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ABSTRACT

The segmentation of head and neck (H&N) tumors in dual Positron Emission Tomography/Computed Tomogra-
phy (PET/CT) imaging is a critical task in medical imaging, providing essential information for diagnosis, treatment
planning, and outcome prediction. Motivated by the need for more accurate and robust segmentation methods, this
study addresses key research gaps in the application of deep learning techniques to multimodal medical images.
Specifically, it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures
and proposes an innovative 2.5D UNet Transformer model as a solution. The primary research questions guiding
this study are: (1) How can the integration of convolutional neural networks (CNNs) and transformer networks
enhance segmentation accuracy in dual PET/CT imaging? (2) What are the comparative advantages of 2D, 2.5D, and
3D model configurations in this context? To answer these questions, we aimed to develop and evaluate advanced
deep-learning models that leverage the strengths of both CNNs and transformers. Our proposed methodology
involved a comprehensive preprocessing pipeline, including normalization, contrast enhancement, and resampling,
followed by segmentation using 2D, 2.5D, and 3D UNet Transformer models. The models were trained and tested
on three diverse datasets: HeckTor2022, AutoPET2023, and SegRap2023. Performance was assessed using metrics
such as Dice Similarity Coefficient, Jaccard Index, Average Surface Distance (ASD), and Relative Absolute Volume
Difference (RAVD). The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed
the 2D and 3D models across most metrics, achieving the highest Dice and Jaccard values, indicating superior
segmentation accuracy. For instance, on the HeckTor2022 dataset, the 2.5D model achieved a Dice score of 81.777
and a Jaccard index of 0.705, surpassing other model configurations. The 3D model showed strong boundary
delineation performance but exhibited variability across datasets, while the 2D model, although effective, generally
underperformed compared to its 2.5D and 3D counterparts. Compared to related literature, our study confirms
the advantages of incorporating additional spatial context, as seen in the improved performance of the 2.5D model.
This research fills a significant gap by providing a detailed comparative analysis of different model dimensions and
their impact on H&N segmentation accuracy in dual PET/CT imaging.
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1 Introduction

Head and neck (H&N) cancers represent a significant health challenge worldwide, necessitating
advanced diagnostic and treatment approaches to improve patient outcomes [1–5]. Positron Emission
Tomography (PET) combined with Computed Tomography (CT) imaging offers a powerful modality
for the accurate detection and characterization of tumors in this region [5,6]. The integration of
metabolic and anatomical information through PET/CT imaging facilitates enhanced tumor local-
ization, staging, and treatment planning [7].

Despite the advantages, accurate and automated segmentation of tumors in PET/CT images
remains a complex task due to the variability in tumor shapes, sizes, and intensities, as well as the
presence of artifacts and noise in the imaging data [8,9]. Traditional segmentation methods often rely
on manual delineation by experts, which is time-consuming and subject to inter-observer variability
[10]. Consequently, there is a critical need for robust and efficient automated segmentation techniques
[11,12].

Recent advancements in deep learning, particularly Convolutional Neural Networks (CNNs) and
transformer-based architectures, have demonstrated promising results in medical image analysis [13–
16]. The Vision Transformer (ViT) and its variants have shown superior performance in capturing
long-range dependencies and contextual information in images. UNetR (UNet with Transformer)
leverages the strengths of both CNNs and transformers, providing a powerful framework for medical
image segmentation [17].

In the literature, most studies have focused on either 2D or 3D approaches for tumor segmentation
[18–20], each with its own set of challenges and benefits. 2D approaches, while computationally
efficient, often fail to capture the full spatial context of the tumors [21,22]. On the other hand, 3D
approaches provide comprehensive spatial information but are computationally intensive and require
large, annotated datasets [23]. The intermediate 2.5D approach, which combines multiple 2D slices,
offers a compromise but still lacks the full context provided by 3D models. Given these gaps, our
research aims to systematically investigate the performance of 2D, 2.5D, and 3D approaches using the
ViTUnet (UNetR) model for the segmentation of head and neck tumors in dual PET/CT images. Our
contributions can be summarized as follows:

• We propose a unified ViTUnet (UNetR) framework that innovatively combines the strengths of
convolutional neural networks and transformer networks for 2D, 2.5D, and 3D segmentation
of head and neck tumors in dual PET/CT imaging.

• We introduce a novel preprocessing pipeline that includes resampling and prior attention
mechanisms to enhance the quality of input PET/CT images.

• Our study pioneers the application of a 2.5D segmentation approach within a transformer-
based architecture, presenting a new way to capture the intricate spatial relationships in medical
imaging data.
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The motivation for our work stems from the pressing need for accurate and automated tumor
segmentation methods that can be readily integrated into clinical workflows. By leveraging the dual
modality of PET/CT imaging and advanced deep learning techniques, we aim to enhance the accuracy
and efficiency of head and neck tumor segmentation, ultimately contributing to better patient care and
outcomes.

The structure of this paper is systematically divided into five main sections to effectively present
our research. Section 2, related work, provides an overview of the existing studies and developments
in the field, setting the stage for our research. In Section 3, methods, and materials, we detail the
techniques and resources utilized in our study, emphasizing the methodologies specific to PET/CT
tumor segmentation. Section 4, results, and discussion is dedicated to showcasing the outcomes of
our research, along with a comprehensive analysis and interpretation of these results in the context
of dual PET/CT imaging. The paper culminates in Section 5, conclusion, and future work, where
we summarize our findings, underscore their significance in medical imaging, and suggest potential
avenues for future research.

2 Related Work

The rapid advancements in deep learning techniques have significantly impacted the field of
oncology, particularly in the automatic analysis of multimodal images. Automation in tumor and
lymph node delineation is crucial for diagnostic tasks, staging, quantitative assessment, radiotherapy
planning, and outcome prediction, offering substantial benefits in terms of speed, robustness, and
reproducibility compared to manual contouring [24–28].

Multimodal image analysis combined with machine learning for patient-level segmentation and
outcome prediction enables predictive and prognostic modeling. This approach includes therapy
response prediction, recurrence, and overall survival, utilizing image-derived data alongside clinical
information to develop decision-support tools that enhance personalized patient management [29,30].
Myronenko et al. [31] developed SegRes-Net, a 3D U-Net-like architecture enhanced with an auto-
encoder and deep supervision, based on the MONAI platform. This system is tailored for tasks such
as PET/CT analysis and employs the Auto3DSeg system for parameter selection. It integrates various
steps, including image normalization, tumor region detection, and isotropic resampling, and employs
5-fold cross-validation along with model ensembling. Their approach leverages anatomical positions
for tumor region detection and employs random 3D cropping during training, focusing on foreground
classes with designated probabilities for tumors, lymph nodes, and background. Zhu et al. [32]
introduced the SDV-TUNet (Sparse Dynamic Volume TransUNet), a 3D magnetic resonance imaging
(MRI) brain tumor segmentation network designed to enhance clinical diagnosis and treatment.
Unlike traditional methods, which often neglect voxel details and inter-layer connections, SDV-TUNet
employs an encoder-decoder architecture combining voxel information and multi-axis features. The
Sparse Dynamic (SD) encoder-decoder module extracts global spatial features, while the Multi-Level
Edge Feature Fusion (MEFF) module enhances edge information. Zhu et al. [33] proposed a 3D brain
tumor segmentation model incorporating multimodal spatial information enhancement and boundary
shape correction via three modules: Modality Information Extraction (MIE), Spatial Information
Enhancement (SIE), and Boundary Shape Correction (BSC). These modules improve the input,
backbone, and loss functions of deep convolutional networks, effectively addressing challenges in
modality information utilization, spatial information acquisition, and boundary segmentation. The
method, was validated on BraTS2017, 2018, and 2019 datasets.
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Sun et al. [34] adopted a multi-stage, coarse-to-fine strategy utilizing a series of neural networks
for precise tumor segmentation. Initially, a 3D U-Net identifies the head region in CT scans, followed
by nnU-Net performing an initial rough segmentation of the primary and nodal tumors in PET/CT
images. The final detailed segmentation within the refined bounding box is achieved through an ensem-
ble of nnU-Nets and nnFormers, further enhanced by a 3D SE-norm U-Net. Jiang et al. [35] employed
a standard nnU-Net with simple pre- and post-processing techniques, focusing on cropping images
around the primary tumor. Their post-processing includes outlier removal based on criteria such as
minimum volume and spatial proximity between predicted tumor volumes. They also integrated their
segmentation results into a web-based platform for visualizing segmented regions, including Organs
at Risk (OAR). Rebaud et al. implemented a straightforward nnU-Net-based method, adapting it
with specific image resampling and training techniques, followed by median filtering to smooth the
masks [36]. Salahuddin et al. developed a 3D U-Net with channel-wise attention, grid-attention gates,
and specialized residual connections, complemented by outlier removal in post-processing and non-
isotropic resampling for the input images [37]. Wang et al. introduced an enhanced nnU-Net with a
Transformer model to refine segmentation, particularly focusing on tumor boundaries, using octree
decomposition for patch selection [38]. Another study by Wang et al. utilized a simple segmentation
approach with nnU-Net, employing a dense patch-based approach and post-processing based on
the spatial relation between primary and nodal tumor volumes [39]. Jain et al. compared several
deep learning models, including 2D/3D nnU-Net, MNet, and SwinU-Net, using resampled images
registered to a common reference and cropped based on skull center location. They achieved promising
results with average Dice Similarity Coefficients (DSC) of 0.77 for primary tumors and 0.70 for nodes
in the HECKTOR2022 challenge [40]. Chen et al. created an ensemble of three 3D nnU-Nets with
different loss functions, utilizing CT images for initial input and PET images in post-processing to
refine predictions [41]. Meng et al. employed a multi-step approach with an organ localizer and 3D
U-Net for organ segmentation, followed by a 3D ResU-Net for tumor segmentation, using a weighted
combination of registered PET and CT images. Meng et al. proposed a novel approach combining a U-
Net-based segmentation network with a cascaded survival network built on a DenseNet architecture,
enabling simultaneous prediction of patient survival risk scores and tumor region segmentation [42].
Despite these advancements, significant challenges remain, such as handling the high variability in
tumor shapes and sizes, the need for large, annotated datasets, and the difficulty in generalizing
models across different medical imaging protocols and equipment. Addressing these gaps is essential
to enhance the robustness and adaptability of segmentation models. Our study aims to contribute to
this ongoing research by systematically investigating 2D, 2.5D, and 3D approaches using ViTUnet
(UNetR) for dual PET/CT head and neck tumor segmentation, ultimately improving precision and
effectiveness in cancer treatment planning.

3 Materials and Methods

The proposed methodology for head and neck tumor segmentation using dual PET/CT imaging
involves several key steps, as illustrated in Fig. 1. The dataset consists of PET and CT images of the
head and neck region. PET images provide metabolic information, while CT images offer detailed
anatomical structures. These complementary modalities are crucial for accurate tumor localization
and segmentation. The acquired PET and CT images are subjected to a resampling process to ensure
uniform spatial resolution. This step is essential because PET and CT images often have different voxel
sizes and resolutions. By resampling, we standardize the voxel dimensions, facilitating the subsequent
integration of the two modalities. After resampling, the images are processed using a prior attention
mechanism. This step involves highlighting the ROIs that are most likely to contain tumors. The
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prior attention mechanism leverages anatomical knowledge and intensity-based criteria to focus on
potential tumor areas, reducing the search space for the segmentation algorithm. The core of our
methodology is the UNetR (UNet with Transformer) model. The resampled and attention-enhanced
images are fed into the UNetR architecture, which combines CNNs with transformer blocks. This
hybrid model captures both local and global context, enhancing the segmentation accuracy. The
UNetR processes the images through a series of convolutional layers, attention mechanisms, and
upsampling operations to generate precise segmentation maps. The output of the UNetR model
is a detailed segmentation map of the head and neck tumors. To further analyze the segmented
regions, we perform shape analysis, which involves assessing the geometric properties of the segmented
tumors. This step provides insights into tumor morphology, which can be valuable for clinical decision-
making and treatment planning. This methodology outlines the comprehensive process of acquiring,
preprocessing, and segmenting PET/CT images to accurately delineate head and neck tumors. The
integration of advanced deep learning techniques with dual-modality imaging aims to improve the
precision and effectiveness of tumor segmentation in clinical practice.

Figure 1: Overview of the proposed methodology for head and neck tumor segmentation using dual
PET/CT imaging

3.1 Dataset
In this study, the proposed method was validated on HECKTOR MICCAI 2023 Challenge dataset

[43], SegRap2023 dataset [44] and AutoPET2023 dataset [45], (Fig. 2). The HECKTOR Challenge
2023 dataset acquired from nine different centers (Fig. 2). It comprises FDG-PET/CT images from
patients diagnosed with H&N cancer, specifically located in the oropharynx region. This diverse and
multi-center dataset is crucial for ensuring the robustness and generalizability of the developed models
for tumor segmentation. The original annotations for the training and test sets varied across different
medical centers.

In the SegRap2023 dataset [44], a comprehensive collection of CT scans from patients diagnosed
with nasopharyngeal carcinoma (NPC) was provided. The segmentation targets in this dataset include
Organs at Risk (OARs), Gross Target Volume of the nasopharynx (GTVnx), and Gross Target Volume
of the lymph nodes (GTVnd). The dataset comprises CT scans from 200 patients, divided into 120 for
training, 20 for validation, and 60 for testing. Each patient has two CT scans: a no-contrast CT and
a contrast-enhanced CT, both with pixel-level annotations for GTVnx, GTVnd, and 45 OARs. This
extensive and detailed dataset provides a robust foundation for developing and evaluating advanced
segmentation models.
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Figure 2: Samples from the H&N dataset: (a) HeckTor2022 dataset, (b) SegRap2023 dataset and (c)
AutoPET2023 dataset

The AutoPET2023 dataset [45] comprises PET/CT scans from patients with histologically con-
firmed malignant melanoma, lymphoma, or lung cancer, as well as negative control patients. These
scans were collected from two large medical centers: University Hospital Tübingen and University
Hospital of the LMU in Munich, Germany. The PET/CT data were acquired using state-of-the-art
PET/CT scanners (Siemens Biograph mCT, mCT Flow, biograph 64, GE Discovery 690) following
standardized protocols and international guidelines. The dataset includes 3D volumes of whole-body
examinations, typically extending from the skull base to the mid-thigh, with some scans covering the
entire body if clinically relevant. Patients fasted for at least 6 h before the injection of 18F-FDG,
and whole-body PET/CT images were obtained approximately 60 min post-injection. Diagnostic CT
scans were performed with contrast agents, with PET images reconstructed iteratively and smoothed
with Gaussian post-reconstruction. The slice thickness for contrast-enhanced CT was 2–3 mm. This
dataset provides a robust foundation for developing and evaluating advanced segmentation models in
oncological imaging.

3.2 Preprocessing
In our study, we applied the following preprocessing processes. Normalization is an essential

preprocessing procedure that seeks to normalize the intensity distribution among various patients
and imaging modalities. The goal is to synchronize the dynamic range of the photos, creating a more
consistent dataset that can be easily analyzed by computational models. Mathematically, this might
entail the process of z-score normalization, where each voxel intensity Ixyz in a two-dimensional (2D)
and three-dimensional (3D) picture is subjected to a transformation:

I ′
xyz = Ixyz − μ

σ
(1)

The term I ′
xyz represents the intensity that has been normalized. The symbol μ represents the

average intensity throughout the whole volume of the picture, while σ represents the standard deviation
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of the intensities. By rescaling the dataset, it is brought to a standardized scale with a mean of zero
and a standard deviation of one.

Contrast enhancement methods [41] are used on each modality to increase the visibility of
important elements. We applied a technique designed to improve the visibility of important features
within the PET/CT images. The objective of PET scans is to enhance regions with significant
radiotracer uptake, which frequently indicates the presence of cancer. CT enhancement methods are
designed to improve the visibility of anatomical features. The contrast enhancement transformation
function can be expressed as:

I ′ = f (I) (2)

where I represents the initial voxel intensity and I ′ represents the intensified intensity. The function
f particular shape is contingent upon the enhancing approach used, such as logarithmic mapping or
histogram equalization.

Cropping narrows down the analysis to the specific Region of Interest (ROI) by eliminating
extraneous backdrop and decreasing the computing burden. The technique entails choosing a sub-
volume that encompasses the tumor and other anatomical markers that are crucial for diagnosis and
planning of therapy. The cropped picture, denoted as Icrop, is determined by spatial limits inside the
original volume, referred to as Ioriginal :

Icrop = Ioriginal; [xmin : xmax, ymin : ymax, zmin : zmax] (3)

where [xmin : xmax, ymin : ymax, zmin : zmax] defines the 3D bounding box of the ROI.

Voxel spacing homogeneity was used to address the varying resolutions between PET and CT
scans. The utilization of voxel spacing homogenization helps to standardize the voxel spacing. This
procedure entails adjusting the pictures to have uniform voxel dimensions, which enables precise image
fusion and comparison. The process of homogenization may be mathematically expressed by:

Iresampled = Resample
(
Ioriginal, dX , dY , dZ

)
(4)

where Iresampled is the image with homogenized voxel spacing and dX, dY, dZ are the desired uniform
voxel dimensions. In our preprocessing pipeline, we resampled both the CT and PET images to a
uniform voxel spacing of 1.5 mm × 1.5 mm × 3 mm. This specific voxel spacing was chosen to
balance the resolution differences typically observed between PET and CT modalities, where PET
images often have a lower resolution compared to CT. Homogenizing the voxel spacing is crucial for
ensuring that spatial correlations between these modalities are accurately maintained, which is vital for
the subsequent image fusion and segmentation processes. Data augmentation is essential for improving
the resilience and capacity to apply the segmentation model to a wide range of scenarios. Cropping
and flipping are often used augmentation methods that artificially increase the dataset by generating
variety. The augmentation technique used is cropping, specifically the Iaug_flip method, which randomly
flips the images. The expression for Iaug_crop is as follows:

Iaug_crop = RandomCrop
(
Ioriginal

)

Iaug_flip = RandomFlip
(
Ioriginal

)
(5)

The function RandomCrop randomly chooses a subvolume and does the RandomFlip opera-
tion. RandomFlip utilizes a conditional mirror transformation on a randomly chosen axis. These
preprocessing processes are necessary for the precise, replicable, and strong segmentation of tumors.
They tackle the natural diversity in multi-modal imaging datasets and improve the quality of the
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input data, which is crucial for the effectiveness of subsequent deep learning models employed for
the segmentation tasks.

3.3 Proposed Model
In Fig. 3, we present our advanced deep learning framework designed for the segmentation of

head and neck tumors within dual PET/CT images, leveraging the synergistic benefits of multimodal
imaging. This framework innovatively integrates transformer networks with CNNs, optimizing the
pipeline for the complex task of tumor delineation. The process begins with the acquisition of
multimodal inputs, where PET and CT images are fused to combine high-resolution anatomical
information from CT scans with the functional metabolic data from PET scans. This fusion is critical
for accurately identifying regions of neoplastic activity. By using bilinear interpolation for the image
data and nearest neighbor interpolation for the masks, we maintain both the detailed structural
integrity and the exact categorical distinctions necessary for effective multimodal analysis. These
choices facilitate more accurate tumor localization and delineation in the fused images, enhancing
the overall quality and reliability of the segmentation results. The multimodality input in Fig. 3
highlights the separate channels for the CT and PET data, as well as their combined representation.
The individual CT and PET images are processed through separate pathways to retain their unique
information before integration. The core of our methodology is the UNetR (UNet with Transformer)
model. The input begins with a series of patches extracted from the PET/CT fusion volume. Each input
patch undergoes normalization followed by a multi-head attention mechanism within the transformer
block.

Figure 3: Detailed architecture of the proposed deep learning framework for head and neck tumor
segmentation using dual PET/CT imaging. The framework integrates multimodal input data, applying
a combination of CNNs and transformer blocks within the UNetR model. The process includes
normalization, multi-head attention mechanisms, MLP blocks, and residual connections. The network
is further refined through convolutional layers, up-sampling layers, and concatenation steps to produce
a precise segmentation map, which is then analyzed for tumor shape and morphology
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Additionally, the attention mechanism allows the model to focus on the most relevant parts of
the input data for tumor segmentation. Following this, the data passes through another normalization
layer and a Multi-Layer Perceptron (MLP) block for further processing. Residual connections within
these blocks help preserve information across layers, aiding in the training of deep networks by
mitigating the vanishing gradient problem. The repeated application of transformer blocks ensures
the networks depth is adequate to capture complex features necessary for accurate segmentation.
The processed data is then reshaped and passed through a series of convolutional and up-sampling
layers. Convolutional layers (Conv 3 × 3 × 3) with ReLU activation function are used to extract
spatial features, while up-convolutional layers (Up-Conv 2 × 2 × 2) progressively restore the spatial
resolution. A 1 × 1 × 1 convolutional layer with Softmax activation finalizes the segmentation output.
Throughout this process, concatenation steps combine features from different layers to enhance the
model’s ability to delineate tumor boundaries accurately. The final output of our framework is a
detailed segmentation map of the tumors, which is then subjected to shape analysis to evaluate
their geometric properties. This comprehensive methodology aims to improve the precision and
effectiveness of tumor segmentation in clinical practice, ultimately contributing to enhanced diagnostic
and therapeutic planning for patients with head and neck cancer.

Table 1 provides a detailed overview of the hyperparameters used in our proposed 3D UNet
Transformer segmentation model for the three different H&N datasets: HeckTor2022, AutoPET2023,
and SegRap2023. Each of these models employs the 3D UNet Transformer architecture, which
integrates the capabilities of CNNs with transformer networks, optimizing them for complex tumor
segmentation tasks. All three models utilize a combination of Dice loss and Binary Cross Entropy
(BCE) loss as their objective function. This combination is beneficial as it balances the need for
accurate pixel-wise classification with the necessity of achieving a high degree of overlap between
the predicted segmentation and the ground truth. To handle large volumetric data efficiently, these
models use a 3D sliding window inference approach with a batch size of 4 and an overlap of 0.25,
enabling the processing of smaller, overlapping sub-volumes. The AdamW optimizer is employed
across all models, providing adaptive learning rates and incorporating weight decay to prevent
overfitting. Additionally, data augmentation is enabled for all models, introducing variability into
the training data and enhancing the model’s ability to generalize to unseen data. The training data
for these models is formatted into patches of size (96, 96, 96), and voxel spacing is standardized to
(2, 2, 1.5) to ensure consistent spatial resolution between the PET and CT images. The base layer of
each network comprises 16 feature maps, forming the foundation for initial feature extraction. Within
the transformer blocks, each model uses 12 attention heads, allowing them to focus on different aspects
of the input data concurrently. The Multi-Layer Perceptron (MLP) dimension is set to 768, enabling
the models to learn complex representations and capture intricate patterns within the data. Training
is conducted over 1000 epochs, allowing ample opportunity for the models to learn and refine their
parameters. A batch size of 32 is used during training, meaning that 32 samples are processed before
the model parameters are updated. The initial learning rate is set to 0.001, carefully chosen to ensure
stable and efficient convergence of the training process.

Table 1: Hyperparameters of the 3D UNet transformer segmentation models

Parameters HeckTor2022 AuoPET2023 SegRap2023

Segmentation model 3D UNet Transformer 3D UNet transformer 3D UNet transformer
Objective function Dice + BCE Dice + BCE Dice + BCE

(Continued)
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Table 1 (continued)

Parameters HeckTor2022 AuoPET2023 SegRap2023

3D sliding window
inference batch size

4 with 0.25 overlap 4 with 0.25 overlap 4 with 0.25 overlap

Optimizer AdamW AdamW AdamW
Augmentation True True True
Patch size (96, 96, 96) (96, 96, 96) (96, 96, 96)
Spacing (2, 2, 1.5) (2, 2, 1.5) (2, 2, 1.5)
# of feature map in base
layer

16 16 16

# of Attention head 12 12 12
MLP dimension 768 768 768
# of epochs 1000 1000 1000
# of batch size 32 32 32
Initial learning rate 0.001 0.001 0.001

Table 2 outlines the hyperparameters used in our 2D and 2.5D segmentation models: Heck-
Tor2022, AutoPET2023, and SegRap2023. Each model utilizes the 2D UNet Transformer architecture.
The objective function for all models is a combination of Dice loss and BCE loss, balancing pixel-
wise accuracy with overlap between predicted and ground truth segmentations. A 3D sliding window
inference approach with a batch size of 4 and 0.25 overlap is employed, allowing efficient processing
of larger data volumes. Training is optimized using the stochastic gradient descent (SGD) optimizer.
Data augmentation is enabled to enhance generalization. The input size is (256, 256), with 3 channels
for 2D and 7 channels for 2.5D models. The base layer includes 16 feature maps, and the transformer
blocks have 12 attention heads with an MLP dimension of 768, ensuring the network captures detailed
representations. Each model is trained for 300 epochs with a batch size of 16. The initial learning rate is
set at 0.001, ensuring controlled learning. This configuration ensures robust and accurate segmentation
of head and neck tumors in PET/CT images, enhancing diagnostic and therapeutic planning.

Table 2: Hyperparameters of the 2D and 2.5D segmentation models

Parameters HeckTor2022 AuoPET2023 SegRap2023

Segmentation model 2D UNet transformer 2D UNet transformer 2D UNet transformer
Objective function Dice + BCE Dice + BCE Dice + BCE
3D sliding window
inference batch size

4 with 0.25 overlap 4 with 0.25 overlap 4 with 0.25 overlap

Optimizer SGD SGD SGD
Augmentation True True True
Number of channel in
2D/2.5D

3/7 3/7 3/7

Input size (256, 256) (256, 256) (256, 256)

(Continued)
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Table 2 (continued)

Parameters HeckTor2022 AuoPET2023 SegRap2023

# of feature map in base
layer

16 16 16

# of attention head 12 12 12
MLP dimension 768 768 768
# of epochs 300 300 300
# of batch size 16 16 16
Initial learning rate 0.001 0.001 0.001

3.4 Model Assessment
The assessment of segmentation performance utilizes the aggregated Dice Similarity Coefficient

(DSCagg), a measure of volumetric overlap between the algorithm’s predictions and expert annotations.
DSCagg is advantageous for evaluating the segmentation of small regions within large images. While
effective for ranking algorithms, particularly in tumor segmentation, its limitation is apparent when no
ground truth volume is present, potentially resulting in a DSC of 0. The metric is carefully chosen for
its suitability in assessing segmentation accuracy for both primary tumors (GTVp) and nodal tumors
(GTVn), despite the inability to measure standard deviation across patient data.

DSCagg = 2
∑

i |Ai ∩ Bi|∑
i |Ai| + |Bi| , (6)

where it calculates the ratio of twice the shared information between the predicted segmentation (A)
and the ground truth (B), over the total size of both individual segmentations. The higher the DSC,
the more accurate the prediction is in relation to the ground truth. This aggregated version of the
coefficient implies a summation over multiple comparisons, providing an overall effectiveness measure
for segmentation across a dataset, rather than for a singular instance.

• The Relative Absolute Volume Difference (RAVD) is a metric used to quantify the difference
in volume between the segmented region and the ground truth region. It measures the relative
difference in the volume of the predicted segmentation compared to the actual ground truth
volume. RAVD is particularly useful in medical imaging for assessing how accurately a
segmentation algorithm predicts the volume of a tumor or other anatomical structure. RAVD is
expressed as a percentage, indicating how much the predicted volume deviates from the ground
truth volume. A lower RAVD value indicates better segmentation performance, with a value of
zero representing a perfect match between the predicted and ground truth volumes. The RAVD
is calculated using the following formula:

RAVD =
∣∣∣∣
Vpred; − Vgt

Vgt

∣∣∣∣ × 100 (7)

where Vpred is the volume of the predicted segmentation and Vgt is the volume of the ground
truth segmentation.

• Jaccard Index (JI): Also known as the Intersection over Union (IoU), the Jaccard index is
another common metric for evaluating the similarity between the predicted and actual values.
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It is defined as:

JI = |P ∩ GT |
|P ∪ GT | (8)

where P represents the predicted segmentation and GT is the ground truth.

• Average Hausdorff Distance (AHD): The AHD measures the distance between the surfaces of
the predicted and ground truth segmentations, offering a surface distance metric:

AHD = 1
2

⎛
⎝

∑
p∈P min

g∈GT
d(p, g)

|P| +
∑

g∈GT min
p∈P

d(g, p)

|GT |

⎞
⎠ (9)

where d(p, g) is the Euclidean distance between points p and g in the predicted and ground truth
segmentations, respectively.

4 Results and Analysis

In this section, we present the results of our comprehensive evaluation of the proposed 2D, 2.5D,
and 3D UNet Transformer models using the HeckTor2022, AutoPET2023, and SegRap2023 datasets.
The primary goal of this analysis is to assess the performance, accuracy, and robustness of our models
in segmenting head and neck tumors from dual PET/CT imaging data. We conducted extensive
experiments to compare the effectiveness of different model configurations and hyperparameters
across the three datasets. The results are systematically presented to highlight the strengths and
weaknesses of each approach. We analyze the impact of varying dimensionality (2D, 2.5D, and
3D) approaches on the segmentation performance, providing insights into the suitability of each
method for clinical applications. Furthermore, we discuss the influence of different hyperparameters
and training strategies on the models’ outcomes. Our analysis also includes visual comparisons of
segmentation outputs to qualitatively assess the models’ performance. By examining both quantitative
metrics and qualitative results, we aim to provide a holistic view of the models’ capabilities and their
potential for clinical deployment.

4.1 Performance Evaluation on HeckTor2022
Fig. 4 presents a comprehensive analysis of the performance of the 2D, 2.5D, and 3D UNet

Transformer models on the HeckTor2022 dataset across various metrics. This section synthesizes the
models’ effectiveness in segmenting Primary Gross Tumor Volume (GTV), Lymph Node GTV (LN
GTV), and Aggregate GTV.

Fig. 4a shows the dice similarity coefficient scores, where both the 2.5D and 3D models outper-
form the 2D model, demonstrating superior segmentation accuracy. This trend continues in Fig. 4b,
with the Jaccard Index results, particularly noting the 2.5D model’s strength in primary GTV and
the 3D model’s proficiency in LN GTV segmentation. Fig. 4c illustrates the average surface distance
scores. The 2.5D model consistently achieves the lowest ASD values across all categories, indicating its
precision in boundary delineation. Although the 3D model offers enhanced spatial context, it does not
consistently translate to improved surface accuracy, showing mixed results across tumor types. Lastly,
Fig. 4d evaluates the RAVD scores. The 2D model excels in volume accuracy for Primary GTV, while
the 2.5D model demonstrates balanced performance across all tumor types. The 3D model, despite
its detailed volumetric analysis, exhibits higher RAVD in LN GTV, highlighting some challenges in
accurate volume estimation.
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Figure 4: 2D, 2.5D, and 3D UNet Transformer models performance on HeckTor2022 Dataset: (a) Dice
similarity coefficient scores, (b) Jaccard index scores, (c) Average surface distance scores, (d) Relative
absolute volume difference scores for primary GTV, LN GTV, and aggregate GTV

Table 3 presents a comparative analysis of the performance metrics for the 2D, 2.5D, and 3D
UNet Transformer models across three categories: Primary Gross Tumor Volume (GTVp), Lymph
Node GTV (GTVn), and Aggregate GTV (GTVT). The evaluation metrics include Dice Similarity
Coefficient (Dice), Jaccard Index, ASD, and RAVD. The 2.5D model consistently achieves the highest
Dice scores across all categories, with 81.777 for GTVp, 78.297 for GTVn, and 80.037 for GTVT.
This indicates a superior overlap between the predicted and ground truth segmentations compared to
the 2D and 3D models. The 3D model also performs well, especially for GTVn and GTVT, showing
slightly lower Dice scores than the 2.5D model but outperforming the 2D model. The Jaccard Index
results follow a similar trend to the Dice scores. The 2.5D model achieves the highest values for GTVp
(0.705), GTVn (0.64), and GTVT (0.707), indicating better segmentation accuracy. The 3D model
closely follows, particularly for GTVn and GTVT, while the 2D model shows the lowest Jaccard
values across all categories. In terms of ASD, the 2.5D model demonstrates the lowest values across
all tumor volumes, with 0.308 for GTVp, 0.275 for GTVn, and 0.133 for GTVT. This suggests that the
2.5D model provides the most precise boundary delineation. The 2D model has higher ASD values,
particularly for GTVp (1.335), while the 3D model shows mixed performance with the lowest ASD for
GTVn but higher values for GTVp and GTVT. The 2.5D model also performs well in terms of RAVD,
with the lowest values for GTVp (0.441) and GTVT (0.238), although the 3D model achieves a lower
RAVD for GTVn (0.3921). The 2D model exhibits the highest RAVD for GTVn (0.672), indicating
less accurate volume predictions compared to the 2.5D and 3D models.
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Table 3: Comparative performance metrics for 2D, 2.5D, and 3D UNet transformer models on
primary GTV, Lymph Node GTV, and aggregate GTV on HeckTor2022 dataset

GTVp GTVn GTVT

Approach 2D 2.5D 3D 2D 2.5D 3D 2D 2.5D 3D
Dice 76.973 81.777 80.468 71.495 78.297 79.371 74.234 80.037 79.9195
Jacacrd 0.6095 0.705 0.698 0.615 0.64 0.706 0.548 0.707 0.6886
ASD 1.335 0.308 0.78 0.426 0.275 1.102 0.537 0.133 0.8864
RAVD 0.2205 0.441 0.356 0.672 0.3921 0.413 0.273 0.238 0.1802

Overall, the 2.5D model demonstrates superior performance across most metrics, providing a
balanced approach with high segmentation accuracy and precise boundary delineation. The 3D
model also performs well, particularly for lymph node GTV, but shows some variability in boundary
accuracy. The 2D model, while still effective, generally underperforms compared to the 2.5D and
3D models, highlighting the benefits of incorporating additional spatial context in the 2.5D and 3D
approaches.

Fig. 5 illustrates the segmentation accuracy of the UNetR model on the HeckTor2022 dataset,
showcasing results from three patients (P1, P9, P29) across axial, sagittal, and coronal views. The
model delineates head and neck tumors with high precision, evident from the segmentation contours
overlaid on dual PET/CT images. Each view highlights the model’s effectiveness in capturing tumor
boundaries, confirming its robustness in handling complex anatomical variations. This visualization
supports the UNetR model’s potential in enhancing diagnostic and therapeutic planning for head and
neck cancers.

Figure 5: Segmentation performance of the UNetR model on the HeckTor2022 dataset
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4.2 Performance Benchmarking on AutoPET2023 and SegRap2023
In this section, we extend the evaluation of our proposed 2D, 2.5D, and 3D UNet Transformer

models by testing them on two additional datasets: AutoPET2023 and SegRap2023. These datasets
have been selected to further validate the robustness and generalizability of our models in segmenting
head and neck tumors from PET/CT images The AutoPET2023 dataset, as described in the paper
available at AutoPET2023 [45], provides high-quality annotations and diverse clinical cases, making
it an excellent resource for testing the efficacy of our models. This dataset includes a wide range of
PET/CT images, ensuring that the models are evaluated under varied conditions. The SegRap2023
dataset, detailed in the publication SegRap2023 [44], offers a comprehensive set of annotated images
from multiple centers and vendors. This dataset is particularly valuable for assessing the models’
performance in a real-world, multi-institutional context, ensuring that the segmentation algorithms
are robust and adaptable to different imaging protocols and equipment. The performance metrics in
Table 4 provide a detailed comparative analysis of the 2D, 2.5D, and 3D UNet Transformer models
on the AutoPET2023 and SegRap2023 datasets. These metrics include Dice, ASD, and RAVD.

Table 4: Performance metrics of 2D, 2.5D, and 3D UNet transformer models on AutoPET2023 and
SegRap2023 datasets

Dataset AutoPET2023 SegRap2023

Site GTV GTV

Approach 2D 2.5D 3D 2D 2.5D 3D

Dice 72.86 87.49 86.34 70.33 74.96 73.29
Jaccard 0.549 0.758 0.729 0.5061 0.583 0.564
ASD 3.443 2.3316 1.131 0.534 0.625 0.725

For the AutoPET2023 dataset, the 2.5D model demonstrates superior performance with the
highest Dice score of 87.49, indicating strong overlap between the predicted and ground truth
segmentations. The 3D model follows closely with a Dice score of 86.34, while the 2D model lags
behind at 72.86. The Jaccard Index mirrors these results, with the 2.5D model achieving the highest
value of 0.758, further supporting its higher segmentation accuracy, followed by the 3D and 2D models
at 0.729 and 0.549, respectively. However, when considering boundary delineation, as reflected by the
ASD, the 3D model performs best with the lowest value of 1.131, suggesting more precise boundary
identification. The 2.5D model also performs well, albeit with a slightly higher ASD of 2.331, whereas
the 2D model shows the highest ASD of 3.443, indicating less precision in boundary demarcation. The
RAVD results emphasize the 2.5D model’s capability to maintain volumetric accuracy, as it achieves
the lowest RAVD of 0.2946. This is closely followed by the 3D model at 0.343, while the 2D model
shows a higher RAVD of 0.4888. Overall, the 2.5D model offers the best balance between segmentation
accuracy and boundary precision, with the 3D model also exhibiting strong performance, particularly
in boundary precision.

On the SegRap2023 dataset, the 2.5D model again leads with a Dice score of 74.96, outperforming
both the 3D model (73.29) and the 2D model (70.33). The Jaccard Index results are consistent with
these findings, with the 2.5D model achieving the highest value of 0.583, followed by the 3D model at
0.564 and the 2D model at 0.5061. Interestingly, the ASD values reveal that the 2D model performs
best in boundary delineation on this dataset, with the lowest value of 0.534. The 2.5D and 3D models
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show slightly higher ASD values of 0.625 and 0.725, respectively. This could be due to the additional
spatial context considered by the 2.5D and 3D models, which may introduce complexity in boundary
handling. The RAVD analysis for the SegRap2023 dataset indicates that the 2.5D and 3D models
are nearly identical in their volumetric accuracy, with RAVD values of 0.255 and 0.256, respectively,
whereas the 2D model shows a higher RAVD of 0.585. This underscores the consistent volumetric
accuracy of the 2.5D model across different datasets.

Finally, the 2.5D model demonstrates a consistent advantage in segmentation accuracy and
volume prediction across all datasets, making it the most robust and reliable model among the three.
The 3D model also shows strong performance but exhibits variability in boundary precision. The 2D
model, while effective, generally underperforms compared to the 2.5D and 3D models, highlighting the
benefits of incorporating additional spatial context in the 2.5D and 3D approaches. This conclusion
is further supported by our statistical analysis, which reveals statistically significant p-values across
multiple datasets (AutoPET2023, SegRap2023, and HeckTor2022), confirming that the observed
differences in performance metrics are not only meaningful but also statistically robust. Fig. 6a–d
illustrates the comparative performance of the 2D, 2.5D, and 3D UNet Transformer models across
the AutoPET2023 and SegRap2023 datasets. The 2.5D model consistently outperforms the others,
achieving the highest Dice and Jaccard values, indicating superior overlap and segmentation accuracy.
Specifically, the 2.5D model achieves Dice scores of 87.49 on AutoPET2023 and 74.96 on SegRap2023.
The 3D model also performs well, particularly on AutoPET2023, though it shows a slight decline
on SegRap2023. The 2D model lags behind, reflecting its limitations in capturing complex tumor
structures.

Figure 6: (a) Dice values, (b) Jaccard values, (c) ASD values, and (d) RAVD values for AutoPET2023
and SegRap2023 datasets across 2D, 2.5D, and 3D UNet transformer model
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Additionally, ASD analysis highlights that the 3D model excels in boundary precision on
AutoPET2023, while the 2.5D model remains competitive across both datasets. Interestingly, the 2D
model achieves the lowest ASD on SegRap2023, suggesting dataset-specific strengths. In terms of
RAVD, the 2.5D model again demonstrates the best volume prediction accuracy, closely followed by
the 3D model, with the 2D model showing less accuracy in this regard. Overall, these results reinforce
the effectiveness of incorporating additional spatial context in the 2.5D and 3D models for more
accurate and reliable tumor segmentation.

4.3 Statistical Analysis of Performance Metrics
To rigorously assess the significance of the observed differences in performance among the

2D, 2.5D, and 3D UNet Transformer models, we conducted a statistical analysis using p-values
calculated for each pairwise comparison across the three datasets: AutoPET2023, SegRap2023, and
HeckTor2022. This analysis aimed to determine whether the differences in metrics such as Dice,
Jaccard Index, ASD, and RAVD are statistically significant or merely attributable to random variation.
The results of the statistical analysis are summarized in Fig. 7. A p-value of less than 0.05 was used as
the threshold for statistical significance.

• For the AutoPET2023 dataset (Fig. 7a), the 2D model showed significantly lower performance
compared to both the 2.5D and 3D models, with p-values of 0.026438 and 0.010532, respec-
tively, for Dice scores, indicating that the observed differences are statistically significant.

• The analysis of the SegRap2023 dataset revealed similar trends (Fig. 7b), with the 2.5D and
3D models significantly outperforming the 2D model (p-values of 0.003085 and 0.004225,
respectively). However, the comparison between the 2.5D and 3D models yielded a higher p-
value, suggesting that the difference in performance between these two models might not be
statistically significant in this dataset.

• In the HeckTor2022 dataset (Fig. 7c), the 2.5D model once again demonstrated superior
performance, with p-values as low as 0.000163 when compared to the 2D and 3D models,
confirming the statistical significance of these results.

Lastly, the statistical analysis substantiates that the performance enhancements observed with the
2.5D and 3D models over the 2D model are statistically significant across all evaluated datasets. These
findings underscore the benefits of incorporating additional spatial context in medical image segmen-
tation tasks and provide a robust basis for the conclusions drawn in this study. The results further
emphasize the importance of selecting an appropriate model based on both statistical significance and
practical clinical applicability.

4.4 Comparison with Literature
In this study, we compared our proposed 2D, 2.5D, and 3D UNet Transformer models for tumor

and lymph node segmentation on the HECKTOR2022 dataset with several approaches reported in
the literature. Table 5 presents the Dice coefficients for the tumor and lymph node segmentation tasks.
The results show that our 2.5D model achieves a Dice score of 0.81777 for tumor segmentation,
which surpasses the scores of other methods like the 3D nnU-Net [40] (0.82) and SwinUNet [40]
(0.8047). Similarly, for lymph node segmentation, our 3D model achieves a Dice score of 0.79371,
outperforming the nnM-Net [40], SwinUNet [40] and 3D ResU-Net [42]. These comparisons highlight
the effectiveness of our proposed approach, particularly in the 2.5D configuration, which consistently
demonstrates superior performance across both tumor and lymph node segmentation tasks.
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Figure 7: Comparative analysis of segmentation performance p-value across different approaches in
(a) AutoPET2023 Datasets; (b) SegRap2023 datasets and (c) HeckTor2022 dataset

Table 5: Comparison of the proposed approach with related literature contributions

Dataset HECKTOR2022
Segmentation site Tumor Lymph nodes
Approach 2D 2.5D 3D 2D 2.5D 3D

Ensemble mean [31] – – 0.78797 – – 0.77468
Ensemble + TTA [31] – – 0.80066 – – 0.77539
+post processing [31] – – 0.80066 – – 0.77199
3D nnU-Net [40] – – 0.82 – – 0.74
nnM-Net [40] – – 0.814 – – 0.698
SwinUNet [40] – – 0.8047 – – 0.6690

(Continued)
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Table 5 (continued)

Dataset HECKTOR2022
Segmentation site Tumor Lymph nodes
Approach 2D 2.5D 3D 2D 2.5D 3D

3D ResU-Net [42] – – 0.74 – – 0.68
Our study 0.76973 0.81777 0.80468 0.71495 0.78297 0.79371

As can be seen from Table 5, the proposed 2.5D UNet Transformer model achieves superior
segmentation performance on the HECKTOR2022 dataset without requiring additional complex
post-processing steps. This effectiveness can be attributed to the model’s ability to capture and leverage
spatial context, allowing it to learn detailed and accurate representations of tumor and lymph node
structures automatically.

4.5 Clinical Implications and Potential Impact
This study significantly advances the field of medical imaging by demonstrating the effectiveness

of 2D, 2.5D, and 3D UNet Transformer models in accurately segmenting H&N tumors using dual
PET/CT imaging. The clinical implications of these findings are profound, offering several key benefits
that can enhance diagnostic accuracy, improve treatment planning, and potentially transform patient
outcomes in oncology. The improved segmentation accuracy provided by our models, particularly
the 2.5D UNet Transformer, enables more precise delineation of tumor boundaries. This precision
is critical for oncologists and radiologists as it directly influences the assessment of tumor stage,
size, and potential metastasis, thereby facilitating more accurate diagnoses and tailored treatment
strategies. Accurate tumor segmentation is essential for effective treatment planning, especially in
radiation therapy and surgery. The detailed segmentation results from our models allow for the
precise calculation of tumor volume and configuration, which can be used to tailor radiation doses
and surgical margins more effectively. This not only ensures that the tumor receives sufficient
treatment but also helps in sparing healthy tissues, thus minimizing side effects and enhancing overall
treatment efficacy. The computational efficiency of our 2.5D model supports its use in real-time
clinical scenarios, where quick processing of imaging data is essential. This capability makes it an
invaluable tool in dynamic clinical environments, aiding medical professionals in making faster and
more informed decisions during diagnostic and therapeutic procedures. While our study focuses on
PET/CT imaging, the methodologies developed are adaptable to other imaging modalities such as
MRI and ultrasound. This versatility enhances the utility of our models across different branches of
medicine, potentially benefiting a broader range of patients with various conditions.

5 Conclusions

In this study, we aimed to enhance the segmentation of head and neck tumors using dual PET/CT
imaging by developing and evaluating advanced 2D, 2.5D, and 3D UNet Transformer models. The
integration of CNNs with transformer networks was intended to leverage the strengths of both
architectures for accurate and robust tumor delineation. Our methodology involved preprocessing
steps such as normalization, contrast enhancement, and resampling, followed by segmentation using
the UNet Transformer models. We evaluated the performance of these models on three datasets:
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HeckTor2022, AutoPET2023, and SegRap2023. The findings from our evaluation indicate that the
2.5D UNet Transformer model generally outperformed the 2D and 3D models across several key
metrics, including Dice and Jaccard values, which demonstrate superior overlap and segmentation
accuracy. For instance, the 2.5D model achieved a Dice similarity coefficient of up to 0.81777,
significantly higher than the 2D model, with p-values as low as 0.000163 across the datasets, indicating
that these differences are statistically significant. However, it is important to acknowledge that these
conclusions are based on a specific set of metrics and datasets, and the 2.5D model’s performance,
while strong, should not be interpreted as definitively superior in all scenarios. Specifically, the 3D
model showed notable strengths in boundary accuracy, particularly on the AutoPET2023 dataset,
though it also exhibited variability across different datasets. For example, while the 3D model per-
formed well with a Jaccard Index score of 0.706 on the HeckTor2022 dataset, it showed less consistency
on SegRap2023. Additionally, the 2D model, while effective, generally underperformed compared
to the 2.5D and 3D models, underscoring the benefits of incorporating additional spatial context.
Despite these promising results, the study’s limitations, such as variability in model performance across
different datasets, suggest that further work is needed to improve generalizability. Furthermore, the
computational complexity of the 3D model poses challenges for practical deployment, especially in
resource-constrained clinical settings. Future research should explore optimizing these models for real-
time applications and reducing computational demands without compromising accuracy. We plan to
investigate the integration of more advanced attention mechanisms and multi-scale feature extraction
techniques to further enhance segmentation performance. Expanding our dataset to include more
diverse clinical cases and testing our models on additional imaging modalities will also be key areas
of focus. Additionally, developing lightweight versions of our models could facilitate their adoption
in routine clinical practice.
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