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ABSTRACT

Tunnel Boring Machines (TBMs) are vital for tunnel and underground construction due to their high safety and
efficiency. Accurately predicting TBM operational parameters based on the surrounding environment is crucial for
planning schedules and managing costs. This study investigates the effectiveness of tree-based machine learning
models, including Random Forest, Extremely Randomized Trees, Adaptive Boosting Machine, Gradient Boosting
Machine, Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine, and CatBoost, in
predicting the Penetration Rate (PR) of TBMs by considering rock mass and material characteristics. These
techniques are able to provide a good relationship between input(s) and output parameters; hence, obtaining
a high level of accuracy. To do that, a comprehensive database comprising various rock mass and material
parameters, including Rock Mass Rating, Brazilian Tensile Strength, and Weathering Zone, was utilized for model
development. The practical application of these models was assessed with a new dataset representing diverse
rock mass and material properties. To evaluate model performance, ranking systems and Taylor diagrams were
employed. CatBoost emerged as the most accurate model during training and testing, with R2 scores of 0.927
and 0.861, respectively. However, during validation, XGBoost demonstrated superior performance with an R2 of
0.713. Despite these variations, all tree-based models showed promising accuracy in predicting TBM performance,
providing valuable insights for similar projects in the future.
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ANN Artificial neural network
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AutoML Automated machine learning
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BTS Brazilian tensile strength
R2 Coefficient of determination
R Coefficient correlation
CNN Convolutional neural network
DT Decision tree
XGBoost Extreme gradient boosting
ERT Extremely randomised tree
GBM Gradient boosting machine
ICA Imperialism competitive algorithm
LightGBM Light gradient boosting machine
LSTM Long short-term memory network
MAE Mean absolute error
ML Machine learning
PDP Partial dependence plot
PR Penetration rate
PSO Particle swarm optimization
RF Random forest
RQD Rock quality designation
RMR Rock mass rating
RMSE Root mean square error
SVM Support vector machine
TBM Tunnel boring machine
TGML Theory-guided machine learning
UCS Uniaxial compressive strength
VAF Variance accounted for
WZ Weathering zone

1 Introduction

Tunnel Boring Machines (TBMs) offer superior safety and efficiency in long-distance tunnel
construction compared to traditional drilling and blasting methods [1,2]. However, TBMs encounter
various performance challenges when operating under different conditions. Adjusting TBM param-
eters promptly in response to changing geological conditions poses a challenge due to limited
environmental awareness. Therefore, understanding the relationship between TBM conditions and
working circumstances is crucial. Additionally, geological conditions, geomaterial properties, and
geological hazards can impose limitations on TBM applications and pose risks [3]. Consequently,
accurate estimation of TBM performance is essential for optimizing tunnel construction projects
in terms of operational objectives, project costs, and scheduling [4,5]. Thus, achieving reliable TBM
performance estimation stands as a primary objective in mechanized tunnel construction.

Methodologies for evaluating TBM performance can be categorized into theoretical, empirical,
and intelligent techniques [6]. Theoretical techniques aim to approximate cutting force based on
indentation experiments and full-scale laboratory cutting trials. Initially, these techniques only con-
sidered the uniaxial compressive strength (UCS) of the rock [7–9]. However, as experimental facilities
advanced, diverse parameters were incorporated, leading to the development of models such as the
Colorado School of Mines [10] and the Norwegian Institute of Technology model [11] to predict
TBM performance. While theoretical methods are simple, easy to execute, and useful for assessing
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cutter head operation, they fail to account for actual rock conditions and lack a universal solution
scheme due to the frequent variability of geological conditions [12].

Empirical methods are developed based on data obtained from TBM operation sites in tunnels,
establishing quantitative relationships between TBM performance and surrounding rock mass charac-
teristics. Armaghani et al. [13] formulated equations to estimate Penetration Rate (PR) and Advance
Rate (AR) in various weathered zones within granitic rock masses. Similarly, Goodarzi et al. [14]
proposed an empirical method for estimating TBM parameters in soft sedimentary rock. Empirical
methods are well-suited for practical excavation engineering due to their consideration of rock condi-
tions and simple applicability. However, they require certain key parameters that may be challenging
to obtain consistently [6], and they overlook the underlying operating principles of the cutter head.

Intelligent models/approaches rely on extensive data to establish comprehensive relationships
for predicting TBM performance. These models excel in tackling complex engineering challenges
and can construct precise and efficient models solely by focusing on input and output parameters
[15]. Compared to theoretical methods, intelligent techniques can adapt to environmental changes
by adjusting model inputs and outputs. Additionally, they offer a broader range of applications than
empirical equations and are economically advantageous due to their low cost [16].

With advancements in computing science, numerous intelligent models have been employed to
address geotechnical problems [16–20] and estimate TBM performance [21–24]. Recently, base models
with optimization techniques, ensemble models, deep learning models, automated machine learning
(AutoML) systems, etc., have been utilized for TBM performance assessment. Optimization algo-
rithms enhance model accuracy by adjusting hyperparameters. Armaghani et al. [25] utilized particle
swarm optimization (PSO) and imperialism competitive algorithm (ICA) to optimize artificial neural
network (ANN) for predicting TBM PR, demonstrating improved performance over single ANN
models. Zhou et al. [26] employed three swarm-based algorithms to optimize support vector machine
(SVM) for forecasting TBM AR, showing significant enhancement in TBM capability evaluation.
Li et al. [27] applied ANN, gene expression programming, and multivariate adaptive regression splines
with a whale optimization algorithm for forecasting TBM performance. Harandizadeh et al. [28] used
ICA to optimize hyperparameters of the adaptive neuro-fuzzy inference system-polynomial neural
network for TBM performance prediction. Xu et al. [15] utilized a convolutional neural network
(CNN) and long short-term memory network (LSTM) for estimating TBM performance in Jilin
Province, China, demonstrating the superior performance of LSTM over CNN in the real-time
evaluation of TBM performance parameters. Feng et al. [6] employed a deep belief network to predict
TBM performance in the Yingsong Water Diversion Project in Northeastern China, suggesting the
practicality of deep learning methods for TBM performance prediction.

As a nascent technology, AutoML offers the capability to construct robust models without exten-
sive knowledge of machine learning (ML) parameter tuning [29]. Zhang et al. [30] applied AutoML
and neural architecture search with Bayesian optimization to efficiently predict TBM performance
parameters. Their findings suggest that AutoML does not require an in-depth understanding of
machine learning and can yield exceptional estimations for TBM performance parameters. Ensemble
models, which combine multiple models to mitigate individual limitations and enhance predictive
capabilities, are commonly utilized in this context. Ensemble models often utilize decision trees (DTs)
as foundational learners due to their minimal bias and significant variance [31]. Zhou et al. [32]
employed six metaheuristic algorithms to optimize Extreme Gradient Boosting (XGBoost) for evalu-
ating TBM capabilities, finding XGBoost and Particle Swarm Optimization (PSO) to be most practical
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on-site. Xu et al. [15] utilized two ensemble models and three statistical models to forecast TBM
performance, concluding that ensemble models outperformed single statistical models.

Given the above discussion, it appears that only a few tree-based solutions and ensemble DT
models have been utilized in predicting TBM performance. One significant advantage of tree-based
models is their ability to handle complex and non-linear relationships between input features and target
variables. This makes them particularly well-suited for predicting TBM performance, which is influ-
enced by a variety of factors such as geological conditions, machine specifications, and operational
parameters. On the other hand, the efficacy of these models in addressing geotechnical problems has
been underscored in numerous studies [33–35]. Consequently, the authors chose to conduct an in-depth
examination of these models, specifically Random Forest (RF), Extremely Randomized Trees (ERT),
Adaptive Boosting Machine (AdaBoost), Gradient Boosting Machine (GBM), XGBoost, Category
Gradient Boosting Machine (CatBoost), and Light Gradient Boosting Machine (LightGBM). The
objective is to estimate TBM PR by leveraging rock mass and material characteristics, incorporating
parameters such as Rock Mass Rating (RMR), Brazilian Tensile Strength (BTS), and Weathering Zone
(WZ). These tree-based solutions are modeled, and validated, and their performance capabilities are
compared to select the best tree-based model.

The remainder of this research is structured as follows: Section 2 discusses the significance of the
current research. Section 3 introduces ensemble models based on DTs. Section 4 describes the project
location, statistical information of input parameters, and modeling procedure. Section 5 presents the
modeling process and results in detail. The ensemble DT models will be evaluated and ranked for
estimating TBM performance in Section 6. Section 7 provides details regarding the use of a new
database for validation purposes (practical application). The operational mechanism of the black box
models (i.e., tree-based models) is discussed in Section 8. Section 9 presents some ideas regarding the
future direction of this field. Finally, Section 10 reviews the study’s findings and limitations.

2 Research Significance

Several models proposed in the field of TBM performance prediction utilizing ML techniques
incorporate numerous inputs or predictors [36–38], which may pose implementation challenges. These
models typically categorize input parameters into three groups: rock material, rock mass, and machine
specifications. However, data pertaining to machine specifications, such as thrust force, are often only
accessible during or after the tunneling project when the TBM is operational and capable of recording
such data. Consequently, predicting TBM performance prior to tunnel construction or even when
ordering an appropriate TBM becomes challenging.

On the other hand, during the site exploration phase of tunneling projects, it is possible to easily
measure or monitor the characteristics related to the rock material and the rock mass attributes.
Therefore, to offer a clear predictive model that has sufficient applicability, the purpose of this study is
to estimate TBM PR using only three input parameters, which are derived from rock mass and material
qualities. Through a singular concentration on factors that are easily accessible at the preliminary
stages of a project, the model that has been developed intends to improve both the practicability and
the ease of execution. In addition, the model will be validated by utilizing a new database that is derived
from the same case study. This new database will include a variety of ranges and conditions for the
input parameters, which will ensure that the model is durable throughout a wide range of scenarios.
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3 Brief Background of Tree-Based Models

This section presents a brief description of the background of the tree-based models used in this
study. Since the same material and explanations can be found elsewhere, here the most important or
common points regarding these techniques will be given.

3.1 Random Forest (RF)
RF is an ensemble model that leverages multiple regression trees for training samples in regression

tasks [39]. Fig. 1 illustrates the flowchart depicting the construction of an RF model for predictive
purposes. RF introduces randomness in two main dimensions:

i) Bootstrap Sampling: From a training set comprising N samples, a subset of size N is chosen
through bootstrap sampling to construct an individual tree.

ii) Feature Selection: A subset of all available features is randomly selected to determine the
optimal split point in each node.

RF exhibits robust performance in machine learning tasks, is capable of handling high-
dimensional data with fast training speeds, and has strong anti-interference, and generalization
abilities. However, RF may be susceptible to overfitting in regression problems with high noise levels.
Moreover, the effectiveness of RF can be influenced by attributes with varying degrees of value division
within the data.

For further details regarding RF formulations and backgrounds, interested readers are referred
to additional studies [40,41].

Figure 1: General flowchart of random forest (RF)

3.2 Extremely Randomized Tree (ERT)
An ERT is akin to RF, comprising numerous unpruned trees [42]. However, there exist two main

distinctions between ERT and RF:

1. Data Sampling: In RF, trees are trained using partial data randomly selected from the training
samples, whereas in ERT, trees utilize the original training sample.
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2. Feature Splitting: While RF selects the best feature split point in each regression tree, ERT
randomly selects a feature point for division.

The randomness inherent in ERT offers improved split points compared to RF. Fig. 2 outlines the
steps involved in constructing an ERT. Initially, ERT selects a feature subset from all available features
and then determines a random number within the range of values in the feature subset, dividing the
features into two branches. Subsequently, the split threshold is computed, traversing all features within
the node to obtain split thresholds for each feature. The feature with the maximum splitting threshold
is chosen for division. Notably, the splitting threshold is entirely randomly selected, considering all
possible attribute divisions.

Dataset 

Build K trees

Average all tree predictions values

Start

Figure 2: Key steps to build an ERT predictive model

While the prediction performance of a single tree in ERT may be subpar due to the random
selection of optimal split attributes, integrating multiple trees can yield better prediction performance.
Consequently, ERT excels in reducing variance compared to RF techniques.

For further insights into the background and modeling of ERT, interested readers are directed to
additional studies [43].

3.3 Adaptive Boosting Machine (AdaBoost)
AdaBoost constructs a sequence of weak learners using training data and combines them into

a robust model by adjusting the sample weight distribution [44]. Fig. 3 illustrates the process of
developing the AdaBoost model. During the training process, the weights of samples with significant
errors are enhanced, and the sample with the updated weight undergoes training in a new iteration.
Consequently, subsequent learners focus on training samples with substantial errors in subsequent
training iterations. However, when faced with noise, AdaBoost tends to prioritize the analysis of these
complex samples. This can result in a significant increase in the weight of complex samples, ultimately
leading to model degradation. Further details regarding the calculations underlying the AdaBoost
model can be found elsewhere [45].
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Figure 3: General flowchart to build an AdaBoost predictive model

3.4 Gradient Boosting Machine (GBM)
GBM represents an advancement in boosting algorithms [46]. While optimizing squared or

exponential loss functions within the boosting framework can be relatively straightforward, challenges
arise when dealing with other types of loss functions. In particular, optimizing for general loss
functions poses a difficult task. To address this limitation, Schapire [47] introduced GBM as an
approximation method that utilizes the steepest descent as its starting point. In the GBM model, we
utilize the negative gradient of the loss function to estimate the residual value within the context of a
regression problem. This value is derived from Eq. (1). Fig. 4 depicts the workflow of GBM. Initially,
GBM identifies the constant value that minimizes the loss function, resulting in a tree with only one
root node. Subsequently, we compute the negative gradient value of the loss function to estimate the
residual. In the case of a squared loss function, this directly corresponds to the residual, while for a
general loss function, it serves as an approximation. Next, we estimate the regression leaf node region
(Rmj) to fit the approximations of residuals. Finally, the loss function is minimized, the regression tree
is updated, and the complete model is output.

rmi = −
(

∂L(yi, f (xi))

∂f (xi)

)
f (x)=ft−1(x)

(m = 1, 2, . . . , M, i = 1, 2, . . . , N) (1)

f0(x) = arg min
∑N

i=1
L(yi, c) (2)

fM(x) =
∑M

m=1

∑J

j=1
cmjI(x ∈ Rmj) (3)

In Eq. (1), L(.) represents the loss function and f (x) represents the tree. In Eq. (2), c depicts the
mean value of samples. In Eq. (3), I(.) will be one if the condition in parentheses is true, and zero if
otherwise.

3.5 Light Gradient Boosting Machine (LightGBM)
LightGBM represents an advancement over the GBM technique. GBM can be computationally

intensive and memory-consuming when dealing with large and complex datasets. Loading all training
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data into memory at once can reduce the total amount of data that can be stored, while frequent read-
ing and writing of data from disk can lead to significant time overhead. To address these challenges,
Ke et al. [48] introduced LightGBM in 2017. LightGBM utilizes the histogram optimization algorithm
and more efficient leaf growth strategies to reduce memory overhead and speed up computation. Fig. 5
outlines the steps involved in building the LightGBM model. Further details on the formulations of
the LightGBM model can be found in other studies [49].

Figure 4: Step-by-step flowchart to develop a GBM predictive model

3.6 Extreme Gradient Boosting Machine (XGBoost)
Compared to GBM, XGBoost incorporates several enhancements. XGBoost employs second-

order Taylor expansion on the loss function and facilitates convex optimization [50]. Additionally,
distributed computing can be utilized to enhance speed. Fig. 6 illustrates the flowchart of XGBoost.

XGBoost offers the following advantages over GBM:

1. Support for Linear Learners: XGBoost supports linear learners in addition to tree-based models.

2. Utilization of Second-Order Taylor Expansion: XGBoost employs the second-order Taylor
expansion of the cost function as its objective function, facilitating more efficient optimization.

3. Column Sampling and Regularization: To prevent overfitting and reduce computation, XGBoost
introduces column sampling and regularization terms.

4. Dynamic Learning Rate Allocation: XGBoost allocates the learning rate to leaf nodes after each
iteration, reducing the weight of the tree and providing a more effective learning space.

For further details on the calculations underlying XGBoost, interested readers are directed to
additional studies [40,49].
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Start

Training data
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Histogram algorithm

Leaf wise learning

Ensemble model

Figure 5: General flowchart of LightGBM technique

Figure 6: General flowchart of XGBoost in solving prediction problems
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3.7 Category Gradient Boosting Machine (CatBoost)
CatBoost utilizes oblivious trees as base predictors, which are symmetrical and employ the same

criteria for splitting nodes [51]. These balanced oblivious trees are not easily overfitted. Fig. 7 presents
the flowchart of CatBoost. One of the distinguishing features of CatBoost is the replacement of the
gradient estimation approach with ordered boosting. This substitution reduces the inherent bias of
gradient estimation and enhances the model’s capacity for generalization. In CatBoost, unbiased
estimation of gradient steps is utilized in the first stage, followed by a traditional Gradient Boosting
Machine (GBM) scheme in the second stage. The primary optimization in CatBoost occurs during
the first phase. During the construction phase, CatBoost operates in two boosting modes: ordered
and plain. The plain mode applies the standard GBM algorithm after transforming categorical
features using built-in ordered target statistics, while the ordered mode represents an optimization
of the ordered boosting algorithm. CatBoost demonstrates robustness and reduces the need for
hyperparameter tuning, thus lowering the risk of overfitting and enhancing model universality.
Additionally, CatBoost can handle both categorical and numerical features, and it supports custom
loss functions. For further insights into the mathematical formulations and modeling process of
CatBoost, interested readers are encouraged to refer to additional studies [52].

Figure 7: Key steps to construct a CatBoost predictive model

4 Database and Approach
4.1 Project Description

To address water shortages in the Selangor region of Malaysia, plans were made to transfer water
from Pahang State to Selangor State. However, the presence of mountains between the two states posed
a significant obstacle to the project. Consequently, the Pahang-Selangor Raw Water Transfer Tunnel
was proposed to span the entire mountain range. The elevation of this mountain range ranges from 100
to 1400 meters. The tunnel is segmented into four sections based on rock types, with granite being the
predominant rock type. Additionally, the tunnel traverses six faults characterized by poor rock-bearing
capacity. The total length of the tunnel is approximately 45 km, with three TBMs responsible for
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excavating around 35 km, while the remaining 10 km are tackled by four drilling and blasting sections.
For further details regarding the study area, additional descriptions are available elsewhere [25].

4.2 Input Parameters and Database
To facilitate simulation, a comprehensive database was compiled through field observations and

laboratory experiments. This database comprises 1113 data samples collected from various WZs within
a granitic rock mass. Benardos et al. [53] identified rock quality designation (RQD), rock mass WZ,
RMR, and UCS as the most influential rock attributes affecting TBM performance. BTS, serving
as a rock strength indicator, is preferred over UCS due to its ease of measurement in laboratory-
prepared rock samples [54]. It has been widely utilized in recent TBM performance prediction models
[25,27]. While some researchers [38,55] advocated for including TBM-related parameters such as thrust
force, tunnel diameter, and revolutions per minute, others [56–60] argued that a predictive TBM
performance model should solely rely on inputs representing rock mass and material properties. This
approach is favored due to the unavailability of machine specifications during the project planning
stage, which are typically only accessible after the machine is operational in a specific project. Thus, a
predictive TBM performance model would be more applicable if it could be established before tunnel
construction, or even before ordering the machine. Given that TBM performance prediction is crucial
for managing and minimizing project costs, it appears that the only available parameters during the
site investigation phase of a tunnel project are related to rock mass and material properties. Based on
these considerations, this study selects RMR, WZ, and BTS as input parameters to predict TBM PR.

In this study, RMR, a rock mass classification proposed by Bieniawski [61], was obtained for
each panel, roughly spanning 10 meters. RMR incorporates the effects of six different parameters:
RQD, UCS, spacing and condition of discontinuities, groundwater condition, and joint orientation
condition. By evaluating these parameters, the corresponding rates are calculated, leading to the
determination of final RMR values. Notably, parameters such as UCS and RQD, suggested in the
literature, are inherently considered within the RMR calculation. To incorporate another component
related to rock material properties, BTS tests were conducted on rock samples collected from the tunnel
face. While it wasn’t feasible to conduct BTS tests for every panel, over 150 rock samples were gathered
from various tunnel locations and subjected to BTS testing. Subsequently, the obtained BTS values
were assigned to the surrounding panels of the specific sample collection point.

Additionally, the WZ of each panel was observed and recorded in the prepared database. Three
distinct WZs were included in the dataset: fresh, slightly weathered, and moderately weathered. The
first two WZs were utilized for training and testing tree-based models, while the moderately weathered
data was reserved for validation purposes. Finally, the TBM machine recorded PR values for each
panel, serving as the output variable in this study.

After conducting a pre-processing analysis on the data, it was revealed that there were outliers
present among the training and testing data samples, totaling 1113. These outliers were identified
using statistical rules such as the median, 25th and 75th percentiles, and upper and lower bounds.
Subsequently, a total of 70 data samples were flagged as outliers and removed from the training and
testing database, resulting in a final dataset of 1043 samples used for modeling. Fig. 8 illustrates the
distributions of input and output parameters utilized for training and testing analysis. As depicted
in Fig. 9, the box plot demonstrates that the outliers have been successfully eliminated from the
database through this process. To provide a clearer perspective of the data, a 3D scatter diagram
depicting the relationship between RMR, BTS, and PR for different WZs is presented in Fig. 10. It is
observed that similar properties are evident for rock mass and material in fresh and slightly weathered
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WZs. Furthermore, Fig. 11 illustrates the correlation between the variables by Pearson correlation
coefficient (PCC). PCC can be calculated using the following equation:

PCC =
∑n

i=1

(
Xi − X

) (
Yi − Y

)
√∑n

i=1

(
Xi − X

)2
√∑n

i=1

(
Yi − Y

)2
(4)

where Xi is the value of the ith feature, X is the average value of all X features, Yi is the value of the
ith target, Y is the average value of all targets.

Figure 8: The histograms of input variables and the target variable

Figure 9: The boxplots of RMR, BTS, and PR
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Figure 10: The 3D scatter plot of RMR, BTS, and PR in each WZ (WZ1: fresh, WZ2: slightly
weathered)

Figure 11: The correlation matrix of the training and testing database

According to the PCC values in the box plot, RMR and BTS exhibit a significantly negative
correlation with PR, indicating their influence on the TBM Penetration Rate. Conversely, WZ
demonstrates an insignificant correlation with PR.

4.3 Step-by-Step Study Flowchart
As illustrated in Fig. 12, the database underwent random partitioning, resulting in the creation

of a training set comprising 80% of the data and a testing set containing the remaining 20%. The
training set was then utilized to construct estimation models using seven ensemble trees. Within the
tree-based models, the initial step involved crafting individual trees, followed by the application of
multiple techniques to amalgamate these trees into the ultimate tree-based ensemble models. Upon
the conclusion of the model development phase, five performance metrics were employed to assess
the efficacy of the models during both the training and testing phases. Subsequently, the Taylor
diagram and ranking system were adopted to compare and rank the performance of these seven tree-
based models for predicting TBM performance. Finally, the best-performing tree-based model will be
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selected based on the aforementioned procedure. Furthermore, model validation will be conducted
using a newly provided database to ascertain whether the developed models are suitable for practical
use, especially under new geological conditions. This validation process aims to ensure the robustness
and generalizability of the developed models in real-world applications.

Figure 12: The flowchart of methodology employed in this research
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5 Modeling and Results
5.1 Simple Analysis

In this section, a basic regression analysis was conducted to explore the connections between the
target variable and the predictors. To assess the effectiveness of the predictive equation, five different
trend-line types (exponential, linear, logarithmic, polynomial, and power) were applied to estimate
TBM PR. The coefficient of determination (R2) was computed to compare the capacities of these
equations, as shown in Table 1. Given the limited variability in the WZ variable, with only two values
present, it was deemed unnecessary to include this variable in the simple analysis. Therefore, it was
excluded from this analysis. The effects of changes in WZ can be observed in the properties of rock mass
(e.g., RMR), making it more relevant to consider those parameters instead of WZ in proposing any
empirical equation. From the results presented in Table 1, it was found that the exponential trend-line
exhibited a better fit for establishing the relationship between PR and RMR (R2 = 0.752). Additionally,
the polynomial trend-line was deemed more suitable for fitting the relationship between PR and
BTS (R2 = 0.649). Figs. 13 and 14 illustrate the correlations between PR and the input variables.
It is apparent that PR decreases with the increase of RMR and BTS, a trend supported by existing
literature [13].

R2 = 1 −
∑N

i=1(yi − ŷ1)
2∑N

i=1(yi − y)2
(5)

In Eq. (5), yi is the actual value, ŷ1 is the predicted value, y is the mean of actual value, and N is
the number of data samples.

Table 1: The obtained simple regression results to estimate PR

Methods Equations R2

Exponential PR = 6.364e−0.01429RMR 0.752
PR = 4.131e−0.05914BTS 0.631

Linear PR = −0.03477RMR + 4.818 0.749
PR = −0.1447BTS + 3.765 0.645

Logarithmic PR = −2.312ln (RMR) + 12.16 0.752
PR = −1.234ln (BTS) + 5.104 0.607

Polynomial PR = 0.000163RMR2 − 0.057RMR + 5.549 0.751
PR = −0.00433BTS2 − 0.0622BTS + 3.414 0.649

Power PR = 111.3RMR−0.9123 0.745
PR = 6.692BTS−0.4725 0.578

In general, mining and civil engineers often prefer to apply simple regression equations for
problem-solving due to their ease of use. However, in the case of mechanized tunnel construction,
which is a massive and expensive project, accuracy in prediction is crucial. Accurate prediction entails
achieving R2 values closest to one. Therefore, based on the results obtained in this section, there is
a clear need to explore and develop other techniques, such as tree-based models, to forecast TBM
performance accurately. In the subsequent subsection, we will outline the procedure for introducing
tree-based models in predicting TBM PR.
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Figure 13: PR equation and its performance using RMR values

Figure 14: PR equation and its performance using BTS values

5.2 Tree-Based Models
As mentioned earlier, the complete dataset, comprising 1043 samples after outlier elimination, was

divided into training (80%) and testing (20%) segments. The training segments were used to construct
ensemble tree-based models, while the testing segments were utilized to assess the models’performance.
Range standardization (Eq. (6)) was applied to preprocess the input parameters.

X = X − Xmin

Xmax − Xmin

(6)

We utilized the open-source Python library, Scikit-learn [42], for developing RF, ERT, AdaBoost,
and GBM models. Additionally, XGBoost [50], LightGBM [48], and CatBoost [51] were employed
to construct the XGBoost, LightGBM, and CatBoost models, respectively. The number of trees is a
crucial parameter in the tree-based models, significantly influencing model performance. In contrast
to bagging models (RF and ERT), boosting models (AdaBoost, GBM, XGBoost, LightGBM, and
CatBoost) featured an additional critical parameter known as the learning rate, which had a significant
impact on the performance of these boosting models. In this research, all parameters were set to
their default values in Python libraries. Table 2 presents the values of the main parameters in these
seven tree-based models. Due to their similar training theory, the hyperparameter setting of RF was
identical to that of ERT. The nodes in RF and ERT were expanded until all leaves were pure. The
hyperparameter configuration in each boosting model was different because their training principles
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differed from each other. After determining the hyperparameters, the training samples were input into
these models. The comprehensive nonlinear relationships between PR and RMR, BTS, and WZ were
incorporated into seven tree-based models. Finally, seven models for TBM performance evaluation
were obtained. The remaining testing set was utilized to assess the models’ capabilities. To compare and
evaluate the tree-based models, we computed and utilized five regression task evaluation metrics. These
metrics included mean absolute error (MAE), root mean square error (RMSE), variance accounted for
(VAF), and the A-20 index. These indicators were extensively used as assessment methods in previous
studies [25]. The following equations were implemented to compute MAE, RMSE, VAF, and the A-20
index:

MAE = 1
N

∑N

i=1

∣∣yi − ŷi

∣∣ (7)

RMSE =
√

1
N

∑N

i=1
(yi − ŷi)

2 (8)

VAF =
(

1 − var(yi − ŷi)

var(yi)

)
× 100 (9)

A − 20 = m20
N

(10)

where yi represents the actual PR value, ŷi represents the predicted PR value, N is the number of
data samples, var(.) is used to calculate the variance of the value in the bracket, and N is the number
of samples for which the predicted value is the range of 0.8∼1.2 times the actual value. When the
predicted value is exactly equal to the actual value, R2 is 1, MAE is 0, RMSE is 0, VAF is 100 (%), and
A-20 is 1.

Table 2: The primary hyper-parameters value in tree-based models

Model Parameters Value

RF Number of trees 100
The minimum sample number of internal nodes for splitting 2
The minimum sample number of leaf nodes 1

ERT Number of trees 100
The minimum sample number of internal nodes for splitting 2
The minimum sample number of leaf nodes 1

AdaBoost The maximum number of trees 50
Learning rate 1.0
Loss function Linear

GBM The number of boosting iteration 100
The minimum sample number of internal nodes for splitting 2
The minimum sample number of leaf nodes 1
Learning rate 0.1
Maximum depth in each tree 3

XGBoost The number of boosting iteration 100
Learning rate 0.30
Maximum depth in each tree 6

(Continued)
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Table 2 (continued)

Model Parameters Value

LightGBM The number of boosting iteration 100
Learning rate 0.1

CatBoost Max count of trees 1000
Learning rate 0.40
Depth of each tree 6
Coefficient at the L2 regularization term of the cost function 3

Figs. 15–21 display the results of the training and testing phases for the seven tree-based models.
In these figures, the red line represents the scenario where the estimated value equals the actual value,
and points falling on it indicate perfect prediction. It is evident that many points are clustered near the
red line, indicating a good prediction effect. The A-20 index is calculated as the ratio of the number
of points falling within the two dotted purple lines to the total number of points. Consequently, all
tree-based models exhibit good performance in both the training and testing phases. Further details
regarding the assessment of these tree-based models will be provided in the next section.

Figure 15: Modeling results of RF to forecast TBM PR

Figure 16: Modeling results of ERT to forecast TBM PR
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Figure 17: Modeling results of AdaBoost to forecast TBM PR

Figure 18: Modeling results of GBM to forecast TBM PR

Figure 19: Modeling results of XGBoost to forecast TBM PR
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Figure 20: Modeling results of LightGBM to forecast TBM PR

Figure 21: Modeling results of CatBoost to forecast TBM PR

6 Discussion

In the discussion of the evaluation indicators, it was observed that the AdaBoost model exhibited
inferior performance in both the training and testing sets compared to other tree-based models.
To facilitate a more comprehensive comparison of these models, a Taylor diagram was employed
in this study. The correlation coefficient, centered RMSE, and standard deviation exhibit a cosine
relationship, as demonstrated in Eq. (11). This relationship was leveraged to construct the Taylor
diagram, which integrates these elements into a polar chart, providing a visual representation of the
model performance.

É2 = σ 2
p + σ 2

a − 2σpσaR (11)

In Eq. (10), É is the centered RMSE between the predicted and actual variables, σ 2
p and σ 2

a are
the variances of estimated and measured variables, respectively, and R is the correlation coefficient
between estimated and measured variables.

Fig. 22 illustrates the Taylor diagrams showcasing the training and testing outcomes. In these
diagrams, the distance from the model’s representation to the origin point signifies the standard
deviation, while the clockwise ticks represent the correlation coefficient. The point ‘REF’ with a star
shape on the x-axis represents the actual PR and the distance from the other points to the point ‘REF’
represents the centered RMSE. The position of points on the graph can be utilized to evaluate the
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potential of the corresponding model, with points closer to the ‘REF’ point indicating preferable
capabilities. According to this principle, the ERT model exhibited optimal performance in the training
set, while the GBM model outperformed others in the testing set. All seven tree-based models displayed
points within the range of the black dotted line in both training and testing results, indicating that the
standard deviation of their predicted PR values was smaller than the actual PR. It was observed that
all models except AdaBoost demonstrated similar prediction capabilities in the training set.

Figure 22: The results of all tree-based techniques based on Taylor diagram (a) training (b) testing

To provide a more comprehensive assessment of the tree-based models, a ranking system proposed
by Zorlu et al. [62] was utilized. This ranking system combines the performance in the training and
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testing sets to reflect the comprehensive capacity of the model. Table 3 presents the ranking results
for the seven tree-based models based on their performance in predicting PR. Each model was scored
according to its performance in the training and testing datasets, with higher scores indicating superior
capability. The final score, which is the sum of the total scores of the model for training and testing
datasets, was used to rank the models (Fig. 23). The model ranking based on the final score was
as follows: CatBoost = GBM > LightGBM = RF > ERT > XGBoost > AdaBoost. It is evident
from the rankings that CatBoost and GBM emerged as the best-performing models among the seven.
These tree-based models demonstrated satisfactory predictive capacity for estimating TBM PR. In
the following section, we will explore their performance when applied to predict TBM PR with a new
dataset.

Table 3: The ranking results for seven tree-based models

Model Dataset R2 MAE RMSE VAF A-20 index Total
score

Final
scoreValue Score Value Score Value Score Value Score Value Score

AdaBoost
Train 0.86 1 0.159 1 0.202 1 86.051 1 0.978 2 6

17
Test 0.838 2 0.169 2 0.217 2 83.946 2 0.957 3 11

CatBoost
Train 0.927 5 0.104 5 0.146 5 92.736 5 0.994 6 26

50
Test 0.861 4 0.144 6 0.201 4 86.266 4 0.971 6 24

ERT
Train 0.942 7 0.075 7 0.13 7 93.587 7 0.995 7 35

43
Test 0.816 1 0.163 3 0.231 1 81.682 1 0.943 2 8

GBM
Train 0.903 3 0.125 3 0.168 3 90.291 3 0.986 4 16

50
Test 0.868 7 0.143 7 0.196 7 87.048 7 0.971 6 34

LightGBM
Train 0.91 4 0.119 4 0.162 4 91.032 4 0.988 5 21

48
Test 0.862 5 0.147 5 0.2 5 86.391 5 0.976 7 27

RF
Train 0.936 6 0.092 6 0.137 6 93.587 6 0.995 7 31

48
Test 0.845 3 0.15 4 0.212 3 84.588 3 0.962 4 17

XGBoost
Train 0.901 2 0.127 2 0.17 2 90.059 2 0.984 3 11

41
Test 0.866 6 0.143 7 0.197 6 86.878 6 0.967 5 30

Figure 23: The obtained scores of ranking technique for all tree-based models
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7 Practical Application of the Proposed Models

In the previous sections, all analyses and calculations were based on a database with 1043 data
samples, which were split into training and testing portions. These data samples were based on two
WZs: fresh and slightly weathered. However, it’s important to note that the properties of input and
output parameters are very similar for these two WZs, making it difficult to discern any obvious
differences between them. Given this, the aim of this section is to validate the developed tree-based
models using another set of data related to a moderately weathered WZ. This new dataset, consisting
of 149 data samples, allows us to assess the models’ performance under different conditions. Notably,
the moderately weathered WZ exhibits distinct ranges of input parameters compared to the fresh
and slightly weathered WZs. For instance, the average values of RMR and BTS for the moderately
weathered WZ are 60.67 and 7.6 MPa, respectively, which differ from those of the fresh and slightly
weathered WZs. After inputting the new data into the tree-based models, predicted PR values were
obtained and compared with their measured values. Table 4 summarizes the results of the performance
indices and ranks for the developed models during the validation phase. This provides insights into
how well the models generalize to new data from different weathering zones. The findings strongly
indicate that the constructed tree-based models are sufficiently effective in predicting TBM PR when
confronted with new data. This reveals the applicability of these models in real conditions when being
used in TBM construction. A range of (0.640–0.713) was obtained for R2 of these models during
the validation phase, which confirms the right model development process for them. Throughout
the training and testing stages, both the CatBoost and GBM models outperformed the other seven
techniques. However, during the validation phase, the XGBoost model emerged as the top performer
with an overall ranking of 35, surpassing all others in terms of prediction accuracy. It’s worth noting
that the performance observed in the validation phase was slightly lower than that in the training
and testing phases. Regarding the R2 values, CatBoost achieved 0.927 and 0.861 for the training and
testing phases, respectively, while the best-performing tree-based model, XGBoost, achieved an R2

value of 0.713 during the validation phase, which is still considered acceptable for validation purposes.
A possible reason for this difference can be attributed to the fact that some of the inputs and conditions
in the validation phase are outside the ranges of inputs and conditions in the training phase. As a result,
the number of performance indices used in the validation phase is still acceptable and can be used in
future similar projects.

Table 4: Results of performance indices during the validation phase

Tree-based
model

R2 R2

rank
MAE MAE

rank
RMSE RMSE

rank
VAF
(%)

VAF
rank

A-20 A-20
rank

Total
rank

AdaBoost 0.657 2 0.24 2 0.293 2 65.988 2 0.926 5 13
CatBoost 0.679 4 0.219 5 0.284 4 68.23 4 0.926 5 22
ERT 0.662 3 0.225 4 0.291 3 66.549 3 0.94 6 19
GBM 0.689 6 0.217 6 0.279 6 68.92 5 0.926 5 28
LightGBM 0.688 5 0.225 4 0.28 5 69.259 6 0.953 7 27
RF 0.640 1 0.231 3 0.301 1 64.377 1 0.879 4 10
XGBoost 0.713 7 0.211 7 0.268 7 71.467 7 0.953 7 35



2444 CMES, 2024, vol.141, no.3

8 Model Interpretation

To elucidate the tree-based models, we employed the permutation importance algorithm to assess
the relative significance of input parameters. This method measures the impact of an input parameter
by removing the parameter on a score, such as R2. The detailed steps to perform the permutation
importance algorithm could be referred to Debeer et al. [63]. Fig. 24 displays the importance scores of
input parameters across the seven models. It becomes evident that RMR holds the highest importance
among all tree-based models, closely followed by BTS. Conversely, WZ contributes the least to the
prediction of TBM performance in all the tree-based models. To delve further into the relationship
between PR and the parameters of interest, we utilized the partial dependence plot (PDP), which
demonstrates the interdependence between target variables and a specific set of input parameters. The
PDP exhibits the dependency between the target variables and a set of input parameters of interest.
Fig. 25 shows the interaction between the PR and RMR. The PDP reflects the influence of RMR
variation on the predicted PR when BTS and WZ remain unchanged. The markers at the bottom of
the figure represent the deciles of the distribution of predicted PR, which can reveal the degree of
predicted PR concentration. For example, the RMR, whose value ranges from 44 to 73, determines
the top 70% of the predicted PR values. When the values of BTS and WZ are held constant, the PR
value increases first as RMR increases. When RMR reaches 46, the predicted PR in models is at its
maximum. Then the predicted PR starts to decrease. When the RMR varies between 73 and 95, the
predicted PR in models changes little. According to Fig. 26, when RMR and WZ remain unchanged,
the predicted PR in models increases when BTS increases from 4.69 to 5.94 MPa, and the maximum
predicted PR is obtained when BTS equals 5.94 MPa. After that, the predicted PR decreased with the
increase in BTS. When the BTS ranges from 10.0 to 15.5 MPa, and the predicted PR decreases rapidly.
In Figs. 25 and 26, the curve describing the dependence of the predicted PR value on RMR is steeper
than the BTS curve, which suggests the predicted PR in seven tree-based models has more dependence
on RMR. The 3D partial dependency of RMR and BTS with respect to the PR is shown in Fig. 27,
which can reflect the dependence of PR on one input variable when another changes. It is evident that
the predicted PR in all models decreases with the simultaneous increase of RMR and BTS when the
WZ does not vary. However, it is also clear that if WZ is changed, for example, from fresh to slightly
weathered, some of the properties in the rock mass are accordingly changed.

Figure 24: The importance score of three input parameters in seven tree-based models
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Figure 25: The partial dependency between RMR and PR

Figure 26: The partial dependency between BTS and PR

Figure 27: (Continued)
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Figure 27: The 3D partial dependency of RMR and BTS with the PR

The predicted PR in AdaBoost did not decrease gradually with the decrease in BTS and RMR.
There are some relatively flat areas in “Partial dependence–AdaBoost” where the predicted PR did not
change with the value of RMR and BTS, which is consistent with the distribution of the predicted and
actual PR in Fig. 17. Some steep regions in “Partial dependence–AdaBoost” imply that the predicted
PR varies greatly with RMR and BTS in these areas. In contrast to other models, AdaBoost does
not correctly construct the relationship between PR and input variables, which leads to its poor TBM
estimation potential.

9 Limitations and Future Works

Indeed, the integration of theory-guided machine learning (TGML) methodologies holds great
promise for enhancing the practical applicability of machine learning models in the field of tunneling
and underground space technologies. By combining established theories and empirical equations
from the field of tunneling with machine learning techniques, TGML offers a pathway to develop
intelligent models that are not only accurate but also consistent with existing scientific knowledge.
One of the key advantages of TGML is its ability to leverage vast volumes of scientific data while
ensuring scientific consistency throughout the model development process. By incorporating domain-
specific knowledge into the model-building process, TGML can address the limitations associated
with traditional machine learning approaches, which often require extensive expertise in data science
and machine learning methodologies. Furthermore, the hybrid approach proposed by TGML enables
tunnel engineers and geotechnical designers to utilize the resulting models as practical tools in real-
world projects. These models can provide valuable insights and predictions, helping to inform decision-
making processes and optimize the design and construction of tunnels and underground structures.
Overall, future research efforts in the field of tunneling and underground space technologies should
consider adopting TGML methodologies to develop robust and practical machine-learning models.
By combining scientific theories and empirical knowledge with advanced machine learning techniques,



CMES, 2024, vol.141, no.3 2447

TGML has the potential to revolutionize the way tunneling projects are planned, designed, and
executed.

Although this study successfully proposed high-performing tree-based models for the prediction
of PR, there are some limitations worth noting. One significant issue is the absence of parameter
tuning in this research. Instead of optimizing the hyperparameters for each model, all the tree-based
models relied on their respective default parameter settings. This reliance on default parameters may
lead to suboptimal performance and prevent the models from achieving their full predictive potential.
Consequently, the generalizability and robustness of these models could be limited in diverse geological
conditions or with varied datasets. For instance, hyperparameter tuning could significantly improve
the performance of models like CatBoost or XGBoost, which are known to be sensitive to adjustments.
Future research should prioritize comprehensive parameter optimization strategies, such as grid search
or Bayesian optimization, to identify the best combinations that enhance predictive accuracy.

10 Conclusions

The following remarks describe the most important conclusion and limitation points extracted
from this study:

• The study utilized rock mass and material properties such as RMR, BTS, and WZ to develop
tree-based models for forecasting TBM performance. Two empirical formulas were proposed
using RMR and BTS to predict the PR values of fresh and slightly weathered granite in TBM
construction. The performance of these models, indicated by the R2, was found to be 0.752
for RMR and 0.652 for BTS. These R2 values fall within an acceptable range for empirical
equations, demonstrating the effectiveness of using RMR and BTS as predictors for TBM
performance forecasting in the context of fresh and slightly weathered granite.

• The tree-based models showcased commendable predictive capabilities in estimating TBM
performance using rock mass and material properties. Particularly, CatBoost emerged as the
most proficient among the seven tree-based techniques. It achieved remarkable R2 values of
0.927 and 0.861 for the training and testing datasets, respectively, focusing on fresh and slightly
weathered granite. Additionally, CatBoost secured a ranking value of 50, signifying its superior
performance compared to the other tree-based models.

• A new dataset representing a moderate WZ was introduced, with parameters falling outside the
ranges of the original inputs. This dataset was employed to validate the developed tree-based
models. Overall, the results affirmed the effectiveness of these techniques for handling new data.
However, the top-performing model during the validation phase was XGBoost, achieving a total
rank of 35. XGBoost exhibited the highest performance capacity (R2 = 0.713, MAE = 0.211,
RMSE = 0.268, VAF = 71.467% and A-20 index = 0.953) in predicting TBM performance.

• The PDP analysis revealed that, among the seven tree-based models, RMR and BTS were the
most influential factors in predicting TBM performance. When the other variables were held
constant, the predicted PR in all tree-based models exhibited a trend of initially increasing and
then decreasing with changes in RMR or BTS. This nonlinear relationship highlights the ability
of tree-based models to capture and model complex interactions among input variables, which
may not be adequately captured by simple regression analysis.

• The results obtained from both the model development and validation phases confirm the
effectiveness of the developed tree-based models in providing accurate predictions of TBM PR.
These models exhibit an acceptable level of accuracy and can be considered reliable tools for
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forecasting TBM performance in similar geological and geotechnical conditions. However, it’s
important to note that the accuracy of the predictions may vary if different input parameters
or conditions are used. Therefore, to achieve similar performance predictions, it’s essential to
ensure consistency in the input parameters and geological/geotechnical properties used in the
models.
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