data, called
LNAM images. We trained Faster R-CNN with LNAM images as input and AMEDA’s detection
results as ground truth. The bounding boxes obtained from Faster R-CNN are then converted into
longitude and latitude form, i.e., (lon1, lon2, lat1, lat2). In the AMEDA part, center detection is
performed for each bounding box, and all detected centers, along with LNAM, are fed into the center
shape part to obtain the final detection results.

Figure 1: The architecture of our eddy detection model

3.2.1 Calculate LNAM

LNAM is a physical parameter introduced by Mkhinini et al. [16], denoting the integral of angular
momentum across the surface area of the sea. This metric attains its peak value at the central point
Gi, of the eddy. For every grid point Gi, LNAM is computed using the subsequent formula:

LNAM (Xi) =
∑

j XiXj × Vj∑
j XiXj · Vj + ∑

j |XiXj| · |Vj| = Li

Si + BLi

(1)
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Here, Xi signifies the longitude and latitude coordinates of the grid point Gi, while Vi represents
the velocity vector of the sea surface surrounding this point. By constructing a square with a side length
of Lb from the grid point’s center, the angular momentum at that specific location is then calculated as
the integral of the cross product of the position vector and the sea surface velocity vector within the
square area, projected onto the grid point as:

Li =
∑

j

(
GjXj × Vj

)
(2)

LNAM is a physical quantity proportional to the local angular momentum, and it normalizes the
angular momentum through:

BLi =
∑

j
|GjXj| · |Vj| (3)

This value is the upper bound of the angular momentum. Then add Si = ∑
j

(
GjXj · Vj

)
to the

renormalization term. The sum of scalar products Si will reach a maximum value at hyperbolic points
and equal zero at elliptic points. For an axisymmetric eddy, when Gi represents the eddy center, Si

equals zero, and the LNAM parameter will reach an extremal value of 1 (or −1) for a cyclonic (or
anticyclonic) eddy.

Here, we use LNAM as the input for training and prediction in Faster R-CNN. Compared to
using parameters like SSH, UGOS, and VGOS alone, LNAM is a dynamic parameter that better
describes local angular momentum. In Faster R-CNN, the feature extraction network initially converts
the input multi-channel image into a single-channel image. This means that even if we place different
pieces of information such as SSH, UGOS, and VGOS in different channels of the image, the feature
extraction network will average the information from each channel, making it difficult to effectively
extract key features from different channels of information. LNAM, on the other hand, integrates
multidimensional information from physics. Using LNAM as input helps the feature extraction
network extract key information about eddies, making the proposal boxes generated by the Region
Proposal Network more accurate. Then, the classifier comprehensively extracts features to identify
the content in the proposal boxes as eddy. With this approach, there will be fewer omissions or
misjudgments in the bounding boxes, and the coordinates and sizes of the bounding boxes for the
same eddy compared to the ground truth will be closer. In summary, using LNAM as input for Faster
R-CNN improves the accuracy of eddy boxes.

3.2.2 Faster R-CNN Based Eddy Bounding Box Detection

Our bounding boxes generation module consists of two modules. The first module is a deep fully
convolutional network used to propose boxes may containing eddies called proposals. The second
module identifies eddies within the proposals based on feature maps extracted from LNAM.

Feature extraction networks are typically deep convolutional networks such as ResNet [35] and
VGG [36]. As shown in Fig. 2, we take LNAM single-channel images with dimensions ranging from 50
× 50 pixel to 100 × 100 pixel as input and extract dynamic features of ocean surfaces through multiple
layers of convolution and pooling. These features are then shared with subsequent Region Proposal
Network (RPN) and ROI classifiers.
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Figure 2: The architecture of bounding boxes generation model

In the Region Proposal Network (RPN), firstly, the goal is to output approximately 2000
rectangular-shaped anchor boxes, each with a score indicating the probability of containing a eddy.
We model this process using a fully convolutional network. A small network slides over the feature
map, taking an n × n window as input. Features within this window are extracted, and the anchor
boxes along with their scores are obtained through this small network.

To reduce computation and avoid multiple identifications of the same eddies, we perform some
simple filtering on these anchor boxes. All anchor boxes generated by RPN from an LNAM image
are sorted by score in descending order. Boxes with low scores are removed, followed by the removal
of overlapping boxes with large intersection areas. The remaining boxes are proposals. The number of
proposals depends on the actual number of eddies in the input image, generally ranging from 50 to
300 pixels.

In the ROI classifier, we first make the proposal boxes pass through the ROI-Pooling layer [37],
utilizing the feature maps within the boxes to adjust their positions and sizes. Then they are fed into
the classifier for further identification of eddies. Finally, among all the adjusted proposal boxes, we
select some proposals with higher probabilities as the bounding boxes for identifying eddies.

During the training process, we create a bounding box for each eddy detected in the AMEDA
results, treating it as the ground truth. We then continuously adjust the parameters of the entire
network model through backpropagation to make it approach the detection results of AMEDA.

• Loss of Network

To train the network, we assign labels to each anchor box generated by the RPN. For a given
anchor, if it satisfies either condition, then we consider it a positive sample:

(i) which is having the highest IoU (Intersection over Union) overlap with a ground truth box, or
condition.
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(ii) which is having an IoU overlap higher than 0.7 with any ground truth box.

If IoU ratio of a given anchor with all ground truth boxes is less than 0.3, then we consider it a
negative sample.

Anchors that do not fall into either category are neither positive nor negative samples and do
not influence the training objective, so we do not include them in the loss calculation. Based on these
definitions, the loss function defined for an image is as follows [30]:

L ({pi}, {ti}) = 1
Ncls

∑
i
Lcls

(
pi, p∗

i

) + λ
1

Nreg

∑
i
p∗

i Lreg

(
ti, t∗

i

)
(4)

Lreg

(
ti, t∗

i

) = R
(
ti − t∗

i

)
(5)

Lcls represents is log loss over two classes. R represents the robust loss function (smooth L1) [30]. pi

represents the probability that the network predicts the i-th anchor to be an eddy. For positive samples,
p∗

i = 1, and for negative samples, p∗
i = 0. ti represents the parameterized coordinate eddy, indicating

the offset between the predicted box and the anchor box, and t∗
i represents the corresponding ground

truth, indicating the offset between the ground truth box and the anchor box. Ncls is the size of the
mini-batch, and Nreg is the number of anchor positions. λ is a constant used to balance the sum of the
two losses.

3.2.3 AMEDA

• Center Detection

In center detection, we first input the entire LNAM map, and then consider each bounding box
one by one. We extract the LNAM region corresponding to the bounding box to obtain LNAM’, and
then draw contours on LNAM’ to calculate the extremum of LNAM. However, the mere presence
of LNAM extremum does not ensure that the chosen eddy center accurately identifies the core area
surrounding the water mass. Therefore, it’s essential to pinpoint a center where closed streamlines are
observed around it. Subsequently, within a square region with the identified extremum as the center
and a diameter of 10Rd, we compute the local stream function from the velocity field. In the case of
the AVISO dataset, AMEDA can utilize contour lines of ADT and/or streamlines of the geostrophic
velocity field directly as the local stream function.

If we intend to apply AMEDA to a submesoscale turbulent eddy field where the eddy radius is
significantly smaller than the local deformation radius Rd, then it’s necessary to adjust the parameter Lb

accordingly. However, in the scenario of geostrophic and mesoscale eddies resulting from the instability
of coastal currents, it’s believed that setting Lb to approximately 1.2 times Rd brings us close to the
optimal value for eddy center detection.

• Eddy Shape

At this stage, we interpolate the characteristic eddy contour using an ellipse and determine an
equivalent ellipticity ε = 1 − a1/a2, also known as the flattening parameter, where a1 represents the
semiminor axis and a2 represents the semimajor axis. To disregard highly distorted contours, we also
calculate the local curvature along each streamline. If more than 20% of the streamline perimeter
exhibits relative negative curvature, then the streamline is excluded from the analysis and cannot be
utilized as a characteristic contour. Additionally, to filter out large gyres that may form at the basin
scale, corresponding to the path or loop of semipermanent regional currents, we set a limit on the
size of the characteristic contours such that Rmax ≤ Rlim. For the AVISO dataset, this limit is fixed at
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Rlim = 59Rd � 50 ∼ 100 km, whereas for idealized numerical simulations or laboratory experiments,
it is set at half the size of the numerical domain or the laboratory tank.

3.3 Computational Complexity Analysis
At this stage, we will analyze the complexity of the method proposed in this article. We use S to

represent the area of the map to be detected.

In the traditional AMEDA algorithm, it is necessary to calculate the data around each grid point
in LNAM. That is to say, when calculating each grid point, a constant level of computation will be
generated, which we denote as O (k1). Therefore, the complexity of calculating LNAM is O (k1S).

In center detection, AMEDA needs to create contour lines for the input LNAM, and the number
of contour lines is positively correlated with S. For each contour line, geometric processing needs to
be performed at every position on the input grid data. Assuming the complexity of processing each
point is O (k2). So, the overall complexity of center detection is O

(
k2S2

)
.

In eddy shape, AMEDA needs to process the contour of each eddy. During this process, informa-
tion around the eddy center needs to be considered, and multiple iterations need to be performed. We
can use O (k3) to represent the complexity required for each eddy in eddy shape. k3 can be determined
by many parameters and is a relatively large constant. Because the number of eddies is positively
correlated with S, the total complexity of eddy shape is O (k3S).

So, the total complexity of AMEDA is O
(
k1S + k2S2 + k3S

)
.

In our approach, which we denote as O (k4S). We use Faster R-CNN to generate bounding boxes
of eddies, and center detection only needs to be performed within these bounding boxes of eddies.
Because the area of these generated bounding boxes often does not exceed 300, which is much smaller
than S, the complexity of performing center detection separately for all bounding boxes is

O
(

k2

∑
i
s2

i

)
≤ O

(
k2 × 300

∑
i
si

)
≈ O (300k2S) (6)

Since 300 is significantly smaller than S and the computation time of Faster R-CNN is propor-
tional to S, we can consider its complexity as O (k4S). Therefore, we can obtain the complexity of this
article’s method as O (k1S + k4S + k3S).

It can be seen that from the analysis of complexity, the complexity of the method proposed in this
article is superior to the traditional AMEDA algorithm.

4 Experiment
4.1 Setup

The computer hardware and software configuration for model training and prediction include:
-NVIDIA RTX 4090 graphics card-Intel(R) Core (TM) i7-13700F CPU-64 GB RAM-Windows 11
22H2 operating system-Python 3.10.13 interpreter-NumPy 1.26.0-PyTorch 2.1.0. For the Faster R-
CNN model used in this paper, we trained it with 3000 images, and each epoch step takes about 20 min.
We use the AdamW Optimizer with parameters learning_rate = 0.01, β1 = 0.9, β2 = 0.999.

4.2 Metrics
4.2.1 IoU

Intersection over Union (IoU) is a commonly used metric in the field of object detection. In the
field of object detection, it measures the accuracy of detection by calculating the IoU between the
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detection box and the ground truth box. It is defined by the following equation:

IoU = B1 ∩ B2

B1 ∪ B2

(7)

B1 and B2 are two rectangular boxes, B1 ∩ B2 represents their area of intersection, and B1 ∪ B
represents their area of union. IoU values range between 0 and 1, in the field of object detection,
with higher values indicating better detection accuracy. Typically, IoU values above 0.70 or 0.80 are
considered indicative of highly accurate detections.

Here, we use IoU to measure the similarity of two eddy contours.

However, since the shape of an eddy is typically a polygon, calculating the intersection and union
of two polygons’ areas is a complex task. To simplify the computation, we approximate the intersection
over union (IoU) of two polygons by randomly sampling 1000 points. Then, we can obtain:

IoU = Peddy1∧eddy2

Peddy1∨eddy2

(8)

In which Peddy1∧eddy2 represents the number of points falling into both eddy1 and eddy2 simultane-
ously, and Peddy1∨eddy2 represents the number of points falling into either eddy1 or eddy2.

4.2.2 Eddy Recognition Error

In evaluating the accuracy of detection results, if the IoU of a eddy detected by the method
proposed in this paper with a eddy detected by AMEDA is greater than 0.8, then we consider this
eddy to be valid. Within a certain region, the ratio of undetected eddy to eddies detected by AMEDA
is termed as the eddy recognition error E, which is calculated as follows:

E = 1 − Nvilid

Nameda

(9)

E varies range from 0 to 1. A smaller E indicates fewer errors or omissions in eddy recognition,
leading to better recognition performance.

4.2.3 RMSE of Eddy Centers

Root Mean Square Error (RMSE) is a metric for the accuracy of a model’s predictions. It
represents the average deviation between predicted values and actual values, with smaller values
indicating better performance. The formula for RMSE is as follows:

RMSE =
√

1
n

∑
i

(
yi − y′

i

)2
(10)

Then we use RMSE to measure the deviation of the eddy center.

4.3 Result
4.3.1 Loss of Network

In this section, we use ADT, UGOS, and VGOS data from AVISO to train the Faster R-CNN
model. The experimental data is selected from 2 January, 2000, in the region from 123.25°E to 167.75°E
longitude and 11.75°N to 54.75°N latitude, with a resolution of 0.25°. Since the training target area
is larger compared to the input area of the model, we randomly extract 3000 small regions with sizes
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ranging from 15 × 15 pixel to 25 × 25 pixel from this area, and then enlarge them by four times in
both width and height using interpolation to create jpg images.

Here we use images of different types of information as inputs to evaluate the impact of different
input information on Faster R-CNN’s detection results.

We divide the experiments into three groups:

The first group uses single-channel images made from SSH as inputs for training.

In the second group, we put SSH, UGOS, and VGOS into the RGB channels respectively, create
three-channel images, and use these three-channel images as inputs for training.

In the third group, we calculate LNAM based on UGOS and VGOS, and use single-channel
images made from LNAM as inputs for training.

After 30 rounds of training, their changes are shown in Table 1 and Fig. 3.

Table 1: Loss of 3 groups

Group Test loss

epoch = 5 epoch = 10 epoch = 15 epoch = 20 epoch = 25 epoch = 30

Group (1) 0.3733 0.2854 0.2680 0.2609 0.2613 0.2599
Group (2) 0.5144 0.3777 0.3463 0.3359 0.3334 0.3354
Group (3) 0.4127 0.2259 0.2014 0.1966 0.1969 0.1955

Figure 3: Trends of loss

4.3.2 Error of Eddy Detection and RMSE of Centers

In this section, to inspect the accuracy of the detection results of the proposed method, we
conducted comparative experiments. The first group employed the traditional AMEDA algorithm,
while the second group utilized our method. Additionally, to verify the superiority of bounding boxes
generated using the Faster R-CNN network architecture, we designed a third group of experiments.
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In this group, we removed the Faster R-CNN module from our method and directly applied a sliding
window approach on the original data to generate bounding boxes of size 30 × 30 pixel. To remove
the impact of box edges, we set the sliding window stride to 15, meaning adjacent bounding boxes
would overlap by 15 units in length. Finally, we also established the fourth group, using EddyNet for
recognition, to compare the effectiveness of a purely machine learning approach.

The Fig. 4 shows a part of the experimental area that we extracted, which are [−76.25 W, −4.25
W] × [−60.25 S, 1.25 N], [−164.25 W, −94.25 W] × [−64.25 S, 6.25 N], and [−101.25 W, −31.25 W]
× [−1.25 S, 69.25 N]. From the image, it can be observed that the results of the second and third
groups are similar to the first group, while the results of the fourth group are significantly different.
It is evident that the second and third groups are based on the AMEDA method, and their results are
relatively close to each other. However, in the EddyNet of the fourth group, pure machine learning
methods cannot identify well. Furthermore, in the training of EddyNet, it can only be trained for a
specific area, such as region (1). Therefore, the EddyNet trained in this way can only detect eddies
in that particular region. If a trained network is used to identify other regions, such as (2) and (3),
the recognition performance will be much lower. Thus, EddyNet has almost no generalization ability
for eddy recognition, whereas the second and third groups based on AMEDA are suitable for eddy
recognition in various regions and have strong generalization ability.

Figure 4: The test results of each group. Yellow color block indicates eddies had been detected

Next, we will select a portion of the Fig. 5, with the region [−58.25 W, −36.25 W] × [−52.25 S,
−29.25 S], to zoom in and compare the recognition results.
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Figure 5: Detailed result. White circles indicating errors detected

As seen from the above figure, both the second group and the third group have difference
compared to the first group, but the difference in the second group is much smaller compared to the
difference in the third group. As for the fourth group, although the selected area is within the training
area of EddyNet, the detection results are also very different from AMEDA.

Hs is a parameter in AMEDA that directly influences the number of contours. The quantity of
contours affects the accuracy of eddy detection. A larger Hs results in more contours, which makes
the boundaries of detected eddies more precise and facilitates the identification of smaller eddies.
Conversely, smaller Hs values lead to fuzzier eddy boundaries and may result in missing some smaller
eddies. Next, for groups one, two, and three, we will conduct more detailed experiments in larger ocean
areas using different Hs parameters. The Hs values we choose 40, 120 and 200.

The experimental areas are shown in the Table 2 below.

Table 2: Experiment regions in Section 4.3.2

Region

Longitude range Latitude range

Region (1) −185.25 W∼−154.25 W −85.25 S∼−54.25 S
Region (2) −185.25 W∼−123.25 W −85.25 S∼−23.25 S
Region (3) −185.25 W∼−92.25 W −85.25 S∼7.25 N
Region (4) −185.25 W∼−75.25 W −85.25 S∼35.25 N
Region (5) −185.25 W∼−60.25 W −85.25 S∼65.25 N

As shown in Fig. 6, in the above experiments for the three values of Hs, AMEDA respectively
identified 9156, 9826, and 9973 eddies. The number of correctly identified eddies in group two is 9051,
9763, and 9908, while in group three, it is 8349, 9088, and 9277. It can be seen that under different
parameters and different areas, the number of correctly identified eddies in group two is always bigger
than that in group three.
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Figure 6: The number of valid eddies

As shown in Fig. 7, among the five areas and three Hs values, the eddy identification error in
group two is generally around 0.01, while in group three, it is all above 0.06, more than 6 times greater
than in group two.

Figure 7: The error of detection in each region. The 6-th one is the average error of all regions

In the Fig. 8, we plotted the horizontal and vertical coordinate differences between the center of
each recognized eddy and the center of AMEDA’s on a two-dimensional plane. It can be seen that for
various values of Hs, compared to the third group, the second group has more points clustered at the
origin. Next, we calculated the RMSE of the center of each group’s eddies with AMEDA’s eddies and
compiled the Table 3.

According to Table 3, the RMSE of eddy centers in group two is mostly around 0.0025, which is
also much smaller than in group three. In conclusion, the eddies detected by the method in this article
are not significantly different from those detected by the original AMEDA method, and the bounding
boxes extracted by the target detection model are clearly superior.
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Figure 8: Error of each center of eddies. Red contour includes 90% points

Table 3: TMSE of centers

Region Group and Hs

Hs = RMSE of Group (2) (∗0.01) RMSE of Group (3) (∗0.01)

40 0.0362 1.6656
Region (1) 120 0.0328 1.3059

200 0.0317 1.2584

40 0.1161 0.6125
Region (2) 120 0.1236 0.6049

200 0.1190 0.5856

40 0.2248 0.7177
Region (3) 120 0.2145 0.7150

200 0.2135 0.7200

40 0.2052 0.6189
Region (4) 120 0.2174 0.6234

200 0.2171 0.6379

40 0.1980 0.5645
Region (5) 120 0.2078 0.5665

200 0.2066 0.7417
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4.3.3 Running Time

In this section, we designed experiments similar to the first three groups of experiments in
Section 4.2.2. As a representative, we set the parameter Hs = 20 and conducted tests on eight datasets
of different sizes.

We define the relative area of the experimental region as the product of the longitude range size
and the latitude range size, denoted as |lon1 − lon2| · |lat1 − lat2|.

As shown in Table 4, we selected 8 regions for testing, presenting their corresponding latitude and
longitude ranges, as well as their relative areas. Each region is identified by a letter (A to H). The
latitude range indicates the extent from the southernmost point (−85.25°S) to the northernmost point
(either positive or negative), while the longitude range spans from the westernmost point (−185.25°W)
to the easternmost point (either positive or negative). The relative area column quantifies the size of
each region, providing a comparative measure of their spatial extents.

Table 4: Experiment regions in 4.3.3

Region

Longitude range Latitude range Relative area

Region (A) −185.25 W∼−154.25 W −85.25 S∼−54.25 S 961
Region (B) −185.25 W∼−123.25 W −85.25 S∼−23.25 S 3844
Region (C) −185.25 W∼−92.25 W −85.25 S∼7.25 N 8556
Region (D) −185.25 W∼−75.25 W −85.25 S∼35.25 N 13200
Region (E) −185.25 W∼−60.25 W −85.25 S∼65.25 N 18750
Region (F) −185.25 W∼29.25 E −85.25 S∼70.25 N 24180
Region (G) −182.25 W∼164.25 E −85.25 S∼−5.25 S 31410
Region (H) −182.25 W∼164.25 E −85.25 S∼23.25 N 37692

In these three sets of experiments, the actual running times of AMEDA in experimental areas A
and H were 32 and 5100 s, respectively, while the running times of the our method in areas A and H
were 29 and 1345 s, respectively. According to Fig. 9, it can be seen that when the input area is small,
the differences in running time among the three groups are very small; however, when the area is large,
AMEDA’s running time will be much higher than that of the method described in this paper.

In Fig. 10, the growth rate of AMEDA’s running time appears to be a linear function related
to the input area, so AMEDA’s running time is linearly correlated with the square of the input area;
while the growth rate of our method remains consistent everywhere, within the range of 0.025 to 0.050,
so the running time of the method described in this paper is linearly correlated with the input area.

On the other hand, in Section 3.3, we analyzed the complexities of AMEDA and our method,
which are respectively O

(
k1S + k2S2 + k3S

)
andO (k1S + k4S + k3S). It can be seen that our com-

plexity analysis is consistent with the running time in the experiments. Through differentiation of the
complexities, it can be known that AMEDA’s complexity grows at a linear rate, while the complexity
of the method described in this paper grows at a constant rate. This is also consistent with our
experimental results.
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Figure 9: Running time of each groups

Figure 10: Growth rate of running time

5 Conclusion

In this paper, we propose a solution for detecting eddies, which integrates the Faster R-CNN object
detection model and the traditional AMEDA method, addressing the shortcomings of traditional
methods in detection efficiency and the low accuracy of many pure deep learning methods. We use
Faster R-CNN to detect bounding boxes of generated eddies, allowing AMEDA to detect eddy centers
within these bounding boxes, and then unify eddy shapes.

We conducted comparative experiments on different regions based on the AVISO dataset:
compared to eddyNet, the detection results of this method are closer to AMEDA. In each experimental
group, the identification error compared to AMEDA does not exceed 2%, and the RMSE of eddy
centers is around 0.002.
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Through complexity analysis, we found that the complexity of our method in this paper is
O (k1S + k4S + k3S), while the complexity of the AMEDA algorithm is O

(
k1S + k2S2 + k3S

)
. From

the complexity analysis, we can conclude that our method in this paper is more efficient than AMEDA.
According to our experiments, in smaller experimental areas, the speed difference between the two
is not significant, while in global-scale prediction experiments, the detection time is one-fourth of
AMEDA’s.

However, there are still some problems to be solved in the future. In AMEDA, the computational
cost of the eddy shape module is very high. After reducing the complexity of center detection in this
paper, eddy shape has become the bottleneck of computational efficiency. In the future, it may be
possible to accelerate shape computation by integrating information around eddy centers through
methods similar to eddyNet and other deep learning approaches.
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