
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.056079

ARTICLE

Explicitly Color-Inspired Neural Style Transfer Using Patchified AdaIN

Bumsoo Kim1, Wonseop Shin2, Yonghoon Jung1, Youngsup Park3 and Sanghyun Seo1,4,*

1Department of Applied Art and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea 
2Department of Advanced Imaging Science Multimedia & Film, Chung-Ang University, Seoul, 06974, Republic of Korea 
3Innosimulation Co., Ltd., Gangseo-gu, 07794, Republic of Korea
4School of Art and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea

*Corresponding Author: Sanghyun Seo. Email: sanghyun@cau.ac.kr

Received: 13 July 2024 Accepted: 25 September 2024 Published: 31 October 2024

ABSTRACT

Arbitrary style transfer aims to perceptually reflect the style of a reference image in artistic creations with visual
aesthetics. Traditional style transfer models, particularly those using adaptive instance normalization (AdaIN) layer,
rely on global statistics, which often fail to capture the spatially local color distribution, leading to outputs that
lack variation despite geometric transformations. To address this, we introduce Patchified AdaIN, a color-inspired
style transfer method that applies AdaIN to localized patches, utilizing local statistics to capture the spatial color
distribution of the reference image. This approach enables enhanced color awareness in style transfer, adapting
dynamically to geometric transformations by leveraging local image statistics. Since Patchified AdaIN builds on
AdaIN, it integrates seamlessly into existing frameworks without the need for additional training, allowing users to
control the output quality through adjustable blending parameters. Our comprehensive experiments demonstrate
that Patchified AdaIN can reflect geometric transformations (e.g., translation, rotation, flipping) of images for style
transfer, thereby achieving superior results compared to state-of-the-art methods. Additional experiments show the
compatibility of Patchified AdaIN for integration into existing networks to enable spatial color-aware arbitrary style
transfer by replacing the conventional AdaIN layer with the Patchified AdaIN layer.

KEYWORDS
Neural style transfer; image synthesis; image stylization

1 Introduction

Arbitrary style transfer (AST) [1–5] is used to change the appearance of a content image by
referencing an external style image considering characteristics such as the painting/rendering style,
brush strokes, patterns, and colorization. AST has enabled remarkable and attractive algorithms [6–8]
for various computer vision [9–11] and graphics applications [12–16] owing to its unique aesthetic
effects [17–21]. AST was pioneered in [22] with convolutional neural networks [23] pretrained on
a large image dataset [24] for an upstream task (e.g., image reconstruction or recognition) and a
mathematical or statistical model that leverages deep features in every convolutional layer. This
method optimizes style transfer by iteratively minimizing the designated objective. Although fast

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.056079
https://www.techscience.com/doi/10.32604/cmes.2024.056079
mailto:sanghyun@cau.ac.kr


2144 CMES, 2024, vol.141, no.3

patch-based optimization has been proposed [25], it requires optimizing every style transfer image,
remaining a time-consuming method. On the other hand, a simple feedforward method is adaptive
instance normalization (AdaIN) [26]. It can perform AST without requiring separate optimization by
realigning the statistics of deep features from the content image (e.g., mean and standard deviation)
to those of deep features extracted from the style (reference) image in a latent space. AdaIN achieves
fast AST inference with low memory resources. Thus, it has been enhanced or specialized for various
AST tasks [27,28] such as domain enhanced style transfer [29,30], fast inference [31] with low
computational cost [5,32–35], three-dimensional scene style transfer [12,18,20,36,37], video-level style
transfer [1,6,38,39], shape- or pattern-aware style transfer [27,40,41], and high visual fidelity [42].

As a result of pioneering studies [22,26,43,44], AST has been rapidly specialized for several
computer vision and graphics applications [8,17,18,20,38] by storm. Despite its advancements, AST
remains challenging, especially when trying to enhance the results for a given input image to reach
the desired appearance. Most existing AST methods fail to capture geometric transformations of
input images to reflect regional color distributions. This is because AdaIN [26] manipulates global
statistics, including the mean (or bias factor) and standard deviation (or scaling factor) [41]. Thus,
available methods often ignore geometric changes in the input image for AST. At the service level,
this limitation can undermine the user experience because perceptually similar results are obtained
regardless of appearance changes in the input image. For example, if a user wants to control the
output in terms of color distribution by rotating the input style image, the AST results are the same
as the initial result. It hinders the user to find optimal wanted output. Without considering the color-
awareness in AST, user always face the same results even though they are struggling to obtain the
best output while geometrically changing the input images. This issue poses significant limitations
to advance well-designed AI technology to real-world service and applications. In this point of view,
although satisfactory visual quality has been achieved in previous studies, this limitation is important
and necessitated. To address this, additional methods are required, e.g., attention module [45,46], etc.
Therefore, we tackle this color-awareness issue in AST in this paper.

To address the abovementioned limitation, we propose a patchified method1 for color-aware style
transfer based on AdaIN or Patchified AdaIN for short. It explicitly divides the features into small
patches and performs AdaIN in a latent space to capture the regional color distribution. Hence,
spatial information can be preserved after AdaIN (Fig. 1). As Patchified AdaIN has no learnable
parameters, it can be easily integrated into state-of-the-art (SOTA) models without additional training
or finetuning while providing color-aware AST. Additionally, the patchified operation can be modified
according to patch levels and types to adjust and generate the desired output image. Moreover, a code
blending scheme provides a control factor to determine the naturalness of global-local color weights
during inference. The key contributions of the proposed method can be summarized as follows:

1. We introduce patchify-based AdaIN operation, dubbed as Patchified AdaIN that explicitly
divides the content and style features in a latent space to then apply AdaIN to every patch.
After Patchified AdaIN, the computed output is decoded using spatial recombination. Hence,
the proposed method can preserve spatial color information, establishing the first color-aware
AST method that can be embedded in SOTA models.

2. Patchified AdaIN has no learnable parameters and can be easily integrated into existing AST
models to add color-awareness without requiring finetuning.

1Patch-based AST (StyleSwap) [25] should be distinguished from our method. StyleSwap leveraged patches to replace content patch to the closest-matching style patch,
establishing a style swap for fast optimization, as explained in Section 2.1. On the other hand, the proposed method relies on patches to preserve the regional information
of color distribution by applying AdaIN to each content/style patch, showing spatial correspondence during inference (Section 4.2).



CMES, 2024, vol.141, no.3 2145

3. The user experience of AST applications with Patchified AdaIN is enhanced by enabling
geometric transformations of the input image to obtain the desired results by adjusting
parameters such as the patch level and type.

Figure 1: Abstracted our results with other network. Given geometrically transformed style image

2 Related Work
2.1 Arbitrary Style Transfer

Keeping pace with the development of deep neural networks, neural style transfer is active research
topic. It redefines the style of a content image by referencing to a style image to achieve an artistic
appearance, thus resembling artwork with an aesthetic appeal. AST emerged with an optimization
method [22] based on pretrained networks from an upstream task. However, this method requires
time-consuming iterative optimization for every style transfer image. To address this problem, various
methods have been devised. In [44], perceptual losses are used for real-time style transfer. In [47], a
hierarchical deep convolutional neural network is proposed for fast style transfer. In [25], patch-based
style transfer for fast inference is introduced. In [48], generalized style transfer is achieved without
compromising the visual quality with unseen styles. An unprecedented method is proposed in [26]
to transfer the style using AdaIN in a single feedforward step for real-time style transfer. AdaIN
enables fast and simple style transfer and has become a common and essential operation in style
transfer. Hence, various studies have been focused on solving other important problems such as view
or video style transfer [16,38,39,49,50], three-dimensional style transfer [19,20,36,37], text-driven style
transfer [4,7,51,52], domain generalization [28,53], and domain enhancement [29,30]. More recently,
various architecture including GANs [54], attention module [55] or CLIP [56] are leveraged for the
controllability [57], fast style transfer [58], applications [59].

2.2 Something-Aware Style Transfer
Despite its high quality and applications, AST results may not be perceptually satisfactory in

terms of user experience. To further improve AST, various methods implemented something-aware
schemes to generate perceptually intuitive results. In [41], structure-aware style transfer with kernel
prediction is proposed to enhance the structure style. In [42], visual fidelity is improved by using vector
quantization with codebooks proposed in discrete image modeling [60,61]. For a relatively sparse
shape or structure in an image, object shapes in an RGB (red-green-blue) image are considered with
distance transform and patch matching modules for shape-aware style transfer. Structure guidance is
used in [40] to focus on local regions. It enhances the content structure to avoid blurry or distorted



2146 CMES, 2024, vol.141, no.3

alignment by AdaIN. Recently, a pattern-aware scheme to discover the sweet spot of local and
global style representations with pattern repeatability has been developed [62]. Previous studies have
demonstrated intuitive outcomes using something-aware strategies for AST. However, user experience
faces a common limitation. Existing AST methods generally fail to deliver the intended outcome if
the user transforms the input style image, while the output image is expected to reflect any changes
in the input images. To explore this limitation, we perform a pre-analysis of image transformation in
Section 3.

3 Pre-Analysis

Consider a user manipulating a style transfer method in an exhibition hall as a representative AST
example. The user might want to obtain various desired results from the same input image. However,
this is difficult to achieve by manipulating the input images using an existing AST method. For
instance, we can easily recognize that the user expects the appearance of resulting image to change when
flipping or rotating the style or content image. In practice, user experience should be integrated into
service-level applications. Nonetheless, most existing methods cannot address the abovementioned
limitation because they cannot structurally reflect geometric changes in the input image.

To demonstrate this limitation through a short analysis, we applied geometric transformations
(e.g., flipping, rotation, translation) to an input image. The images generated by AST methods always
looked similar regardless of the applied transformation, as illustrated in Fig. 2. We first revisit the core
component in style transfer. Simple sequential normalization and denormalization (i.e., conditional
instance normalization) [26] is usually adopted as the main component for AST because representing
style using statistics in the feature space is useful and effective. Given content image Ic and style image
Is, the resulting image has the following formulation in a latent space:

AdaIN (Ic, Is) = σ (Is) × Ic − μ (Ic)

σ (Ic)
+ μ (Is) , (1)

where μ(·) and σ(·) denote the mean and standard deviation, respectively. When we transform the
input images with transformation matrix J , the output images can be expressed as J × Ic and J × Is.
For simplicity, we denote J × Is as Is,J and fix the content image with no transformations. From
Eq. (1), the image statistics of the transformed style image can be expressed as μ

(
Is,J

)
and σ

(
Is,J

)
.

To quantitatively compare the appearance of the output images according to the transformation of
the style image, we calculated statistics of the output images with and without transformation (i.e.,
original style image) for 10,000 images.

Figure 2: Limitation about image transformation. Regardless of style image transformation, the results
always look the same

As a short experiment about the effect of geometric transformations on AST, we applied rotation,
translation, and flipping to style images. As listed in Table 1, negligible differences in the statistics were
obtained across the spatial transformations. More specifically, rotation provided a small difference



CMES, 2024, vol.141, no.3 2147

compared with the original statistics, while translation and flipping showed no changes in the image
statistics because the absolute difference of the mean and standard deviation was zero. Hence, feature
statistics after AdaIN provided highly similar representations regardless of spatial changes. Although
the style image was drastically transformed in appearance, the resulting image was almost the same
after AST. This can be explained by the image statistics before transformation, μ

(
Is,J

)
and σ

(
Is,J

)
,

being almost equal to those after transformation, μ (Is) and σ (Is). In other words, AdaIN globally
aligns the image statistics without considering spatial distribution, thus failing to distinguish and
ignoring spatial changes [41]. Considering the pre-analysis, we aimed to change statistics μ

(
Is,J

)
and

σ
(
Is,J

)
to reflect spatial changes. In Section 4.2, we explain how to expand global AdaIN to obtain

variable local statistics according to spatial information.

Table 1: Comparison of image statistics between transformation and original. While style images are
transformed with each corresponding J (e.g., rotation, translation, flip), content images are fixed as
original image without transformation. Since the average μ and average σ shows similar results for
each RGB channel, we calculate the average about the results of 3 channels for simplicity

Transformations Avg. μ(Is,J ) Avg. σ(Is,J ) Abs. mean dist. Abs. std. dist.

W/o transformation 103.43, 119.72, 133.55 11.08, 11.71, 12.27 . .
Rotation 2/π 103.87, 120.30, 134.22 11.50, 12.12, 12.70 0.44, 0.58, 0.67 0.42, 0.42, 0.43
Rotation π 103.43, 119.72, 133.55 11.08, 11.71, 12.27 0.00, 0.00, 0.00 0.00, 0.00, 0.00
Rotation random 103.50, 119.90, 133.84 10.23, 10.57, 10.96 0.07, 0.18, 0.29 0.85, 1.14, 1.31
Translation x, 0.5 103.43, 119.72, 133.55 11.08, 11.71, 12.27 0.00, 0.00, 0.00 0.00, 0.00, 0.00
Translation x, random 103.43, 119.72, 133.55 11.08, 11.71, 12.27 0.00, 0.00, 0.00 0.00, 0.00, 0.00
Flip x 103.43, 119.72, 133.55 11.08, 11.71, 12.27 0.00, 0.00, 0.00 0.00, 0.00, 0.00
Flip y 103.43, 119.72, 133.55 11.08, 11.71, 12.27 0.00, 0.00, 0.00 0.00, 0.00, 0.00
Note: Underline font means changed value compared from original value.

4 Proposed Method

From simple qualitative (Fig. 2) and quantitative (Table 1) analyses to unveil the limitations of
existing AST methods, we identified the necessity to explicitly allow the statistics of a transformed
image to change accordingly. To this end, various methods have been proposed for the transformed
image, Is,J to provide different statistics to those of the original image, Is. Motivated by the findings in
[63,64] and [27,62], we adopt an explicit method which allow each patch spatially divided from image to
be participated into AdaIN operation. It is akin to strictly leverage a selected region in normalization
process without considering another region within a whole image. By doing that, we argue that color
preservation is simply yet effectively realized with easy-controllability, explainability, compatibility
on other AdaIN-based style transfer networks. It has more efficacy than by incorporating advanced
computationally large cost approach such as self-attention [64], contrastive learning [29], deformable
convolution [41]. This explicit strategy has been shown to be simple and effective to handle local
regions [25,27,62]. Our patch-based manipulation captures geometric transformations in the style
image. We first divide the image into patches for segmenting the content and style images. Then, AdaIN
is applied to every patch in a latent space. The obtained latent vectors are combined into an image with
the original size in the latent space. Finally, the combined latent vector is decoded as the output image.



2148 CMES, 2024, vol.141, no.3

Additionally, in the latent space, we use code blending to mitigate non-plausible results when spatially
combining the patches.

4.1 Pretraining Autoencoders
Before AST, autoencoders should be trained to perform reconstruction. As in [26], we adopt VGG-

19 [23] as encoder E, which was pretrained on the MSCOCO dataset [24] and used to process the style
image, and learnable decoder D with existing content and style loss functions. Unlike the method in
[26], we do not use a shared encoder for the content and style images to avoid quality degradation that
occurs by mapping the content and style images to the latent space using the same encoder [42].

As in [42], we first trained the content and style autoencoders for reconstruction on the MSCOCO
[24] and WikiArt2 datasets, respectively. For pretraining, each autoencoder was trained by reconstruct-
ing the input image as follows:

D∗ (E∗ (I∗)) = I∗,rec, (2)

where ∗ is c for the content image and s for the style image. Each autoencoder uses the following
reconstruction error:

Lrec (I∗) = ∥∥I∗,rec − I∗
∥∥ . (3)

After pretraining, each encoder appropriately maps the corresponding image while considering
the image characteristics. Among encoder and decoder for each image, we only fix the encoder for
finetuning the decoder, as detailed in Section 4.3. During inference, we fix all the parameters in the
encoders and decoder, except for the user-defined parameters.

4.2 Style Transfer via Patchified-AdaIN
We use the encoders for inference or finetuning by freezing the encoder weights. In detail, given

input image pair (Ic, Is) , we generate style-transferred output image Ĩ . Considering a transformation,
each input image I∗ is transformed into I∗,J where ∗ is c or s, and J represents the transformation
(i.e., rotation r, translations tx and ty, flipping along the horizontal fh and vertical fv, or zooming z)
described in Section 5.1. The image is mapped onto the latent space by the encoder as follows:

zc = Ec

(
Ic,J̃

)
, zs = Es

(
Is,J̃

)
, (4)

where J̃ is a user-defined image transformation level, z∗ ∈ R
Cf ×Hf ×Wf is the latent code (Cf is the

number of channels, and Hf and Wf are the height and width of the encoded features), and Ec and
Es represent the pretrained content and style encoders, respectively. Then, the latent code is spatially
divided into patches as follows:

C = P (zc, Mh, Mw) ,S = P (zc, Mh, Mw) , (5)

with P (z∗, Mh, Mw) being the patching layer formulated as:

P (z∗, Mh, Mw) = [CH (CH (z∗, Mh, h − axis) , w − axis)], (6)

where CH is a chunk function. Hence, P divides latent code z∗ into Mh × Mw patches, obtaining
sets C and S of patches extracted from the content and style images, respectively. These sets can be
represented as C = {ci}Mh×Mw

i=1 , S = {si}Mh×Mw
i=1 where ci, si ∈ R

Cf ×HM ×WM are the i-th content and style
patches, respectively, HM and WM are the dimensions of the divided patch calculated as HM = Hf /Mh,

2https://www.wikiart.org/ (accessed on 24 September 2024).

https://www.wikiart.org/


CMES, 2024, vol.141, no.3 2149

WM = Wf /Mw. We assume Mh = Mw throughout the paper unless stated otherwise. AdaIN is applied
to each patch with the corresponding positional patch in the other image calculated as:

T = AdaINpatch (C,S) , t = AdaIN (zc, zs) , (7)

where t is the AdaIN output for code blending and T is AdaIN output set T = {ti}Mh×Mw
i=1 calculated by

AdaINpatch (C,S). As illustrated in Fig. 3, this operation can be formulated as:

AdaINpatch (C,S) =
{

ti|ti = σ (si)
ci − μ (ci)

σ (ci)
+ μ(si)

}M

i=1

, (8)

where ci ∈ C and si ∈ S. After applying AdaIN in the latent space, all the patches are aggregated and
then blended using global feature t and local features T by user-defined parameter α as a global-local
weight as follows:

ẑα = (1 − α)A (T ) + αt, (9)

where ẑα is the final feature including user-defined factor α that sets the tradeoff between the global
and local features. A (·) is the de-patching layer that aggregates the input patch set while ensuring that
A (P (z∗, Mh, Mw)) = z∗. During inference, the user can set the content image as the original one, that
is, Ic,J = Ic, while transforming the style image. Finally, output image Ĩα is obtained as Ĩα = Ds

(
ẑα

)
.

Figure 3: PatchizedAdaIN operation compared with AdaIN operation

4.3 Fine Tuning
The proposed Patchified AdaIN component can be easily used by replacing each AdaIN layer in

an existing network without any other architecture modification or additional training or adaptation
process. However, to enhance the regional quality of style transfer output, the decoder can be further
tuned with an additional local loss using an existing loss function. To distinguish the loss functions,
we refer to the existing AdaIN loss as the global loss throughout the paper. Similar to the global loss,
our local loss is additionally computed from every patch of the content and style images. The local
content loss is calculated as:

Lpatch_content =
M∑

i=1

‖T − P(Ec (Ds (A (T )))‖2 , (10)

where we omit the summation index for simplicity. Note that T and the output of P are sets including
the patchified latent feature. In the local loss term for finetuning, we exclude code blending (i.e., α = 0



2150 CMES, 2024, vol.141, no.3

in 9). Thus, ẑα becomes A (T ) without considering the global features. Therefore, the local style loss
can be calculated as:

Lpatch_style =
M∑

i=1

(
L∑

j=1

∥∥μ
(
φj (Ds (A (T )))

) − μ
(
φj (Is)

)∥∥
2
+ ∥∥σ

(
φj (Ds (A (T )))

) − σ
(
φj (Is)

)∥∥
2

)
, (11)

where φj (·) represents the j-th layer in Es (·) and L is the depth of the layer from φ1 (·) in the encoder
to be used as a loss. We calculate the content loss using relu4_1 and style loss as in [26]. We add the
patch loss to the existing global loss [26]. Finally, the patch and global loss functions are formulated
as follows:

Lpatch = Lpatch_content + λpatchLpatch_style,Lglobal = Lglobal_content + λglobalLglobal_style, (12)

where λ is a style loss weight. We set every λ to 10 as in [26]. Lglobal_content and Lglobal_style are the same as
the original loss functions of [26]. The complete loss, Ltotal, is obtained by linearly combining the patch
and global loss functions as follows:

Ltotal = γLpatch + (1 − γ )Lglobal, (13)

where γ is the patch loss scale. By changing γ , we can control the weight of the local spatial fidelity for
finetuning. We set γ to 0.9. For plausible visual fidelity without explicit control, γ can be considered
as a learnable parameter with an initial value of 1.0.

Additionally, we set Mh and Mw to 2 and obtain each patch by dividing the features, as shown in
Fig. 4. Note that the user can control these factors (e.g., patch division strategy, number of patches),
as analyzed in Section 5.5. Overall, the patch loss captures the AdaIN loss from local features si and
ci to obtain local statistics. Then, with the existing AdaIN loss [26], we weight the patch loss to set the
contribution of the local style features to every patch. This affects not only backpropagation of the cost
function during training but also inference for resulting image with AST, as analyzed in Section 5.4.

Figure 4: Proposed PatchizedAdaIN mechanism in inference step



CMES, 2024, vol.141, no.3 2151

4.4 Network Structure
We adopt the AdaIN network in [26] for the AST network as the baseline, but any other network

relying on AdaIN can be used in our scheme by simply replacing AdaIN with the proposed Patchified
AdaIN. For the encoder-decoder architecture, we use a nine-layer 3 × 3 filter convolution encoder f
with up to 512 channels and decoder g with a symmetric architecture and the encoder based on [26].
The output image, Ĩ , is calculated as Ĩ = Ds ((1 − α)A (T ) + αt) for inference and Ĩ = Ds (A (T )) for
finetuning.

5 Experiments

We demonstrated the superiority of our method through comparisons with other models in terms
of color-aware (i.e., geometric-transformation-aware) style transfer, and evaluated the influence of the
number and types of patches on AST. First, we present the visual superiority of our proposal when
transforming the style image in Section 5.1. Then, we obtain the color distributions before and after
geometric transformations to show that our method visually reflects image transformations for AST
in Section 5.2. For regional fidelity, we demonstrate finetuning results in Section 5.4. To evaluate user
experience, we design a runtime control strategy for patching in Section 5.5. For practical application,
we calculate the inference time by comparing our method with existing baselines in Section 5.8. Finally,
we modify SOTA AST models using our Patchified AdaIN to integrate transformation-awareness,
thereby demonstrating the extension and applicability provided by our proposal in Section 5.7. In
training procedures, without patchization layer, we first pretrain the autoencoders for content and
style, respectively. Then, the decoder of style autoencoder is further tuned based on Eq. (13).

5.1 Qualitative Evaluation under Geometric Transformations
To evaluate the capabilities of spatial-transformation-aware AST, we choose various geometric

transformations that notably changed the regional color distribution. We applied four geometric
transformations: rotation angle r, translations along the x axis, tx, and y axis, ty, flipping along the
vertical, fv, and horizontal, fh, and zooming z. To prevent the global statistics of the image from
excessively changing after a geometric transformation, we filled out empty areas with fictitious pixel
insertion by, for example, reflecting symmetrical tiles for the rotation. Four cases were evaluated, with
the transformation being given by J = (

r, tx, ty, fv, fh, z
)
, where r is a clockwise rotation angle from −π

to π , tx and ty are translation factors normalized from −1 to 1, fv, and fh, are flipping indicators being
true or false, and z is a scaling and cropping factor from 0 to 0.5 with respect to the original image
resolution. Examples of transformations are shown in Fig. 5.

Figure 5: Geometric transformation cases



2152 CMES, 2024, vol.141, no.3

By applying predefined transformations, we performed AST using an original content image and
transformed style image. For qualitative comparison, we selected AdaIN [26] as the baseline as well as
LinearStyleTransfer (LST) [31], style-attentional network (SANET) [65], IEContraAST (IEST) [66],
adaptive attention normalization (AdaAttN) [67], adaptive convolutions (AdaConv) [41], contrastive
coherence preserving loss (CCPL) [30] as comparison networks. Because we focused on AST, we did
not evaluate domain-enhanced (i.e., domain-specific) style transfer [29] and visual fidelity (whose
results resemble image-to-image translation) [42]. As shown in Fig. 6, our method reflected the image
transformations with varying color distributions in the output images. As expected from the pre-
analysis (Section 3), no existing method could reflect the appearance change in the transformed style
imaged, thus providing very similar results regardless of the applied transformation. On the other
hand, the proposed method provided different results that reflected the transformations. For instance,
our method generated an output image by locally reflecting the sky region (blue) in the style image in
terms of spatial color distribution in the first row of Fig. 6. Similarly, the teddy bear showed varying red
shades depending on the style image transformations in the fourth row, thus reflecting the variability
provided by the proposed Patchified AdaIN.

Figure 6: Qualitative comparison using our pre-defined geometric transformation cases



CMES, 2024, vol.141, no.3 2153

5.2 Quantitative Evaluation of Color-Awareness
The proposed Patchified AdaIN applies AdaIN to every spatially divided patch in the latent space.

Nevertheless, it may generate images with a non-satisfactory appearance because the normalized latent
code may be misaligned during decoding. To quantitatively evaluate this aspect, we measured the
spatial color distribution according to the same patch division in the output image and used the same
models as in Section 5.1 for comparison. The proposed method was finetuned using Eq. (13) for a
value of a = 0.0 and a = 0.5 in 9. Here, we adopt two metrics: (a) spatial statistics (mean and variance),
(b) Jensen-Shannon Divergence [68]. We used 1000 samples between the input style image and each
output image per model. Statistical evaluation allows us to intuitively compare the distribution of
pixel values. Meanwhile, JSD measure the difference of given two distributions, here image serve as
a distribution. Concretely, we found that recent paper [68] leveraged Jensen-Shannon Divergence to
measure the color distribution between two RGB images, we also adopt JSD metric in our quantitative
evaluation. We used same images in statistical and JSD evaluation.

The quantitative results in Fig. 7 showed that our methods provided the lowest distance for the
mean, indicating that our style transfer results had similar RGB mean with the style image among the
evaluated models. On the other hand, the distance for the standard deviation was similar. Meanwhile,
similar to statistical evaluation results (Fig. 7), JSD evaluation result showed that our method has
best performance on reflecting spatial color distribution as shown Table 2. To determine whether this
style statistics affected AST, we performed an evaluation considering human perception, as reported
in Section 5.3.

Figure 7: Quantitative evaluation results with statistical metric

Table 2: Quantitative evaluation results with JS-Divergence metric

Models Oursα=0.0 Oursα=0.5 LST31 LST41 SANet IEST AdaAttN AdaConv CCPL

JSDR ↓ 0.077 0.105 0.103 0.102 0.096 0.398 0.094 0.293 0.449
JSDG ↓ 0.095 0.120 0.112 0.112 0.102 0.422 0.098 0.308 0.493
JSDB ↓ 0.080 0.111 0.108 0.109 0.102 0.429 0.097 0.302 0.487
Avg.JSD ↓ 0.084 0.111 0.107 0.107 0.099 0.416 0.096 0.301 0.476
Note: Underline font means best model and ↓ indicates that lower value is better.



2154 CMES, 2024, vol.141, no.3

5.3 User Study
To evaluate human perception of color-aware AST, we conducted a user study considering

style transfer outputs before and after transformation. We evaluated seven content images and two
style images before and after applying transformations. We then conducted a seven-question survey
considering random pairs of content and style images. One question involved 14 images, and it was
responded for the outputs of the proposed and six comparison AST methods, obtaining 98 responses
from 30 participants. We asked which output imaged better reflected the regional color distribution of
the style image after transformation. The 30 participants included a junior artist, students enrolled in
the art or computer science major, graphics/vision field researchers, and an immersive content creator.
Every participant selected the best image among the outputs of all the methods considering the original
and transformed style images for the same content image. From the user study, the proposed method
achieved the best performance in terms of regional color distribution, as shown in Fig. 8. Almost
half of the participants (45.71%) selected the proposed method as the best one among the evaluated
methods. Remarkably, our proposal received dominant preference (>70%) for rotation and flipping
transformations. On the other hand, regarding zooming with cropping, all the methods received similar
proportions of preference. This was because the color distribution of the zoomed style images was
distorted before AST, as illustrated in Fig. 6. Consequently, the output images of all the methods
changed regardless of the ability to preserve the color distribution, causing highly variable preferences
among the participants and similar preferences across methods after zooming the style image.

Figure 8: Result of user study in terms of color-distribution preservation

Along with the evaluation results presented in Section 5.2, we can conclude that the distance
in standard deviation is not as important as that in mean regarding human perception of AST. In
addition, the results in Figs. 7 and 8 suggest that the proposed method achieves SOTA performance
and that the distance in mean allows to suitably evaluate the style similarity regarding human
perception.



CMES, 2024, vol.141, no.3 2155

5.4 Local Image Style Transfer by Fine-Tuning
In addition to the existing AdaIN [26] training loss in Eq. (13), we introduce a local patch

loss in Eq. (12). We evaluated the advantage of finetuning to highlight regional details in AST. We
performed style transfer with two models, namely, a pretrained encoder-decoder replacing AdaIN
with Patchified AdaIN without fine-tuning, whose weights were retrieved from an AdaIN PyTorch
implementation [26], and a finetuned model considering our global-local loss in Eq. (13). As shown
in Fig. 9, structurally distorted results were obtained without finetuning (Fig. 9b). Specifically, the
boundaries between the cat and bathtub were blurry when using the pretrained model. In contrast, the
finetuned model (Fig. 9a) preserved more structural details of the content image. Hence, finetuning
enhanced the output image details without notably compromising the content image. Although blurry
results may be artistically preferred in some contexts, preserving structural details is often preferred
for human perception.

Figure 9: Structural details between w/ and w/o fine-tuning

5.5 Runtime Control for Patchization
To further evaluate the user experience, we explored runtime control strategies focusing on the

Patchified AdaIN parameters of patch level and type. These controls may enhance the user experience
during inference without requiring additional training.

5.5.1 Patch Level

Common segmentation into patches spatially divides features into 2 by 2 patches. As more patches
may be useful in some cases, we evaluated the effects of increasing the patch number from Mh =
Mw = 2 (default) to Mh = Mw = 5. Fig. 10 shows the corresponding results. When more patches were
used, the structural details decreased for α = 0.0. Hence, the apparent abstraction-level of the output
increased because the model tried to preserve the regional color distribution. Thus, the structure of
content image remained as edge information. On the other hand, the outputs reflecting global statistics
(α �= 0.0) demonstrated a relatively clear and intuitive structure compared with patch-only AST, but
the abstraction level of these results was highly dependent on the style image, i.e., they are unstable



2156 CMES, 2024, vol.141, no.3

and non-consistent. Nonetheless, we concluded that the local-global model (i.e., α = 0.5) suitably
preserved the structure of the content image regardless of the number of patches. Hence, a deep patch
level led to unclear information near the content image edges. In addition, perspective or stereoscopic
information easily collapsed for a = 0.0, likely providing a perceptually unpleasant impression from
ambiguous results. We found that a model with Hf and Wf divided by 2 or 3 with α = 0.5 provided
appealing results in most cases. Hf and Wf divided by 4 or 5 can also be used, but these deep patch
levels caused a global-local trade-off for α = 0.5, impairing the user experience in terms of color-aware
AST. Hence, we do not recommend using patch levels of 4 or 5. Patch level parameter do not require
fine-tuning step, it can be simply used in inference step by user.

Figure 10: Stylized image according to different patch levels. In each patch levels (b), Mh, Mw are 2, 3,
4 and 5

5.5.2 Patch Type

For patching in Patchified AdaIN, 2 by 2 division was the default setting (Fig. 3). However,
different patch types can lead to different visual results. For evaluation, we applied three different patch
types including the default one while preserving Mh +Mw = 4 in Eq. (5), obtaining the results shown in
Fig. 11. In the feature space, we applied simple division methods to show the output changes according
to the patch types, as shown in Fig. 11b. Type A was the most general method while and Types B and
C corresponded to horizontal and vertical separation into patches, respectively. Fig. 11 shows that the
patch types generated notably different output images. For instance, Type B provided a gloomy result,
while Type C provided a bright sunny impression for Style 1. Hence, different impressions can be
generated depending on the patch type for the same input image. Therefore, AST using the proposed
method can provide a rich user experience. In fact, the user can flexibly select the runtime control
parameters to achieve the desired style transfer results without additional training.



CMES, 2024, vol.141, no.3 2157

Figure 11: Stylized image according to different patch types. In Type-A, (Mh, Mw) = (2, 2). Type-B
and Type-C has (Mh, Mw) = (4, 1) and (Mh, Mw) = (1, 4), respectively

5.6 Inference Speed
To confirm the practicality of the proposed Patchified AdaIN, we measured the inference time

according to different patch levels. The results were obtained using a computer equipped with an
NVIDIA GeForce RTX 3090 GPU of 24 GB. We calculated were the average inference time over 1000
iterations.

We performed AST for patch levels from 2 to 5, as in Section 5.5. The baseline was the pretrained
AdaIN model [26], and our method considered the finetuned model replacing AdaIN with Patchified
AdaIN. For comparison, we normalized the AdaIN inference speed to 1. As listed in Table 3, our
models had a negligible inference gap compared with the simpler baseline. Even the highest patch level
provided a speed with a factor of 1.057. Hence, the proposed method incurs a small inference burden,
suggesting that Patchified AdaIN can be integrated in SOTA models without notably compromising
the inference speed.

5.7 Application to SOTA Models
As discussed in Section 5.8, Patchified AdaIN can be used in other models through simple replace-

ment without notably increasing the inference time. We selected various SOTA AST models based on
AdaIN for replacement with the proposed Patchified AdaIN. We aimed to demonstrate the extensive
applicability of our method and the AST performance preservation while reflecting the regional



2158 CMES, 2024, vol.141, no.3

color distribution. For evaluation, we selected CCPL [30] with α = 0.0 and LinearStyleTransfer [31]
with α = 0.5 for code blending using (9). Patchified AdaIN was integrated into the transformation
or normalization block. As the evaluated models adopted different schemes for AST, we adapted
Patchified AdaIN to their structure, establishing modified Patchified AdaIN implementations that
preserved the core scheme of Patchified AdaIN of explicitly dividing the features into patches and
aggregating them to obtain the output image. As shown in Fig. 12, the modified Patchified AdaIN
endowed the SOTA models with the ability to perform spatially color-aware AST. The original
SOTA models generated highly similar output images regardless of the transformed style image.
After applying the modified Patchified AdaIN, the models provided different results reflecting the
transformations, thus providing diverse appearances to the output images. These results demonstrate
that our method is effective and easily applicable to other AST models without compromising
performance. Nonetheless, it should be carefully considered when our method will be applied into
existing networks.

Table 3: Inference speed according to the number of patches

Model Time

AdaIN (baseline) [26] 1.000
Ours (Mh = Mw = 2) 1.005
Ours (Mh = Mw = 3) 1.008
Ours (Mh = Mw = 4) 1.031
Ours (Mh = Mw = 5) 1.057

Figure 12: Extension to SOTA models using modified PatchizedAdaIN. Our PatchizedAdaIN can be
easily applied to other style transfer networks to provide the color-aware capability

5.8 Generalizability and Failure Case
For real-world use cases, it is important whether method can used in general and wide use

cases, that is generalizailbity. To provide this capability, we provide additional experiment with some



CMES, 2024, vol.141, no.3 2159

images that have non-uniform and complex color distribution. Samples which have a high variance
are chosen and we conduct style transfer under our model using those images to showcase potential
generalizability in real-world use cases. As shown in Fig. 13, we observed that resulting stylized images
has few visual changes even though different transformations are adopted. This issue can be the
limitation of our method, but it might be addressed if user input the style images which have high
contrast, vibrant color intensity. Meanwhile, our patchification strategy requires patch aggregation
due to the spatial division in 2-dimensional space. Therefore, there is potential quality degradation in
the edge of patch in aggregation step. Especially, if the structure of content images has semantically
important information in the edge, artifacts in that region could prominently demonstrate visually
non-harmonized appearance. Thus, this potential quality degradation should be carefully considered
in inference step.

Figure 13: Failure cases on non-uniform and intricate color distribution. The resulting images may
not be easily distinguishable despite various transformations when style images have complex color
distribution

6 Conclusion

We propose a simple but effective scheme to reflect or preserve the color distribution of images
that undergo transformations in AST. We divide the latent features into patches and aggregate them
after applying AdaIN to every patch. This method can enlarge the user experience because Patchified
AdaIN can generate different output images according to geometric transformations applied to the
input images. Hence, the user can generate various desired results while using the same input image
pairs. Additionally, we offer control over parameters to further increase the image variability and
achieve the best results via iterative inference with different patch levels and types. A user study
reveals that our method provides the preferred output images regarding human perception. Moreover,
Patchified AdaIN can be easily integrated into existing models, demonstrating its applicability for
extending existing AST models to preserve the spatial color distribution of transformed images.
Overall, the proposed method achieves the best performance in terms of color-aware AST, establishing
a SOTA approach without notable computational overhead during training and inference compared
with baseline methods. However, there is a limitation in that ambiguous output occurs when the input
image has a complex or non-uniform color distribution. This can be alleviated by having the end-users
consider this technical limitation to achieve the desired appearance when using our algorithm in their
applications.

Acknowledgement: This research was supported by the Chung-Ang University Graduate Research
Scholarship in 2024.



2160 CMES, 2024, vol.141, no.3

Funding Statement: This research work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korean government (MSIT) (No. 2022R1A2C1004657, Contribution
Rate: 50%) and Culture, Sports and Tourism R&D Program through the Korea Creative Content
Agency grant funded by Ministry of Culture Sports and Tourism in 2024 (Project Name: Developing
Professionals for R&D in Contents Production Based on Generative Ai and Cloud, Project Number:
RS-2024-00352578, Contribution Rate: 50%).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Bumsoo Kim, Sanghyun Seo; data collection and comparative experiments: Bumsoo Kim,
Wonseop Shin, Yonghoon Jung; analysis and interpretation of results: Bumsoo Kim, Youngsup Park,
Sanghyun Seo; draft manuscript preparation: Bumsoo Kim, Sanghyun Seo. All authors reviewed the
results and approved the final version of the manuscript.

Availability of Data and Materials: All the data used and analyzed is available in the manuscript.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Huang HP, Tseng HY, Saini S, Singh M, Yang MH. Learning to stylize novel views. In: Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision, 2021; p. 13869–78.
doi:10.1109/ICCV48922.2021.01361.

2. Chen Y, Yuan Q, Li Z, Liu Y, Wang W, Xie C, et al. UPST-NeRF: universal photorealistic style transfer
of neural radiance fields for 3D scene; 2022. arXiv preprint arXiv: 220807059.

3. Wang Z, Zhang Z, Zhao L, Zuo Z, Li A, Xing W, et al. AesUST: towards aesthetic-enhanced universal
style transfer. In: Proceedings of the 30th ACM International Conference on Multimedia, 2022; Lisbon,
Portugal, p. 1095–106. doi:10.1145/3503161.3547939.

4. Liu ZS, Wang LW, Siu WC, Kalogeiton V. Name your style: an arbitrary artist-aware image style transfer;
2022. arXiv preprint arXiv: 220213562.

5. Wu X, Hu Z, Sheng L, Xu D. StyleFormer: real-time arbitrary style transfer via parametric style compo-
sition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021; p.
14618–27. doi:10.1109/ICCV48922.2021.01435.

6. Gao W, Li Y, Yin Y, Yang MH. Fast video multi-style transfer. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), 2020; Snowmass Village, CO, USA.
doi:10.1109/WACV45572.2020.9093420.

7. Kwon G, Ye JC. CLIPstyler: image style transfer with a single text condition. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022; New Orleans, LA,
USA; p. 18062–71. doi:10.1109/CVPR52688.2022.01753.

8. Zhang S, Su S, Li L, Lu J, Zhou Q, Chang CC. CSST-Net: an arbitrary image style transfer network of
coverless steganography. Vis Comput. 2022;38:1–13. doi:10.1007/s00371-021-02272-6.

9. Zhang Y, Huang N, Tang F, Huang H, Ma C, Dong W, et al. Inversion-based style transfer with diffusion
models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023; Vancouver, BC, Canada; p. 10146–56. doi:10.1109/CVPR52729.2023.00978.

10. Luan F, Paris S, Shechtman E, Bala K. Deep photo style transfer. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017; Honolulu, Hawaii; p. 4990–8.
doi:10.1109/CVPR.2017.740.

https://doi.org/10.1109/ICCV48922.2021.01361
https://doi.org/10.1145/3503161.3547939
https://doi.org/10.1109/ICCV48922.2021.01435
https://doi.org/10.1109/WACV45572.2020.9093420
https://doi.org/10.1109/CVPR52688.2022.01753
https://doi.org/10.1007/s00371-021-02272-6
https://doi.org/10.1109/CVPR52729.2023.00978
https://doi.org/10.1109/CVPR.2017.740


CMES, 2024, vol.141, no.3 2161

11. Luo X, Han Z, Yang L, Zhang L. Consistent style transfer; 2022. arXiv preprint arXiv: 220102233.
12. Mu F, Wang J, Wu Y, Li Y. 3D photo stylization: learning to generate stylized novel views from a single

image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022;
New Orleans, LA, USA; p. 16273–82. doi:10.1109/CVPR52688.2022.01579.

13. Lu M, Xu F, Zhao H, Yao A, Chen Y, Zhang L. Exemplar-based portrait style transfer. IEEE Access.
2018;6:58532–42. doi:10.1109/ACCESS.2018.2874203.

14. Xie X, Li Y, Huang H, Fu H, Wang W, Guo Y. Artistic style discovery with independent components. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022;
New Orleans, LA, USA; p. 19870–9. doi:10.1109/CVPR52688.2022.01925.

15. Huang S, Xiong H, Wang T, Wen B, Wang Q, Chen Z, et al. Parameter-free style projection for arbitrary
image style transfer. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2022; Singapore, IEEE; p. 2070–4. doi:10.1109/ICASSP43922.2022.9746290.

16. Chen D, Yuan L, Liao J, Yu N, Hua G. Stereoscopic neural style transfer. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018; p. 6654–63.
doi:10.1109/CVPR.2018.00696.

17. Han F, Ye S, He M, Chai M, Liao J. Exemplar-based 3D portrait stylization. IEEE Transact Visual Comput
Graph. 2021;29(2):1371–83. doi:10.1109/TVCG.2021.3114308.

18. Höllein L, Johnson J, Nießner M. Stylemesh: style transfer for indoor 3D scene reconstructions. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022; New
Orleans, LA, USA; p. 6198–208. doi:10.1109/CVPR52688.2022.00610.

19. Chiang PZ, Tsai MS, Tseng HY, Lai WS, Chiu WC. Stylizing 3D scene via implicit representation and
hypernetwork. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2022; Waikoloa, HI, USA; p. 1475–84. doi:10.1109/WACV51458.2022.00029.

20. Zhang K, Kolkin N, Bi S, Luan F, Xu Z, Shechtman E, et al. ARF: artistic radiance fields.
In: European Conference on Computer Vision, 2022; Tel Aviv, Israel, Springer; p. 717–33.
doi:10.1007/978-3-031-19821-2_41.

21. Ma Y, Zhao C, Li X, Basu A. RAST: restorable arbitrary style transfer via multi-restoration. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023; Waikoloa, HI,
USA; p. 331–40. doi:10.1145/3638770.

22. Gatys LA, Ecker AS, Bethge M. Image style transfer using convolutional neural networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016; Las Vegas, NV, USA; p. 2414–
23. doi:10.1109/CVPR.2016.265.

23. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014. arXiv
preprint arXiv: 14091556.

24. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: common objects
in context. In: European Conference on Computer Vision, 2014; Zurich, Switzerland, Springer; p. 740–55.
doi:10.1007/978-3-319-10602-1_48.

25. Chen TQ, Schmidt M. Fast patch-based style transfer of arbitrary style; 2016. arXiv preprint arXiv:
161204337.

26. Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. In:
Proceedings of the IEEE International Conference on Computer Vision, 2017; Venice, Italy; p. 1501–10.
doi:10.1109/ICCV.2017.167.

27. Hong K, Jeon S, Lee J, Ahn N, Kim K, Lee P, et al. AesPA-Net: aesthetic pattern-aware style transfer
networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023;
Paris, France; p. 22758–67. doi:10.1109/ICCV51070.2023.02080.

28. Chen J, Jiang M, Dou Q, Chen Q. Federated domain generalization for image recognition via cross-client
style transfer. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 2023; Waikoloa, HI, USA; p. 361–70. doi:10.1109/WACV56688.2023.00044.

https://doi.org/10.1109/CVPR52688.2022.01579
https://doi.org/10.1109/ACCESS.2018.2874203
https://doi.org/10.1109/CVPR52688.2022.01925
https://doi.org/10.1109/ICASSP43922.2022.9746290
https://doi.org/10.1109/CVPR.2018.00696
https://doi.org/10.1109/TVCG.2021.3114308
https://doi.org/10.1109/CVPR52688.2022.00610
https://doi.org/10.1109/WACV51458.2022.00029
https://doi.org/10.1007/978-3-031-19821-2_41
https://doi.org/10.1145/3638770
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/ICCV.2017.167
https://doi.org/10.1109/ICCV51070.2023.02080
https://doi.org/10.1109/WACV56688.2023.00044


2162 CMES, 2024, vol.141, no.3

29. Zhang Y, Tang F, Dong W, Huang H, Ma C, Lee TY, et al. Domain enhanced arbitrary image style
transfer via contrastive learning. In: ACM SIGGRAPH, 2022 Conference Proceedings, 2022; Vancouver,
BC, Canada; p. 1–8. doi:10.1145/3528233.3530736.

30. Wu Z, Zhu Z, Du J, Bai X. CCPL: contrastive coherence preserving loss for versatile style trans-
fer. In: European Conference on Computer Vision, 2022; Tel Aviv, Israel, Springer; p. 189–206.
doi:10.48550/arXiv.2207.04808.

31. Li X, Liu S, Kautz J, Yang MH. Learning linear transformations for fast arbitrary style transfer; 2018.
arXiv preprint arXiv: 180804537.

32. Jing Y, Liu Y, Yang Y, Feng Z, Yu Y, Tao D, et al. Stroke controllable fast style transfer with adaptive
receptive fields. In: Proceedings of the European Conference on Computer Vision (ECCV), 2018; Munich,
Germany. doi:10.1007/978-3-030-01261-8_15.

33. Puy G, Perez P. A flexible convolutional solver for fast style transfers. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019; Long Beach, CA, USA.
doi:10.1109/CVPR.2019.00917.

34. Huang Y, Jing M, Zhou J, Liu Y, Fan Y. LCCStyle: arbitrary style transfer with low computational
complexity. IEEE Trans Multimedia. 2021;25. doi:10.1109/TMM.2021.3128058.

35. Wang Z, Zhao L, Zuo Z, Li A, Chen H, Xing W, et al. MicroAST: towards super-fast ultra-resolution
arbitrary style transfer. Proc AAAI Conf Artif Intell. 2023;37:2742–50. doi:10.1609/aaai.v37i3.25374.

36. Zhang Z, Liu Y, Han C, Pan Y, Guo T, Yao T. Transforming radiance field with lipschitz network for photo-
realistic 3D scene stylization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023; Vancouver, BC, Canada; p. 20712–21. doi:10.1109/CVPR52729.2023.01984.

37. Huang YH, He Y, Yuan YJ, Lai YK, Gao L. StylizedNeRF: consistent 3D scene stylization as stylized nerf
via 2D-3D mutual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022; New Orleans, LA, USA; p. 18342–52. doi:10.1109/CVPR52688.2022.01780.

38. Wang W, Yang S, Xu J, Liu J. Consistent video style transfer via relaxation and regularization. IEEE
Transact Image Process. 2020;29:9125–39. doi:10.1109/TIP.2020.3024018.

39. Deng Y, Tang F, Dong W, Huang H, Ma C, Xu C. Arbitrary video style transfer via multi-channel
correlation. Proc AAAI Conf Artif Intell. 2021;35(2):1210–7. doi:10.1609/aaai.v35i2.16208.

40. Atarsaikhan G, Iwana BK, Uchida S. Guided neural style transfer for shape stylization. PLoS One.
2020;15(6):e0233489. doi:10.1371/journal.pone.0233489.

41. Chandran P, Zoss G, Gotardo P, Gross M, Bradley D. Adaptive convolutions for structure-aware style
transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Virtual, 2021; p. 7972–81. doi:10.1109/CVPR46437.2021.00788.

42. Huang S, An J, Wei D, Luo J, Pfister H. QuantArt: quantizing image style transfer towards high visual
fidelity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023;
Vancouver, BC, Canada; p. 5947–56. doi:10.48550/arXiv.2212.10431.

43. Jing Y, Liu X, Ding Y, Wang X, Ding E, Song M, et al. Dynamic instance normalization for arbitrary style
transfer. Proc AAAI Conf Artif Intell. 2020;34(4):4369–76. doi:10.1609/aaai.v34i04.5862.

44. Johnson J, Alahi A, Fei-Fei L. Perceptual losses for real-time style transfer and super-resolution. In: Com-
puter Vision–ECCV 2016: 14th European Conference, October 11–14, 2016, Amsterdam, The Netherlands,
Springer; p. 694–711. doi:10.1007/978-3-319-46475-6_43.

45. Vaswani A. Attention is all you need. In: Advances in neural information processing systems 30 (NIPS
2017). Long Beach, CA, USA; 2017.

46. Zhang H, Goodfellow I, Metaxas D, Odena A. Self-attention generative adversarial networks. In:
International Conference on Machine Learning, 2019; Long Beach, CA, USA: PMLR; p. 7354–63.
doi:10.48550/arXiv.1805.08318.

https://doi.org/10.1145/3528233.3530736
https://doi.org/10.48550/arXiv.2207.04808
https://doi.org/10.1007/978-3-030-01261-8_15
https://doi.org/10.1109/CVPR.2019.00917
https://doi.org/10.1109/TMM.2021.3128058
https://doi.org/10.1609/aaai.v37i3.25374
https://doi.org/10.1109/CVPR52729.2023.01984
https://doi.org/10.1109/CVPR52688.2022.01780
https://doi.org/10.1109/TIP.2020.3024018
https://doi.org/10.1609/aaai.v35i2.16208
https://doi.org/10.1371/journal.pone.0233489
https://doi.org/10.1109/CVPR46437.2021.00788
https://doi.org/10.48550/arXiv.2212.10431
https://doi.org/10.1609/aaai.v34i04.5862
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.48550/arXiv.1805.08318


CMES, 2024, vol.141, no.3 2163

47. Wang X, Oxholm G, Zhang D, Wang YF. Multimodal transfer: a hierarchical deep convolutional neural
network for fast artistic style transfer. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017; Honolulu, HI, USA; p. 5239–47. doi:10.1109/CVPR.2017.759.

48. Li Y, Fang C, Yang J, Wang Z, Lu X, Yang MH. Universal style transfer via feature transforms. Adv Neural
Inf Process Syst. 2017;30:385–95. doi:10.5555/3294771.3294808.

49. Tseng KW, Lee YC, Chen CS. Artistic style novel view synthesis based on a single image. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022; New Orleans, LA, USA;
p. 2258–62. doi:10.1109/CVPRW56347.2022.00248.

50. Kong X, Deng Y, Tang F, Dong W, Ma C, Chen Y, et al. Exploring the temporal consistency of
arbitrary style transfer: a channelwise perspective. IEEE Trans Neural Netw Learn Syst. 2023;35:8482–96.
doi:10.1109/TNNLS.2022.3230084.

51. Jandial S, Deshmukh S, Java A, Shahid S, Krishnamurthy B. Gatha: relational loss for enhancing text-based
style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2023; Vancouver, BC, Canada; p. 3546–51. doi:10.1109/CVPRW59228.2023.00362.

52. Fu TJ, Wang XE, Wang WY. Language-driven artistic style transfer. In: European Conference on Computer
Vision, 2022; Tel Aviv, Israel, Springer; p. 717–34. doi:10.1007/978-3-031-20059-5_41.

53. Zhang Y, Li M, Li R, Jia K, Zhang L. Exact feature distribution matching for arbitrary style transfer and
domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022; New Orleans, LA, USA; p. 8035–45. doi:10.1109/CVPR52688.2022.00787.

54. Zheng X, Yang X, Zhao Q, Zhang H, He X, Zhang J, et al. CFA-GAN: cross fusion attention and frequency
loss for image style transfer. Displays. 2024;81:102588. doi:10.1016/j.displa.2023.102588.

55. Ge B, Hu Z, Xia C, Guan J. Arbitrary style transfer method with attentional feature distribution matching.
Multimed Syst. 2024;30(2):96. doi:10.21203/rs.3.rs-3365364/v1.

56. Suresh AP, Jain S, Noinongyao P, Ganguly A, Watchareeruetai U, Samacoits A. FastCLIPstyler:
optimisation-free text-based image style transfer using style representations. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2024; Waikoloa, HI, USA; p. 7316–25.
doi:10.1109/WACV57701.2024.00715.

57. Kim S, Min Y, Jung Y, Kim S. Controllable style transfer via test-time training of implicit neural
representation. Pattern Recognit. 2024;146:109988. doi:10.1016/j.patcog.2023.109988.

58. Du X, Jia N, Du H. FST-OAM: a fast style transfer model using optimized self-attention mechanism. Signal,
Image Video Process. 2024;18:1–13. doi:10.1007/s11760-024-03064-w.

59. Li Ha, Wang L, Liu J. Application of multi-level adaptive neural network based on optimization algorithm
in image style transfer. Multimed Tools Appl. 2024;83:1–23. doi:10.1007/s11042-024-18451-1.

60. Van Den Oord A, Vinyals O, Kavukcuoglu K. Neural discrete representation learning. Adv Neural Inform
Process Syst. 2017;30:6309–18. doi:10.48550/arXiv.1711.00937.

61. Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image synthesis. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021; p. 12873–83.
doi:10.1109/CVPR46437.2021.01268.

62. Liu S, Zhu T. Structure-guided arbitrary style transfer for artistic image and video. IEEE Transact
Multimed. 2021;24:1299–312. doi:10.1109/TMM.2021.3063605.

63. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; Honolulu, HI,
USA; p. 1125–34. doi:10.1109/CVPR.2017.632.

64. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are scalable vision learners.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022;
NewOrleans, LA, USA; p. 16000–9. doi:10.1109/CVPR52688.2022.01553.

https://doi.org/10.1109/CVPR.2017.759
https://doi.org/10.5555/3294771.3294808
https://doi.org/10.1109/CVPRW56347.2022.00248
https://doi.org/10.1109/TNNLS.2022.3230084
https://doi.org/10.1109/CVPRW59228.2023.00362
https://doi.org/10.1007/978-3-031-20059-5_41
https://doi.org/10.1109/CVPR52688.2022.00787
https://doi.org/10.1016/j.displa.2023.102588
https://doi.org/10.21203/rs.3.rs-3365364/v1
https://doi.org/10.1109/WACV57701.2024.00715
https://doi.org/10.1016/j.patcog.2023.109988
https://doi.org/10.1007/s11760-024-03064-w
https://doi.org/10.1007/s11042-024-18451-1
https://doi.org/10.48550/arXiv.1711.00937
https://doi.org/10.1109/CVPR46437.2021.01268
https://doi.org/10.1109/TMM.2021.3063605
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/CVPR52688.2022.01553


2164 CMES, 2024, vol.141, no.3

65. Park DY, Lee KH. Arbitrary style transfer with style-attentional networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019; Long Beach, CA, USA; p.
5880–8. doi:10.1109/CVPR.2019.00603.

66. Chen H, Wang Z, Zhang H, Zuo Z, Li A, Xing W, et al. Artistic style transfer with internal-
external learning and contrastive learning. Adv Neural Inform Process Syst. 2021;34:26561–73.
doi:10.5555/3540261.3542295.

67. Liu S, Lin T, He D, Li F, Wang M, Li X, et al. AdaAttN: revisit attention mechanism in arbitrary neural
style transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021; p.
6649–58. doi:10.1109/ICCV48922.2021.00658.

68. Liu Y, Zhao H, Chan KC, Wang X, Loy CC, Qiao Y, et al. Temporally consistent video colorization
with deep feature propagation and self-regularization learning. Comput Visual Media. 2024;10(2):375–95.
doi:10.1007/s41095-023-0342-8.

https://doi.org/10.1109/CVPR.2019.00603
https://doi.org/10.5555/3540261.3542295
https://doi.org/10.1109/ICCV48922.2021.00658
https://doi.org/10.1007/s41095-023-0342-8

	Explicitly Color-Inspired Neural Style Transfer Using Patchified AdaIN
	1 Introduction
	2 Related Work
	3 Pre-Analysis
	4 Proposed Method
	5 Experiments
	6 Conclusion
	References


