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ABSTRACT

Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,
integral for early detection and effective treatment. While deep learning has significantly advanced the analysis of
mammographic images, challenges such as low contrast, image noise, and the high dimensionality of features often
degrade model performance. Addressing these challenges, our study introduces a novel method integrating Genetic
Algorithms (GA) with pre-trained Convolutional Neural Network (CNN) models to enhance feature selection and
classification accuracy. Our approach involves a systematic process: first, we employ widely-used CNN architectures
(VGG16, VGG19, MobileNet, and DenseNet) to extract a broad range of features from the Medical Image Analysis
Society (MIAS) mammography dataset. Subsequently, a GA optimizes these features by selecting the most relevant
and least redundant, aiming to overcome the typical pitfalls of high dimensionality. The selected features are then
utilized to train several classifiers, including Linear and Polynomial Support Vector Machines (SVMs), K-Nearest
Neighbors, Decision Trees, and Random Forests, enabling a robust evaluation of the method’s effectiveness across
varied learning algorithms. Our extensive experimental evaluation demonstrates that the integration of MobileNet
and GA significantly improves classification accuracy, from 83.33% to 89.58%, underscoring the method’s efficacy.
By detailing these steps, we highlight the innovation of our approach which not only addresses key issues in breast
cancer imaging analysis but also offers a scalable solution potentially applicable to other domains within medical
imaging.
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1 Introduction

The prevalence of breast cancer is significant in Saudi Arabia [1]. It was the ninth leading cause
of death among women in 2010 [2]. In 2009, the number of newly reported breast cancer cases
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surpassed 1000. With an increasing population and aging demographic, this number is expected
to rise significantly in the coming decades. The American Cancer Society recommends that every
woman over the age of 40 should undergo breast cancer screening through mammograms. Patients
with lesions visible in mammography typically undergo a follow-up ultrasound examination, during
which ultrasound-guided biopsies are performed. Breast biopsies, which save many lives by identifying
cancerous tumors, are performed annually in the United States, with 70%–90% of these biopsies
being benign [3]. There is a need for a technique that can reliably distinguish between benign and
malignant lesions without resorting to invasive methods, which would reduce unnecessary biopsies,
lower healthcare costs, and decrease patient anxiety.

Since the advent of Deep Learning in 2012, these technologies have revolutionized medical
diagnostics, showing superior performance over traditional machine learning methods. Notably, a
team led by Tuggener et al. [4] employed deep learning for mitotic figure detection, demonstrating out-
standing accuracy on the first publicly annotated breast cancer dataset at the ICPR 2020 (International
Conference on Pattern Recognition). Another significant advancement in cancer diagnostics was made
by [5], achieving a 99.48% accuracy rate when combined with human pathologists’ predictions. Such
advancements suggest a promising future for deep learning in enhancing diagnostic precision and
reducing reliance on human pathologists.

In this research, our goal is to assess various pre-trained deep learning methods, such as the models
developed by the Visual Geometry Group (VGG) which called VGG16, VGG19, and other models
such as MobileNet and DenseNet to extract features and detect whether lesions in ultrasound images
are benign or malignant. Currently, ultrasound diagnosis relies on the expertise of human pathologists,
which can be subjective. By utilizing the aforementioned techniques, we aim to provide compelling
evidence for accurate diagnosis. The system will acquire knowledge from an extensive database of
numerous patient cases, a task nearly impossible for a human pathologist to accomplish within a short
period. Within a few hours, the system will be able to deliver a reliable verdict on the malignancy of
lesions [6].

Wrapper feature selection methods create numerous models with different subsets of input
features and select those features that result in the best-performing model according to a performance
metric. The Wrapper methodology treats feature set selection as a search challenge, where various
combinations are formed, assessed, and compared against others. To evaluate a set of features and
allocate performance scores, a predictive model is employed [7]. Our approach involved utilizing
a genetic algorithm in combination with the wrapper method for feature selection. This technique
optimizes the learning algorithm’s performance by generating a population of candidate solutions
and iteratively improving them using mutation and crossover operators. We applied this approach
to each Convolutional Neural Network (CNN) model, and the resultant features were combined and
further selected to obtain the most useful ones. The chosen features were then utilized by the Multiclass
Support Vector Machine (MSVM) classifier. The Medical Image Analysis Society (MIAS) developed
and supplied the digital mammography datasets, which are extensively used and available online for
research purposes at no cost. The images are presented in Portable Gray Map (PGM) format and
include both right- and left-oriented breasts. Each mammography in the Mini-Mammographic Image
Analysis Society (MIAS) dataset is categorized as malignant, benign, or normal [8,9].

This paper seeks to create and implement automated artificial intelligence tools to serve as
preliminary diagnostic aids in detecting breast cancer lesions. Radiologists have long used certain
features in B-mode images of mammographic-visible breast lesions for preliminary determination of
malignancy by reviewing related work and collecting a large data sample of breast cancer images.
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In addition, our intention is to enhance the clarity and distinction of acquired breast images using
deep learning and image processing methods. In this study, we propose a hybrid optimized approach
by integrating pre-trained CNN models with a genetic algorithm (GA) and various classifiers. The
contributions of our work can be summarized as follows:

– Feature Extraction: Utilizing four wide-ranging pre-trained CNN models to speed up the
classification process and meet the challenges posed by the limited size of breast image datasets.

– Feature Selection: Using Genetic Algorithm (GA) to select the most consistent, relevant, and
non-redundant features extracted from the pre-trained CNN models.

– Comparative Analysis: Building an effective and accurate classification model through a
comparative analysis using different classifiers, capable of handling complex extracted and
selected features.

– Evaluation: Evaluating and comparing the results of both baseline and proposed approaches
using the public dataset of MIAS Mammography Regions of Interest (ROIs) images.

– Accuracy Improvement: Achieving higher accuracy compared with the competition work on
the public dataset.

This work presents an innovative approach that integrates GA with transfer learning to improve
the accuracy and efficiency of breast cancer diagnosis. In the following parts, we break down the key
features, advantages, and disadvantages of existing methods, and the motivation for this research.
The first key feature of the proposed approach is the use of GA to optimize the selection of best
features and enhancing the performance of breast cancer diagnosis. The second key feature is utilizing
the transfer learning concept to leverage pre-trained models on large datasets, adapting them to
the target domain (breast cancer diagnosis). This reduces the need for large annotated datasets
in the medical field, where data can be scarce and expensive to label. The third key feature is the
integration of GA with transfer learning aims to systematically and automatically optimize the number
of features generated by transfer learning models, which can lead to better performance compared
to using all features. The advantages of the proposed approach are enhancing the performance,
reducing manual effort, adaptability, and effective use of limited data. The disadvantages of existing
methods are the use of all features for classifying breast cancer, the large amounts of annotated
data requirement, computational cost, and overfitting. The research motivation can be determined
in improving diagnostic accuracy, efficiency, scalability, and addressing data scarcity. The research
starting point begins from the perspective of combining the strengths of genetic algorithms and
transfer learning to address the limitations of existing methods. By focusing on the optimization of
model hyperparameters and structure through genetic algorithms, the research aims to develop a more
effective and efficient diagnostic tool for breast cancer, addressing the challenges of data scarcity,
manual tuning, and computational cost.

The rest of the paper is organized as follows: Section 2 gives an overall description of related
work in breast cancer identification based on mammography images. Section 3 details the proposed
approach and the used materials and methods. Section 4 presents the experimental results, and finally,
Section 5 concludes our work.

2 Related Work

Numerous studies have underscored the benefits of utilizing publicly accessible mammography
images for the identification and categorization of breast cancer. Over the past decade, a variety of
computer-aided diagnosis (CAD) models have been developed, focusing on three pivotal aspects:
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extracting features, reducing features, and classifying images. Many researchers have proposed diverse
methods of feature extraction, leading to significant advancements in both detection and categoriza-
tion stages [10,11]. A novel approach, known as MAR Row (Medical Active Learning and Retrieval),
has been introduced to aid in breast cancer detection. This method emphasizes relevance feedback
(RF) within the content-based image retrieval (CBIR) process, leveraging diversity and uncertainty
levels to enhance outcomes [12].

Recent study [13] in breast cancer diagnosis emphasized the critical role of early detection in
improving survival rates, leveraging advanced machine learning and genetic algorithms. This study
focuses on classifying breast cancer mass pathology using radiologists’ annotations from the Breast
Cancer Digital Repository screen-film mammograms. The research explores the effectiveness of
precomputed features in the Breast Cancer Digital Repository (BCDR) combined with discrete
wavelet transform and Radon transform. By employing four sequential feature selection methods
and three genetic algorithms, the study enhances the classification accuracy. The fusion of features
from craniocaudal and mediolateral oblique views demonstrated a significant performance boost for
the classifier. For mass classification, the study utilized deep transfer learning models, incorporating
ResNet50, NASNetLarge, and Xception networks. The implementation of an ensemble of Deep
Transfer Learning (DTL) outperformed individual DTL models, resulting in superior classification
performance. The Ensemble of Deep Transfer Learning (EDTL) approach achieved area under the
receiver operating curve scores of 0.8843 and 0.9089 for the region of interest (ROI) and ROI union
datasets, respectively. Notably, the proposed EDTL method achieved the highest breast cancer mass
classification area under the curve (AUC) score on the BCDR dataset to date, indicating its potential
for application to other datasets.

Another research [14] investigated the feature selection limitation in the field due to the com-
plexity of breast cancer multifactorial nature. Authors proposed various hybrid models have been
created to enhance the accuracy of breast cancer predictive models by selecting the best features.
Achieving optimal parameters for these models can be challenging. Mainly, a hybrid teaching–
learning optimization and GA-based approach, termed teaching–learning optimization (TLBOG),
has been proposed to improve the reliability of evolutionary algorithms. The integration of GA aims
to address the slow convergence rate and enhance the exploitation search capability observed in
TLBOG. The primary objective of this approach is to optimize the parameters of support vector
machines for higher accuracy compared to other machine learning models while simultaneously
selecting the best feature subsets. Performance evaluation results indicate that the proposed method
significantly outperforms traditional wrapper techniques in terms of accuracy, sensitivity, precision,
and F-measure, as demonstrated on the Wisconsin Breast Cancer Database (WBCD) and Wisconsin
Diagnostic Breast Cancer (WDBC) databases.

Recent work [15] investigated the application of GA to optimize the performance of a Multilayer
Perceptron (MLP) model for breast cancer diagnosis. Various configurations of hidden layers in the
MLP are explored, with accuracies ranging from 0.92 to 0.972. Robust evaluation is ensured through k-
fold cross-validation and comprehensive dataset preprocessing, including normalization, scaling, and
encoding. These methodologies contribute to consistent performance and enhanced generalization
of the model. However, the incorporation of a genetic algorithm significantly improves the accuracy
range, achieving values between 0.97 and 0.99 across different generations. The GA optimizes the
MLP model by evolving a population of potential solutions (individuals) over multiple generations.
Each individual represents a specific set of MLP parameters, such as the number of hidden layers,
neurons per layer, and learning rate. The fitness of each individual is evaluated based on the MLP
model’s accuracy on the breast cancer dataset. The fittest individuals are selected for reproduction,



CMES, 2024, vol.141, no.3 2579

with genetic operators like crossover and mutation applied to generate new offspring. This iterative
process of selection, crossover, and mutation gradually enhances the MLP model’s performance.

A new technique was introduced for rapidly and effectively identifying unclear regions in digital
mammograms [16]. This method employs Electromagnetism-like Optimization (EML) for image
segmentation, followed by 2D median noise filtering, and utilizes a support vector machines (SVM)
classifier for feature extraction and classification, achieving an accuracy of 78.57% with just 56 images
[17]. Another study presented a CAD system that combines deep convolutional neural networks
(DCNN) with support vector machines (SVM) for breast mammography. This hybrid approach
resulted in impressive detection accuracy, sensitivity, and specificity of 92.85%, 93.25%, and 90.56%,
respectively [18].

In the same study [18], an automated algorithm for detecting breast cancer masses was introduced,
relying on feature matching using Maximally Stable Extremal Regions (MSER). The system’s perfor-
mance was evaluated with 85 images from the MIAS dataset, accurately identifying mass locations with
a success rate of 96.47% [18]. Researchers also introduced a method that combines recurrent neural
networks (RNN) with convolutional neural networks (CNN), using the Firefly updated chicken-based
comprehensive learning particle swarm optimization (FC-CSO) technique to enhance segmentation
accuracy and optimize integration of RNN and CNN, achieving accuracy rates of 90.6%, sensitivity
of 90.42%, and specificity of 89.88% [19].

A breast cancer classification method called BDR-CNN-GCN was introduced, integrating
dropout (DO), batch normalization (BN), and advanced neural networks (CNN and graph
convolutional network (GCN)). Applied to the MIAS breast dataset, the BDR-CNN-GCN algorithm
demonstrated specificity, sensitivity, and accuracy rates of 96.00%, 96.20%, and 96.10%, respectively
[20,21]. Despite these advancements, a large proportion of existing techniques have struggled to achieve
the necessary precision, particularly in differentiating between benign, malignant, and normal cases.

Consequently, the research demonstrated in study [22] aims to improve the automated clas-
sification of breast mammography patches by merging features extracted from three distinct pre-
trained deep learning networks. Subsequently, the TV feature selection technique is employed to
identify resilient and high-priority characteristics [22]. Another study proposed a deep learning
approach combining feature extraction models with learning classifiers to diagnose breast cancer
from mammograms, utilizing a pre-trained VGG16 model for feature extraction and an SVM for
classification [22]. Additionally, another research seeks to enhance the precision of breast cancer
classification using information gain-based feature selection and machine learning techniques on the
Wisconsin Diagnostic Breast Cancer (WDBC) dataset [23].

The decision to omit radiotherapy was linked to a higher likelihood of local recurrence, but it did
not adversely affect distant recurrence or overall survival in women aged 65 or older with low-risk,
hormone receptor-positive early-stage breast cancer [24]. Similarly, in women aged 55 or older with
T1N0, grade 1 or 2 luminal a breast cancer who underwent breast-conserving surgery and received only
endocrine therapy, the occurrence of local recurrence at the 5-year mark was minimal, even without
radiotherapy [25]. This study introduces a deep learning model focused on predicting breast cancer
risk using the InceptionResNetV2 model, demonstrating a 91% accuracy rate in experiments [26].

A hybrid method combining deep learning and genetic algorithms, termed HMB-DLGAHA,
has shown promising results in diagnosing breast cancer using ultrasound images. This method
uses a CNN to extract features from ultrasound images and a GA to fine-tune the CNN hyper-
parameters, achieving superior accuracy compared to other advanced methods [27,28]. Moreover,
the study discusses the latest advancements in utilizing immunotherapy for breast cancer treatment,
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outlining the challenges of applying these therapies to a diverse and varied disease. The researchers
provide a comprehensive summary of various immunotherapy combinations currently under clinical
trials [29,30].

The existing literature showcases significant advancements in breast cancer diagnosis using
various machine learning and genetic algorithm techniques. However, several limitations underscore
the necessity for further enhancements. For instance, feature selection remains a challenge, with
previous methods often struggling to effectively remove irrelevant or redundant features separately,
impacting the accuracy of predictive models. Additionally, optimization of model parameters can be
challenging due to the multitude of parameters involved. While some studies integrate deep learning
and genetic algorithms, they often do not combine these with transfer learning, which can significantly
enhance the model’s ability to generalize. Our proposed method addresses these critical limitations by
using a genetic algorithm-based optimized transfer learning approach, providing a comprehensive
solution that improves accuracy, robustness, and generalization capabilities compared to traditional
methods.

3 Materials and Methods

This study utilizes the MIAS Mammography ROIs dataset of breast cancer images, which is
divided into training, validation, and testing sets. Various CNNs are employed, including VGG16 and
VGG19, which are deep and effective for detailed feature extraction; MobileNet, designed for efficient
performance on mobile devices; and DenseNet, which enhances feature propagation and captures
detailed features. A Genetic Algorithm (GA) is used for feature extraction and selection, optimizing
feature subsets through principles of natural selection. This helps improve model performance by
identifying the most relevant features. The baseline approach involves using the built-in capabilities
of neural networks for feature extraction and training models like VGG16, VGG19, MobileNet, and
DenseNet. Performance is evaluated using accuracy, precision, and recall metrics. The proposed model
combines advanced deep learning techniques for early breast cancer detection. It employs GA and a
Support Vector Machine (SVM) for feature selection and classification, aiming to enhance diagnostic
accuracy and reduce computational complexity.

3.1 Dataset Description
This study utilizes a dataset consisting of 1679 MIAS Mammography ROIs breast cancer images

to classify images into three categories: normal, benign, and malignant. The dataset was divided into
training, validation, and testing sets as follows [26,31–33]:

The division of the MIAS Mammography ROIs dataset for the purposes of this study was carefully
structured to support the classification objectives. Specifically, the dataset is broken down into three
categories—normal, benign, and malignant—with each category utilizing 528 images for training. The
distribution for validation and testing varies slightly between categories: the normal class includes 31
images for both validation and testing; the benign class uses 9 images each for validation and testing;
and the malignant class employs 7 images for validation and 8 for testing, totaling 1584 images for
training, 47 for validation, and 48 for testing.

The methodology for selecting and labeling the regions of interest (ROIs) from these mammo-
grams was meticulous. Researchers cropped the mammograms to accurately locate lesions, obtaining
precise ROI patches from the standard dataset. In cases involving normal mammograms, the ROIs
were selected randomly, ensuring a diverse representation within the dataset [8]. These preparations
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facilitated a detailed analysis of the imaging data, as outlined in Table 1, which provides a breakdown
of the image patches and the segregated ROIs.

Table 1: The MIAS Mammography ROIs dataset contains a distribution of patches of mammogram
images

Class Training Validation Testing

Normal 528 31 31
Benign 528 9 9
Malignant 528 7 8
Total 1584 47 48

3.2 Pre-Trained Transfer Learning Models
3.2.1 VGG16 Model

VGG16, a convolutional neural network proposed by the Visual Geometry Group at Oxford,
comprises 16 layers with a simple and uniform architecture. It utilizes small 3 × 3 filters across its 13
convolutional layers, which are interspersed with five max-pooling layers, and concludes with three
fully connected layers. VGG16 employs the ReLU activation function and culminates in a softmax
layer for classification. Pre-trained on large datasets like ImageNet, VGG16 is highly effective for
feature extraction and is often employed by removing its fully connected layers to use the convolutional
base for generating feature maps from new images.

In breast cancer image analysis, VGG16 is instrumental for detecting malignant or benign tumors.
The process involves collecting and preprocessing breast cancer images, applying transfer learning to
fine-tune the pre-trained VGG16 on a specific dataset, and using the convolutional layers as fixed
feature extractors. The extracted feature maps, which capture spatial hierarchies and texture patterns,
are then fed into a classifier to predict cancerous tissues. VGG16 enhances diagnostic accuracy through
its deep architecture, which captures intricate details, and reduces training time and resources via
transfer learning. However, it is computationally intensive and performs best with large annotated
datasets, which can be a limitation in medical imaging [32].

3.2.2 VGG19 Model

VGG19, a neural network designed by the Visual Geometry Group at Oxford, is deeper than
its predecessor, VGG16, comprising 16 convolutional layers and 3 fully connected layers, totaling 19
layers. It employs small 3 × 3 filters, with its architecture organized into five blocks of convolutional
layers each followed by a max-pooling layer, using the ReLU activation function after each layer. For
feature extraction, the fully connected layers are typically removed, allowing the convolutional base
to generate detailed feature maps from new images.

In the context of breast cancer image analysis, VGG19 plays a crucial role in distinguishing
between malignant and benign tumors. The workflow involves gathering and preprocessing breast
cancer images, utilizing transfer learning to adapt the pre-trained VGG19 model to the specific dataset,
and using the convolutional layers to extract essential features. These feature maps, which capture
spatial hierarchies and textures, are then input into a classifier to determine if the tissue is cancerous.
VGG19’s deeper architecture enhances diagnostic precision by capturing more complex details,
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and its pre-trained models streamline the training process. Nonetheless, VGG19 is computationally
demanding and performs optimally with large annotated datasets, which can be challenging to obtain
in medical imaging [34,35].

3.2.3 MobileNet Model

MobileNet, a convolutional neural network developed by Google, is specifically designed for
efficient performance on mobile and embedded vision applications. It utilizes depthwise separable
convolutions, which significantly reduce the number of parameters and computational cost. With
the introduction of width and resolution multipliers, MobileNet can adjust the network width and
input resolution to further optimize performance. The architecture has several versions, including
MobileNetV1, V2, and V3, each offering improvements over its predecessor.

For feature extraction, MobileNet is pre-trained on large datasets like ImageNet, making it
effective at generating high-level feature maps from new images by removing the fully connected
layers. In breast cancer image analysis, MobileNet is employed to classify breast tissue images as
malignant or benign. The process involves collecting and preprocessing images, applying transfer
learning to fine-tune the pre-trained MobileNet on a specific breast cancer dataset, and using the
convolutional layers to extract relevant features. These features are then fed into a classifier to predict
the presence of cancer. MobileNet’s efficiency makes it particularly suitable for mobile and embedded
applications, providing competitive accuracy while remaining lightweight. Transfer learning enhances
its generalization capabilities, making it effective across various medical image datasets. However,
despite its efficiency, MobileNet may face limitations on extremely resource-constrained devices and
generally performs best with large annotated datasets, which can be challenging to obtain in medical
imaging [36].

3.2.4 DenseNet Model

DenseNet, short for Dense Convolutional Network, is a CNN architecture designed to improve
information and gradient flow through the network. Each layer within a dense block is connected
to every other layer, a structure that was proposed by Gao Huang and his team. In DenseNet,
each layer receives inputs from all preceding layers and passes its outputs to all subsequent layers,
enhancing feature propagation and reducing issues related to vanishing gradients. Transition layers,
placed between dense blocks, compress and downsample the feature maps. Meanwhile, bottleneck
layers utilize 1 × 1 convolutions to reduce computational costs. The growth rate within DenseNet
defines the number of feature maps added by each layer, helping to balance model capacity and
computational load. DenseNet variants, such as DenseNet121, DenseNet169, DenseNet201, and
DenseNet264, indicate the total number of layers.

Pre-trained on extensive datasets like ImageNet, DenseNet is highly effective for feature extrac-
tion. This effectiveness is achieved by removing fully connected layers and utilizing dense blocks to
generate high-level feature maps from new images. In this work, DenseNet121 is employed to aid
in classifying breast tissue images as normal, malignant, or benign. The process involves collecting
and preprocessing images, applying transfer learning to fine-tune the pre-trained DenseNet121 on a
specific breast cancer dataset, and using dense blocks to extract detailed features. These features are
then fed into a classifier to predict the presence of cancerous tissues. The DenseNet121 architecture
captures intricate details, enhancing diagnostic accuracy through efficient parameter use and improved
feature reuse. While it requires significant computational resources for training and inference, its
performance is optimized with large annotated datasets. DenseNet121’s design makes it particularly
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effective in capturing comprehensive features for medical image analysis, thereby aiding in accurate
classification and diagnosis [37].

3.3 Machine Learning Classifiers
Various classifiers are used for classifying databases, especially those related to medical data,

including SVM, K-Nearest Neighbor (KNN), Decision Trees (DT), and Random Forest (RF). Each
classifier has unique strengths: SVM is effective for high-dimensional data and small datasets; KNN
is straightforward and effective but can be slow for large datasets; Decision Trees are easy to interpret
and fast but may be prone to overfitting; Random Forest helps reduce overfitting and is both robust
and accurate. Each classifier can be effectively applied to breast cancer image classification, depending
on specific needs and constraints.

3.3.1 Support Vector Machine (SVM)

The Support Vector Machine (SVM) is highly effective for breast cancer image classification due
to its capability to handle high-dimensional data and perform robustly with limited samples. SVM
operates by identifying the optimal hyperplane that separates data points of different classes, such
as benign and malignant tissue samples. It employs kernel functions to transform the input data
into a higher-dimensional space, thereby facilitating the identification of a separating hyperplane.
The critical data points, known as support vectors, determine the position and orientation of this
hyperplane. In breast cancer classification, features are extracted from mammogram images, and the
SVM is trained on these features to distinguish between the classes. For new images, the SVM uses the
learned hyperplane to classify them accurately.

3.3.2 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a straightforward, instance-based learning algorithm that clas-
sifies data points based on the majority class of their k-nearest neighbors. It uses distance metrics,
such as Euclidean or Manhattan, to determine the closest neighbors and assigns a class based on
the majority vote among these neighbors. In breast cancer classification, features are extracted from
mammogram images, and KNN uses these features to classify the data. Although KNN does not
require a traditional training phase and retains all training data, it can be computationally intensive
for large datasets. The choice of k is critical and is typically determined through cross-validation to
ensure optimal performance.

3.3.3 Decision Tree (DT)

Decision Trees (DT) classify data by recursively splitting it based on feature values, forming a tree
where each node represents a feature and each branch represents a decision rule. The tree is constructed
by selecting features that offer the highest information gain or lowest Gini impurity. In breast cancer
classification, features extracted from mammogram images are used as inputs. The decision tree is then
trained by recursively splitting the data, creating a tree structure that classifies the images. For new
images, the decision tree navigates from the root to a leaf node based on the feature values, ultimately
assigning a class label. While decision trees are easy to interpret, they can be prone to overfitting,
making them potentially less robust compared to ensemble methods.
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3.3.4 Random Forest (RF)

Random Forest (RF) is an ensemble learning method that builds multiple decision trees and
combines their predictions to enhance robustness and reduce overfitting. It constructs a multitude of
decision trees during training, each trained on a bootstrap sample of the data and considering random
subsets of features at each split. The final prediction is made by aggregating the predictions of all
individual trees, typically through majority voting. For breast cancer classification, features extracted
from mammogram images are used, and multiple decision trees are trained on different subsets of the
data. For new images, the Random Forest aggregates predictions from all trees, thereby enhancing both
robustness and accuracy. This ensemble approach makes Random Forest highly effective for medical
image classification.

3.4 Genetic Algorithm (GA)
A genetic algorithm operates as a search heuristic that mimics natural evolution. This method

is particularly well-suited for solving optimization problems such as feature selection, where a vast
feature space must be effectively reduced without compromising the predictive power of the model.

a) Chromosome Representation: Each chromosome in our GA represents a potential subset of
features extracted from the CNN models. Mathematically, a chromosome is encoded as a binary vector
c = [c1, c2, . . . , cn], where ci is 1 if the i-th feature is selected and 0 otherwise. Here, n denotes the total
number of features extracted by the CNNs.

b) Initial Population: The GA begins with an initial population of PPP chromosomes, each
representing a different feature subset. The initial population is generated randomly to ensure diversity
in the feature subsets explored.

c) Fitness Function: The fitness of each chromosome is evaluated using a Support Vector Machine
(SVM) classifier. The fitness function f(c) is defined as the classification accuracy of the SVM trained
on the feature subset represented by chromosome c. Mathematically, this can be expressed as:

f (c) = Number of correctly classified samples
Total number of samples

(1)

d) Selection: Selection is performed using tournament selection, a method where k chromosomes
are chosen at random, and the fittest among them (based on their fitness scores) is selected for
reproduction. This can be mathematically described as:

Selected chromosome = arg maxc∈Tournament f (c) (2)

e) Crossover: Crossover combines pairs of parent chromosomes to produce offspring, introducing
genetic variation. We employ single-point crossover, where a random crossover point ppp is chosen,
and two offspring are generated by exchanging the segments after ppp between the parents. Let c1 and
c2 be two parent chromosomes. The offspring o1 and o2 are created as follows:

o1 = [
c1,1, . . . , c1,p, c2,p+1, . . . , c2,n

]
(3)

o2 = [
c2,1, . . . , c2,p, c1,p+1, . . . , c1,n

]
(4)

f) Mutation: Mutation introduces random changes to individual chromosomes, enhancing diver-
sity and preventing premature convergence. Each bit in the chromosome has a small probability μ\muμ
of being flipped (from 0 to 1 or from 1 to 0). For a chromosome c, the mutated chromosome c′ is
given by:



CMES, 2024, vol.141, no.3 2585

{
1 − ci with probability μ

ci with probability 1 − μ
(5)

g) Iterative Process: The GA iteratively evolves the population over multiple generations. In each
generation, the processes of selection, crossover, and mutation are applied to create a new population.
The algorithm terminates when a stopping criterion is met, such as a maximum number of generations
G or convergence to a stable fitness value.

3.5 Baseline Approach
The baseline approach uses the four popular pre-trained convolutional neural network (CNN)

models, explained in Section 3.2 as a starting point to extract the features from breast ROIs images. In
the baseline approach features are extracted using the built-in capabilities of a number of CNN models
such as VGG16, VGG19, MobileNet, and DenseNet. After each of the models is trained using training
datasets, features are extracted from the last layer of each trained model. Before the training data is
fed int o the models, the input images undergo preprocessing. As illustrated in Fig. 1, the processes
begin with an input image from a comprehensive dataset of breast cancer images. These images are
rigorously preprocessed and enhanced using various image processing methos aimed at improving
image quality and ensuring suitability for further analysis. The preprocessing steps emphasize noise
reduction, contrast enhancement, resizing, and normalization.

Figure 1: A flowchart architecture of baseline approach

Following the preprocessing, the model extracts feature from the images using the pre-trained
deep learning models. These extracted features are then subjected to validation and testing, using a
portion of the dataset reserved for these purposes. Validation aids in fine-tuning model parameters,
while testing provides an unbiased evaluation of the model’s performance. The final phase involves a
comprehensive performance evaluation of the model, where the evaluation metrics include classifying
images into three categories: normal, malignant, or benign. The model’s performance is assessed using
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accuracy, which measures the proportion of correctly classified instances among the total instances.
Additionally, precision and recall metrics are utilized to evaluate the model’s effectiveness in identifying
true positive instances among those classified as positive and the actual positive instances, respectively.
An overall result or aggregate measure of the model’s performance on the test data is also considered
reflecting the goodness of the features extracted from the layer immediately before the output layer.
These extracted features are further refined in subsequent steps of our proposed model.

3.6 Proposed Approach
The graphical abstract of proposed approach for automatic early breast cancer classification is

presented in Fig. 2. Initially, the model preprocesses the input images using standard procedures,
followed by employing multiple pre-trained CNNs to extract features. In this critical phase, each
CNN is specifically trained on the input images to classify the data into malignant, benign, or normal
categories. The features extracted from all the CNNs are then aggregated into a comprehensive feature
set. Subsequently, a Genetic Algorithm (GA) is used to optimize these features further, aiming to
identify the most effective subset for detection. After optimizing the features, various classifiers are
employed to categorize the data accurately. This integration of advanced techniques, including the GA
for feature optimization, is a key aspect of the model as it enhances the precision of cancer detection
while minimizing computational complexity. This model holds significant potential to improve early
breast cancer detection substantially. In the following subsections, we describe the steps of proposed
approach in more details.

Figure 2: Graphical abstract of proposed approach of automatic breast cancer classification

3.6.1 Feature Extraction Using Pre-Trained Models

As mentioned earlier, in the proposed approach, features are extracted using the built-in capa-
bilities of several CNN models, including VGG16, VGG19, MobileNet, and DenseNet. Each CNN
model produces a feature vector X for each input image. The concatenation of feature vectors from
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multiple CNNs forms a comprehensive feature set X = [x1, x2, . . . , xk], where k is the number of CNN
models used. After training each of these models using training datasets, features are extracted from the
last layer of each trained model. Prior to feeding the training data into the models, the input images
undergo preprocessing, as illustrated in Fig. 3 and described in Section 3.4. The features extracted
following the execution of the baseline approach, as detailed in Section 3.4, are further refined in
subsequent steps of our proposed model.

Figure 3: The architecture detail of proposed approach

3.6.2 Feature Selection Using GA

The Genetic Algorithm (GA) operates by refining a composite feature set X derived from four
distinct deep learning architectures: VGG16, VGG19, MobileNet, and DenseNet. This feature set is
critical for the accurate classification of input images into one of three categories: Malignant, Benign,
or Normal. Within the GA framework, a classifier assesses the effectiveness of each feature subset,
guiding the selection process towards the most promising configurations.

Genetic Algorithms are a class of search heuristics that emulate the principles of natural evolution,
proving particularly adept at tasks such as feature extraction and selection. The process initiates with
the generation of an initial population of potential solutions. Each solution, commonly termed an
individual or chromosome, comprises a binary-encoded subset of features, where each bit indicates
the presence (1) or absence (0) of a specific feature.
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The effectiveness of each chromosome is assessed via a fitness function—predetermined to
evaluate how well the subset aids in performing classification or regression tasks. In our methodology,
the well-established Support Vector Machine (SVM) calculates the fitness score for each individual,
focusing on classification accuracy as the primary metric.

To ensure the propagation of superior solutions, chromosomes with higher fitness scores are
chosen to create a mating pool. We employ tournament selection as our method of choice to encourage
competition among the most effective chromosomes. During the crossover phase, feature subsets from
two high-performing chromosomes are recombined to generate offspring, thereby fostering diversity
and amalgamating beneficial attributes from different progenitors. The recombination can occur
through various techniques, including single-point, multi-point, or uniform crossover.

Following crossover, mutations are introduced to maintain genetic diversity and explore novel
feature combinations. This process involves randomly flipping bits in the chromosomes, thus altering
the selected features within the extensive feature set. The newly formed generation of individuals,
created via crossover and mutation, supersedes the existing population through strategies such as
generational replacement, where the entire population is renewed, or steady-state replacement, where
only select individuals are replaced.

This iterative cycle persists over numerous generations, each progressively enhancing the efficacy
of the feature subsets and, consequently, the overall performance of the model. The iterative process
concludes either when no new feature subset is selected for a predefined number of consecutive
iterations or when a specific number of iterations has been completed. The final feature subset, at
the culmination of this process, is deemed the optimal configuration for the classifier. A simplified
pseudocode of the proposed approach is shown below:

Algorithm 1: Pseudocode of the proposed approach
Step 1: Feature Extraction
LOAD pre-trained_model(‘imagenet’, False, (224, 224, 3))
EXTRACT features using model.predict for train, validation, and test sets
FLATTEN extracted features
Step 2: Feature Selection with Genetic Algorithm
INITIALIZE population with random binary matrices
FOR each generation in GENERATIONS:

EVALUATE fitness for each chromosome using classifier accuracy
SELECT top performers and perform crossover and mutation
UPDATE population with new generation

SELECT best feature set based on highest fitness
Step 3: Classification
TRAIN classifier with selected features from train set
EVALUATE classifier on test set and PRINT accuracy
PLOT accuracy trends across generations
DISPLAY classification metrics and confusion matrix

By integrating the GA with CNN models, our approach effectively reduces the dimensionality of
the feature space while retaining the most informative features for accurate breast cancer diagnosis.
This synergistic combination leverages the feature extraction capabilities of deep learning and the
optimization power of genetic algorithms, resulting in a robust and efficient diagnostic system.
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3.6.3 Classification Using Adopted Machine Learning Classifiers

In this step, the ML classifiers outlined in Section 3.4 are trained using the selected features from
Section 3.6.2. The training utilizes a set of breast images and is evaluated using a separate test set
of breast images. This process involves several key steps to transform extracted and selected features
into actionable insights through predictive modeling. In the training process, two versions of SVM
used in this study Localized Support Vector Machine (LSVM) and Proximal Support Vector Machine
(PSVM), along with KNN, DT, and RF models, learn the relationship between features and target
labels. Hyper-parameter tuning is performed using the validation set to optimize the model parameters.

Classification of new samples in the test set is conducted using the decision functions derived from
the classifiers during the training phase. The class label is assigned based on the sign of the decision
function, f (x), as follows:

Class = sign (f (x)) (6)

Eq. (1) assigns the sample to one class if f (x) > 0, and it assigns the sample to the other class if
f (x) < 0. The outputs of classification are the class labels of breast images, which are evaluated using
the appropriate metrics such as accuracy, precision, recall, and F1-score. The following equation give
how these evaluation metrics can be computed.

Accuracy = (TP + TN)

(TP + TN + FP + FN)
(7)

Precision = TP
(TP + FP)

(8)

Recall = TP
(TP + FN)

(9)

F1 − score = 2 × (Precision × Recall)
(Precision + Recall)

(10)

4 Experimental Results and Discussion

This section explains the experiment sequence according to data preparation, experimental steps,
comparison methods, and evaluation metrics. The experiment targets are clearly defined, and the steps
for carrying out the experiment are detailed, ensuring a comprehensive evaluation of both the baseline
and proposed methods. We detail the step-by-step outline for encompassing the phenomena observed,
their causes, and recommendations based on the results. First, the results of baseline approach
will be given; then, the results of proposed approach will be described to show the effectiveness of
proposed approach to classify the breast images into normal, malignant or benign classes. In data
preparation, the data source used in the experimental results is a publicly available breast cancer
imaging dataset, namely MIAS Mammography ROIs, (www.kaggle.com/datasets/annkristinbalve/
mias-mammography-rois, accessed on 05 April 2024), described in Section 3.1. It is a preprocessed
version of the original MIAS dataset and contains a sufficient number of labeled images available
in NPY format, ensuring adequate evaluation for the research models. All images in the dataset are
preprocessed by removing artifacts such as labels and improving them by using Contrast Limited
Adaptive Histogram Equalization (CLAHE) method. The region of interests (ROI) of abnormal
images (malignant and benign) are extracted using x and y coordinates and radius given by the original
MIAS dataset. In contrast, the normal images are extracted using a central breast area. To enhance the
size of training set and increase data diversity, all training images are augmented by a factor of 16 using

www.kaggle.com/datasets/annkristinbalve/mias-mammography-rois
www.kaggle.com/datasets/annkristinbalve/mias-mammography-rois
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rotation with different angles (90°, 180°, and 270°), vertical flipping, random brightness, and applying
contrast adjustments. The training set are balanced, yielding 528 images for each class. Finally, the
images are resized to 224 × 224 pixels for fitting the input dimensions of pre-trained models and
normalized the pixel values to a range of 0 and 1.

For the step-by-step experimental procedure of the baseline approach, we start with pre-trained
model selection in which some of common and effective models like VGG16, VGG19, MobileNet,
and DenseNet are chosen. Then, we execute the feature extraction step by freezing early layers of
the pre-trained model to use them as feature extractors and adding a flatten layer with two custom
dense layers on top of the pre-trained models for classification. The first dense layer consists of 512
neurons and the second dense layer contains three neurons equal to the number of classes. After that,
we apply training and validation step by using a default learning rate (0.001), batch size (32), and
number epochs (50); as well as, utilizing Adam optimizer and categorical cross-entropy loss function.
The training and validation step is done on the classification layer using training and validation sets.
Finally, evaluation step of trained models is applied on the test set using precision, accuracy, recall,
and F1-score metrics. Similarly, the step-by-step experimental procedure of the proposed approach
includes pre-trained model selection, feature extraction, classification models selection and building,
genetic algorithm design for training and validating the classification models, and evaluation. In the
feature extraction step of proposed approach, we add a 2D global average pooling layer on top of the
pre-trained models for down-sampling the spatial dimensions of features with the average value of each
small region. After that, we reshape the output of 2D global average pooling layer into one dimension
vector. For the classification models selection and building, we select and build a four classifiers
described in Section 3.3. These classifiers are built with the default values of their hyper-parameters.
The genetic algorithm design step consists of a number of sub-steps includes initializing the values
of genetic algorithm hyperparameters, such as population size with 3, the number of generations with
25, mutation rate with 0.03, crossover rate with 0.7. Then, the chromosome encoding sub-step encodes
the input reshaped features obtained from the 2D global average pooling layer. After that, we train the
selected classifiers on a subset of the input features and the fitness function is evaluated based on
the validation accuracy. In the selection sub-step, we select top-performing models based on fitness
scores. The crossover and mutation sub-step generates the offspring by applying crossover to combine
the selected features of trained models and performs mutation by introducing random changes to some
offspring to maintain diversity. The iteration sub-step repeats fitness evaluation, selection, crossover,
and mutation for several generations according to the number of generations’ value. The final trained
models with the best average validation accuracy of the final population are selected for evaluation
step on the test set using the evaluation metrics indicted in the baseline approach. The experiments are
implemented using TensorFlow and Keras libraries on a graphics processing unit (GPU) hardware
to accelerate training process of models. In the following subsections, we describe the experimental
results with graphs and numbers.

4.1 Results of Baseline Approach
The baseline approach (BL) results for breast cancer image classification were evaluated using

various metrics, including precision, recall, F1-score, and accuracy. It should be noted that the BL
approach for feature extraction relied on the inherent capabilities of each neural network model
without utilizing feature selection optimization techniques. These results were assessed separately on
validation and test sets across different models: VGG16, VGG19, MobileNetV2, and DenseNet121.

Fig. 4 illustrates the training and validation progress of four different models over 50 epochs,
evaluated using two metrics: accuracy and loss. The subfigures (a, b, c, and d) are organized into pairs,
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with each pair depicting accuracy progress and loss progress. Fig. 4a shows the accuracy progress,
where both training and validation accuracy improve over the epochs, though there is noticeable
fluctuation in the validation accuracy.

Figure 4: Accuracy and loss of training and validation progress over 50 epochs for the four different
models: (a) VGG16, (b) VGG19, (c) MobileNetV2, and (d) DenseNet121
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The loss progress demonstrates that both training and validation losses decrease over the epochs,
although the validation loss exhibits fluctuations. Fig. 4b presents a similar trend in accuracy progress
to Fig. 4a, but with reduced fluctuations in validation accuracy. Here, the loss progress indicates
a steady decrease in both training and validation loss, with some fluctuations in validation loss,
particularly noticeable after epoch 20.

Fig. 4c shows a steady increase in training accuracy, while validation accuracy exhibits more
pronounced fluctuations compared to Fig. 4b. The loss progress reveals a steady decrease in training
loss, but considerable fluctuations in validation loss, suggesting potential overfitting. Fig. 4d indicates
that training accuracy reaches nearly 100%, while validation accuracy stabilizes after initial fluctua-
tions. The loss progress reveals a sharp decline and stabilization of training loss at a very low value,
whereas validation loss initially decreases but then begins to increase and fluctuate, indicating strong
overfitting.

The confusion matrices in Fig. 5 provide a clear visual representation of the performance of the
four different models in classifying instances into three classes: Normal, Benign, and Malignant.
Overall, Models (a) and (b) demonstrate similar performance, showing higher accuracy in predicting
the Benign and Malignant classes compared to Models (c) and (d). Models (c) and (d) display
more misclassifications, indicating areas for improvement. The consistent perfect classification of the
Normal class across all models suggests that this class is the easiest to predict, while the variability in
the Benign and Malignant classes highlights the challenges in distinguishing between these categories.

Fig. 6 compares the performance metrics of four models (VGG16, VGG19, MobileNetV2, and
DenseNet121) on the validation set, focusing on Accuracy, Precision, and Recall. Overall, VGG16
outperforms the other models across all three metrics. VGG19 also shows strong performance but
slightly lags behind VGG16. DenseNet121 and MobileNetV2 exhibit similar performance metrics,
with both models scoring lower in accuracy, precision, and recall compared to VGG16 and VGG19.
These results suggest that VGG16 is the most effective model among the four for the evaluated task.

Figure 5: (Continued)
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Figure 5: Confusion matrices of baseline approach on validation set for the four different models: (a)
VGG16, (b) VGG19, (c) MobileNetV2, and (d) DenseNet121

Figure 6: Pre-trained transfer learning models on validation set

Fig. 7 presents the four confusion matrices from the test set, illustrating the performance of classi-
fication models on a three-class problem (Normal, Benign, Malignant). All models excel in identifying
Normal instances, with variations in misclassification rates for the other two classes. Model (a) shows
some misclassification of Malignant as Benign, Model (b) has balanced misclassification between
Benign and Malignant, Model (c) perfectly classifies Normal instances but confuses Malignant and
Benign, and Model (d) performs similarly to Model (b) but with more frequent misclassification of
Malignant as Benign.

Overall, while all models perform well in classifying Normal instances, their performance varies
for the Benign and Malignant classes. Model (c) shows the best performance for Normal but has more
misclassifications in the Malignant category.
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Figure 7: Confusion matrices of baseline approach on test set for the four different models: (a) VGG16,
(b) VGG19, (c) MobileNetV2, and (d) DenseNet121

Fig. 8 compares the performance of the four models—VGG16, VGG19, MobileNetV2, and
DenseNet121—across accuracy, precision, and recall metrics. VGG16 shows the lowest performance
with an accuracy of 0.7708, precision of 0.7872, and recall of 0.7708. VGG19 performs better with
an accuracy of 0.8125, precision of 0.8085, and recall of 0.7917. MobileNetV2 achieves the highest
performance across all metrics, with an accuracy, precision, and recall of 0.8333. DenseNet121 has
consistent performance with an accuracy, precision, and recall of 0.7917, slightly outperforming
VGG16 but trailing behind VGG19 and MobileNetV2. Overall, MobileNetV2 demonstrates the best
performance, followed by VGG19, DenseNet121, and VGG16.
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Figure 8: Pre-trained transfer learning models on test set

4.2 Results of Proposed Approach
Fig. 9 compares the performance of VGG16, VGG19, MobileNetV2, and DenseNet121 across

five classification algorithms: LSVM, PSVM, KNN, DT, and RF, measured by percentage accuracy.
VGG16 shows consistent performance, achieving the highest accuracy with RF (85.42%) and the
lowest with PSVM (79.17%). Similarly, VGG19 achieves its highest accuracy with DT (83.33%)
and its lowest with PSVM (79.17%). MobileNetV2 exhibits the best overall performance, excelling
with LSVM (89.58%) and DT (87.50%), but showing its lowest performance with PSVM (83.33%).
DenseNet121 also demonstrates strong performance, particularly with LSVM (85.42%) and DT
(87.50%), and records its lowest accuracy with PSVM (83.33%).

Figure 9: The proposed approach on test set using GA with adopted classifiers

Overall, MobileNetV2 stands out as the top performer across most algorithms, especially in
LSVM and DT, while VGG16 and VGG19 maintain consistent but slightly lower performance.
DenseNet121 shows strong results that are comparable to MobileNetV2, albeit with lower accuracy
in PSVM.

Fig. 10 shows the “Average Accuracy of Each Generation” over 25 generations. The generation
number ranges from 0 to 25, with average accuracy fluctuating between approximately 0.75 and 0.85.
The initial generation (0) starts at about 0.81. Across the generations, for example, from generation
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1 to 5, accuracy oscillates between 0.77 and 0.81. The highest accuracy occurs around generation
10, peaking above 0.83, while a significant drop is observed around generation 15, where accuracy
dips below 0.76, marking the lowest point on the graph. Despite these fluctuations, the overall trend
indicates that average accuracy does not improve significantly over the generations, generally hovering
around the 0.79 to 0.81 range. Toward the later generations (20 to 25), accuracy stabilizes around 0.80
to 0.81.

Figure 10: Pre-trained VGG16 transfer learning model with GA using RF classifier

The high fluctuation in average accuracy indicates variability in the performance of each gener-
ation, which could be due to various factors such as changes in the data, algorithm adjustments, or
randomness in the process. The peaks and troughs, such as those observed in generations 10 and 15,
highlight moments of particularly high and low performance, respectively. These could be investigated
further to understand what caused these significant changes. The lack of a clear upward trend suggests
that the method or algorithm used may not be consistently improving with each generation, indicating
the need for refinement in the approach, such as better optimization techniques, parameter tuning, or
additional data preprocessing. The line graph provides a visual representation of the average accuracy
across 25 generations. While there are moments of high accuracy, the overall lack of consistent
improvement suggests areas for further investigation and potential optimization in the process being
analyzed.

Figs. 11 and 12 provide further insights into classification performance. Fig. 11 shows examples
of classifying some samples selected randomly from the test set (Red color for the misclassified
samples, the correct labels are Malignant, Normal, and Malignant; however, the model classified
them as Benign, Benign, and Normal). Fig. 12 presents the “Average Accuracy of Each Generation,”
illustrating the performance of a pre-trained VGG19 model combined with a Genetic Algorithm (GA)
using a Random Forest (RF) classifier over 25 generations. The graph displays significant fluctuations
in accuracy, for instance, a peak just above 0.82 around generation 10 and a dramatic decrease to
just below 0.77 at generation 15. Subsequently, accuracy rises sharply again to approximately 0.82 at
generation 20 before showing a downward trend toward the end, stabilizing around 0.79 at generation
25. These fluctuations suggest that the performance of each generation is quite variable, which could
be attributed to different factors like the stochastic nature of the genetic algorithm, the selection of
features, or the tuning parameters of the random forest classifier. The peaks and troughs observed
might indicate that certain generations are finding more optimal solutions or encountering overfitting
issues. The lack of a clear upward trend in improvement across generations implies that while the
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model occasionally reaches higher accuracies, it does not consistently enhance its performance over
time. This graph provides useful insights into the behavior of the transfer learning model combined
with GA and RF across multiple generations, highlighting the variability in performance and the need
for further optimization and stability in the model’s learning process. Fig. 13 displays nine randomly
selected mammogram images from the test set, each classified into three categories: Normal, Benign,
and Malignant.

Figure 11: Examples of classifying some samples selected randomly from the test set

Fig. 14 illustrates how the average accuracy of MobileNetV2 changes across 25 generations,
marking the evolution of accuracy over time. Starting at around 0.81 in the first generation, the
trend shows an overall upward trajectory in accuracy, with fluctuations reflecting the learning or
optimization process. The highest accuracy achieved is slightly above 0.88 around the 21st generation,
marking peak performance. After reaching this peak, accuracy slightly drops and stabilizes around
0.87 by the 24th generation, suggesting a plateau in performance. This trend indicates that the
process or model is effectively learning or optimizing over time, thereby increasing its performance.
The fluctuations suggest that there may be variability or instability in the process, but the general
trend is positive, showing consistent improvement. The peak at generation 21 indicates a significant
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improvement, followed by a slight decline, which could imply reaching a local optimum before settling
to a more stable performance level, highlighting areas for potential further optimization.

Figure 12: Pre-trained VGG19 transfer learning model with GA using RF classifier

Figure 13: Examples of classifying some samples selected randomly from the test set
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Figure 14: Pre-trained MobileNetV2 transfer learning model with GA using LSVM classifier

Fig. 15 provides examples of classifying some samples selected randomly from the test set (Red
color for the misclassified sample, the correct label is Malignant and the model classified it as Normal).

Figure 15: Examples of classifying some samples selected randomly from the test set
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Fig. 16 illustrates the evolution of accuracy over time for a pre-trained DenseNet121 transfer
learning model with GA using an RF classifier across 25 generations. The accuracy begins at around
0.73 in the first generation, indicating the initial performance level. There is an overall upward trend
in accuracy, with fluctuations throughout the generations that reflect the learning or optimization
process. The highest accuracy is achieved slightly above 0.88 around the 21st generation, marking the
peak performance. After reaching this peak, the accuracy drops slightly and stabilizes around 0.85 by
the 24th generation, suggesting a plateau in performance. This trend indicates that the average accuracy
improves as the generations progress, suggesting that the model is effectively learning or optimizing
over time, thereby increasing its performance. The fluctuations suggest variability or instability in the
process, but the general trend is positive, showing consistent improvement. The peak at generation 21
signifies a significant improvement, followed by a slight decline, which could imply reaching a local
optimum before settling to a more stable performance level, highlighting areas for potential further
optimization.

Figure 16: Pre-trained DenseNet121 transfer learning model with GA using RF classifier

Fig. 17 shows examples of classifying some samples selected randomly from the test set (Red color
for the misclassified samples, with correct labels being Benign; however, the model classified them as
Malignant).

Fig. 18 displays four confusion matrices labeled (a), (b), (c), and (d), each representing the perfor-
mance of a classification model on three classes: Normal, Benign, and Malignant. All four confusion
matrices consistently show perfect classification for the Normal class, indicating the model’s effective-
ness in distinguishing Normal cases. However, there is significant variability in the classification of
Benign and Malignant cases. Common observations include frequent confusion between Benign and
Malignant classes across all matrices, indicating difficulty in distinguishing these classes accurately.
Misclassifications typically occur between Benign and Malignant, with varying degrees of accuracy
depending on the model used for each matrix. These results suggest that while the classification model
performs well for Normal cases, there is room for improvement in distinguishing between Benign and
Malignant cases. Enhancements in the model, such as feature selection, parameter tuning, or more
sophisticated algorithms, may help improve classification accuracy for these challenging cases.
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Figure 17: Examples of classifying some samples selected randomly from the test set

Figure 18: (Continued)
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Figure 18: Confusion matrices of proposed approach on test set for the four different models: (a)
VGG16-GA-RF, (b) VGG19-GA-RF, (c) MobileNetV2-GA-LSVM, and (d) DenseNet121-GA-RF

Fig. 19 compares the performance metrics (Accuracy, Precision, and Recall) of four different
models: VGG16-GA-RF, VGG19-GA-RF, MobileNetV2-GA-LSVM, and DenseNet121-GA-RF.
Each metric is represented by a different color bar for each model. The DenseNet121-GA-RF model
achieves the highest accuracy at 0.8958, followed by the MobileNetV2-GA-LSVM model at 0.875.
The VGG16-GA-RF model has an accuracy of 0.8542, while the VGG19-GA-RF model has the
lowest accuracy at 0.8333. For Precision, the DenseNet121-GA-RF model again performs the best
with a precision of 0.8931. The VGG16-GA-RF model has a precision of 0.8426, and the VGG19-
GA-RF model has a lower precision of 0.8138. The MobileNetV2-GA-LSVM model has a precision
of 0.8448. In terms of Recall, both the VGG16-GA-RF and DenseNet121-GA-RF models have a
recall of 0.8542. The MobileNetV2-GA-LSVM model has a recall of 0.875, while the VGG19-GA-
RF model has the lowest recall at 0.8333. These results indicate that the DenseNet121-GA-RF model
consistently performs well across all three metrics, achieving the highest accuracy and precision, and
sharing the highest recall with the VGG16-GA-RF model. The MobileNetV2-GA-LSVM model also
shows strong performance, particularly in recall. The VGG16-GA-RF model performs moderately
across all metrics. In contrast, the VGG19-GA-RF model exhibits the lowest performance in all three
metrics, suggesting it may not be as effective as the other models for this particular task. The bar chart
visually highlights the performance differences between these models, providing clear evidence of the
superior performance of the DenseNet121-GA-RF model and identifying areas where the VGG19-
GA-RF model may need improvement.

4.3 Comparison Analysis
Fig. 20 compares the F1-score and Accuracy of four models: DenseNet121, MobileNetV2,

VGG19, and VGG16. These models are evaluated under two approaches: the Proposed Approach
and the Baseline Approach. Each metric is represented by different colored bars: orange for F1-score
and blue for Accuracy.
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Figure 19: Pre-trained transfer learning models on test set of the proposed approach

Figure 20: Comparison between the baseline approach and the proposed approach

Under the Proposed Approach, the DenseNet121 model achieves an F1-score of 86.96% and an
Accuracy of 87.50%. The MobileNetV2 model has the highest accuracy at 89.58% and a slightly lower
F1-score of 89.12%. The VGG19 model has an F1-score of 81.79% and an Accuracy of 83.33%. The
VGG16 model exhibits an F1-score of 84.69% and an Accuracy of 85.42%.

Under the Baseline Approach, the DenseNet121 model has an F1-score of 75.81% and an
Accuracy of 79.17%. The MobileNetV2 model shows an F1-score of 81.25% and an Accuracy of
83.33%. The VGG19 model presents an F1-score of 80.61% and an Accuracy of 81.25%. The VGG16
model records an F1-score of 77.47% and an Accuracy of 77.08%.

These results indicate that under the Proposed Approach, all models show improved perfor-
mance compared to the Baseline Approach. DenseNet121 and MobileNetV2 particularly stand out,
with MobileNetV2 achieving the highest accuracy of 89.58%. DenseNet121 also shows significant
improvement in both F1-score and accuracy under the Proposed Approach compared to the Baseline
Approach.
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The VGG16 and VGG19 models also display notable improvements under the Proposed
Approach. VGG16 achieves an F1-score of 84.69% and accuracy of 85.42%, while VGG19 records
an F1-score of 81.79% and accuracy of 83.33%. Under the Baseline Approach, both models perform
lower, with VGG16 having the lowest scores of 77.47% (F1-score) and 77.08% (accuracy).

This bar chart effectively highlights the performance improvements of all models under the Pro-
posed Approach compared to the Baseline Approach, particularly showcasing the strong performance
of MobileNetV2 and DenseNet121. The consistent improvement across all models under the Proposed
Approach suggests the effectiveness of the proposed modifications or enhancements in boosting the
models’ performance.

Detailed analysis of the experimental results can be clarified in terms of phenomena, cause, and
recommendations. The phenomena are the observation for improved performance metrics in the
proposed approach compared to the baseline and the cause is the optimization of selected features
by the genetic algorithm that leads to better training of the models. The recommendations are
incorporating genetic algorithms in the optimization of other machine learning models for medical
diagnosis, exploring the application of this approach to other types of cancer and medical imaging
tasks for scalability, and investigating the integration of other optimization techniques such as
Bayesian optimization for further research and improvements.

4.4 Discussion
The experimental results demonstrate the effectiveness of the proposed diagnostic method in clas-

sifying breast cancer images into normal, benign, and malignant categories, utilizing a robust dataset
and advanced image processing techniques. The method involved a meticulous data preparation
process using the MIAS Mammography ROIs dataset, where images were enhanced using the CLAHE
method and augmented to increase data diversity and balance the training set. In the experimental
analysis, both baseline and proposed methods were meticulously evaluated. The baseline method
utilized conventional pre-trained models without feature selection optimization, revealing a competent
performance, particularly in distinguishing normal images with high accuracy. However, the variability
in precision between benign and malignant classifications suggested areas for improvement.

The proposed method, integrating genetic algorithms with pre-trained models, demonstrated
significant advancements over the baseline. It was particularly effective in optimizing feature selection,
which led to noticeable improvements in classifying challenging malignant cases, thereby potentially
reducing the rate of false negatives—a critical factor in medical diagnostics. Figures comparing the
training and validation progress indicated that while the baseline models were effective, the proposed
method excelled in stability and accuracy across multiple metrics. This method not only enhanced
the efficiency of the classification process but also proved scalable for larger datasets, outperforming
traditional methods which typically require longer processing times.

The use of advanced analytics to dissect the performance of each model across different epochs
showcased how specific models like MobileNetV2 and DenseNet121 consistently provided superior
performance, adapting effectively to the nuances of medical image classification. As a whole, the
proposed approach marks a significant improvement in the field of medical imaging diagnostics,
offering a more accurate, efficient, and scalable method for the early detection of breast cancer. The
integration of genetic algorithms has proven particularly valuable, optimizing the feature selection
process and significantly boosting the classification accuracy of the system. This methodology not
only sets a new standard for clinical diagnostic practices but also paves the way for further research
into its application across different forms of medical diagnostics.
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The proposed method can be integrated into clinical settings by deploying it alongside radiologists’
assessments, requiring compatible hardware and software systems. Ensuring interoperability with
existing medical imaging systems and electronic health records is crucial. Potential obstacles include
the need for high-performance computing infrastructure and regulatory approval, which involves
demonstrating safety, efficacy, and addressing ethical issues like patient data privacy and model
transparency. Our approach improves diagnostic accuracy from 83.33% to 89.58%, reducing unnec-
essary biopsies and healthcare costs. Automating preliminary mammogram analysis can streamline
diagnostics, allowing radiologists to focus on complex cases. Clinicians will need training to effectively
use and trust AI-supported tools, understanding their capabilities and limitations. By addressing these
aspects, we demonstrate the method’s potential for improving breast cancer diagnosis and its practical
implementation in clinical settings.

5 Conclusion

The study presented a GA-based optimized transfer learning approach for breast cancer diagnosis,
utilizing various CNNs combined with GA for feature selection. The proposed approach aimed to
enhance the diagnostic accuracy of detecting breast cancer from mammography images by optimizing
the feature selection process and classifier performance.

Key findings and conclusions indicate that the proposed approach significantly improved the
accuracy, precision, and recall of breast cancer diagnosis models compared to baseline methods.
DenseNet121 and MobileNetV2 models, in particular, demonstrated the highest performance metrics,
underscoring their suitability for this task. The use of a Genetic Algorithm for feature selection proved
effective in optimizing the CNN models, leading to enhanced performance in classifying breast cancer
images. The GA successfully identified the most relevant features that contributed to the improved
performance of the models.

The DenseNet121-GA-RF model consistently performed well across all metrics, achieving the
highest accuracy and precision. MobileNetV2-GA-LSVM also showed strong performance, particu-
larly in the recall. Meanwhile, VGG16 and VGG19 models exhibited moderate performance but still
benefited from the proposed approach compared to the baseline.

The study suggests further optimization and refinement of the GA and CNN models to enhance
stability and reduce performance fluctuations across generations. Additional data preprocessing,
parameter tuning and the use of more sophisticated algorithms may further improve the diagnostic
accuracy. The improved accuracy and efficiency of the proposed method could lead to better diagnostic
tools for breast cancer, potentially reducing the need for invasive biopsies and lowering healthcare
costs. The approach holds promise for integration into clinical practice, providing radiologists with
more reliable and accurate diagnostic support.

In conclusion, the GA-based optimized transfer learning approach presents a robust method
for enhancing breast cancer diagnosis through effective feature selection and model optimization.
The study’s findings underscore the potential of combining advanced deep learning techniques with
evolutionary algorithms to achieve superior diagnostic performance in medical imaging.

Future research could focus on further optimizing the genetic algorithm by investigating advanced
techniques such as adaptive genetic algorithms or hybrid approaches that combine GA with other opti-
mization methods like particle swarm optimization or simulated annealing. Additionally, integrating
the genetic algorithm with other machine learning techniques, such as ensemble learning methods or
reinforcement learning, may further enhance the robustness and accuracy of the diagnostic models.
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Exploring the performance of newer or less commonly used CNN architectures in combination with
GA could offer additional improvements in diagnostic accuracy. Implementing more sophisticated
data augmentation and preprocessing techniques would increase the variability and quality of the
training data, improving the generalization capability of the models. Finally, developing and testing
the proposed method on diverse and larger datasets to ensure generalization and scalability, confirming
its robustness across different imaging conditions and populations.
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