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ABSTRACT

Dynamic impacts such as wind and earthquakes cause loss of life and economic damage. To ensure safety against
these effects, various measures have been taken from past to present and solutions have been developed using
different technologies. Tall buildings are more susceptible to vibrations such as wind and earthquakes. Therefore,
vibration control has become an important issue in civil engineering. This study optimizes tuned mass damper
inerter (TMDI) using far-fault ground motion records. This study derives the optimum parameters of TMDI using
the Adaptive Harmony Search algorithm. Structure displacement and total acceleration against earthquake load are
analyzed to assess the performance of the TMDI system. The effect of the inerter when connected to different floors
is observed, and the results are compared to the conventional tuned mass damper (TMD). It is indicated that the
case of connecting the inerter force to the 5th floor gives better results. As a result, TMD and TMDI systems reduce
the displacement by 21.87% and 25.45%, respectively, and the total acceleration by 25.45% and 19.59%, respectively.
These percentage reductions indicated that the structure resilience against dynamic loads can be increased using
control systems.

KEYWORDS
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1 Introduction

Due to the increasing human population, industrialization, and technology, the number of cities
and the density of people living in cities are increasing daily. This situation affects city construction,
and more earthquake-resistant structures are being built in earthquake zones. There are various
factors in the design of buildings in these cities. Among these, time-dependent loads such as wind and
earthquake, which are relatively difficult to determine, play an important role. These effects cause loss
of life, economic damages, and equipment losses. In order to ensure safety against these effects, various
measures have been taken from past to present, and solutions have been developed using different
technologies over time to minimize the damage caused. As a result of aiming to protect the structures
from dynamic effects such as earthquakes and wind, structural control systems, which are one way to
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change the structures’ stiffness and damping, are used. Thus, the design engineer can minimize damage
distribution by using control systems.

Control systems, which have many application examples, especially in developed and developing
countries, can only obtain effective results by appropriately selecting the properties of the parts that
make up the control systems, considering their intended use. For this purpose, scientific studies on
control systems started in the 1920s [1]. The studies have accelerated considerably in the last 20–25
years with the development of computer technology and related iterative methods.

Structural vibration is one of the biggest problems faced by structures and is usually caused by
wind, earthquake, traffic, or heavy machinery operations. As a result of structural vibration, severe
damage to structures can occur. For example, the Takoma Bridge collapsed due to vibrations caused
by wind. One of the control methods developed to ensure the safety of the various excitations is to
add control devices to the building. The purpose of the structural control system is to reduce the
vibration with an external control force and to increase the lateral integrity of the building [2]. The
performance of the structural control system depends on different factors. Some of these factors are
the characteristics of the structure and the design of the control system [3].

Structural control systems consist of active, semi-active, hybrid, and passive control systems. The
active control system uses sensors to measure excitation and structural responses and actuators to
control unwanted vibrations. The control forces are developed based on sensor feedback measuring the
structure’s response [4]. The motion of the structure generates the control force in a semi-active control
system, which is usually powered by a tiny external power source whose magnitude can be changed
externally [4]. By combining the high performance of active devices with the durability of passive
devices, hybrid actuators solve the drawbacks and restrictions of single controllers [5]. Passive control
uses passive devices for structural control. In passive systems, energy is distributed by producing a
relative motion according to the movement of the structure [4].

There are three groups of passive control systems. These are the base isolation system, energy
dissipation, and energy transfer. Tuned mass damper inerter (TMDI) is in the energy transfer group.
The tuned mass dampers (TMD), of which TMDI is a subgroup, were first proposed by Frahm [6] to
reduce the effect of the dangerous vibration on the ship’s keel in 1909. The TMD, described in 1934 [7],
is a passive energy damper widely employed to control resonance vibrations. In this study, a TMDI,
which is a branch of passive control systems, is analyzed. In the rest of the paper, the study details are
given, and summarized information about the necessary scientific studies on this subject from past to
present and their contents are presented.

TMDI was first improved by Marian et al. [8] by combining the Two-Tip Flywheel (TTF) device
“inertia” with the TMD. Thus, a new configuration for passive vibration control was proposed in their
study. Marian et al. [9] concluded in their study that adding an inerter to the TMDI configuration can
improve the performance of TMD in vibration control by deriving analytical closed-form solutions.
Giaralis et al. [10] performed a standard numerical optimization study for a 74-storey building
subjected to vortex shedding effects by optimizing the stiffness, damping, and inerter parameters of
the TMDI system. As a result, using TMDI, a lighter structure can be obtained to meet the prescribed
serviceability criteria of the building. Siami et al. [11] modeled a five-degree of freedom (5DOF)
structure to improve the performance of Michelangelo Buonarroti’s famous sculpture and protect it
from external vibration. This model investigated the effect of devices such as TMD and TMDI on this
structure’s vibration reduction. It is concluded that the TMDI system is more effective in reducing the
vibration of the sculpture than the TMD. Giaralis et al. [12] demonstrated the robustness of TMDI
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by applying it to an SDOF system excited with white noise excitation and obtained closed-form for-
mulations of the optimal parameters. Pietrosanti et al. [13] demonstrated that the optimally designed
TMDI system outperforms TMD by considering earthquake base excitation for displacement and
acceleration minimization and dissipated energy maximization. De Domenico et al. [14] proposed
an advanced base isolation system with TMDIs to reduce the displacement demand of foundation
isolation systems due to the concentration of earthquake-induced displacement at the isolation level.
It was shown that by installing a TMDI at the isolation floor, TMDIs can significantly reduce the
displacement of foundation-isolated buildings. Xu et al. [15] observed a TMDI to control long-span
bridges’ unwanted vortex-induced vibration (VIV). Based on the results, the TMDI system performs
better in reducing the vortex-induced vibration responses of the bridge deck than the conventional
TMD system. Sarkar et al. [16] installed TMDI in an engine section to reduce the vibrations of floating
offshore wind turbine (FOWT) towers. It was concluded that TMDI reduces tower oscillation at a
higher rate than a simple TMD system. Lara-Valencia et al. [17] studied the design of an optimal TMDI
through an exhaustive search process on multiple performance indices. The results obtained from the
numerical example they developed for the proposed optimization procedure showed that the devices
designed based on exhaustive search optimization reduced the peak displacement. Pietrosanti et al. [18]
applied a methodology to perform the optimal design of a TMDI with a generalized 2DOF model
and a multi-degree-of-freedom structure. As a result, it is shown that the TMDI system improves the
performances obtained with the classical TMD. Weber et al. [19] investigated the vibration reduction
of high wind-excitation buildings equipped with TMDI. In the study, the overall performance of the
TMDI system was evaluated based on the function of the ground to which the inerter is grounded,
and it was stated that the ground to which the inerter is grounded is directly related to the TMDI
performance. The best performance was achieved when the inerter was grounded to the ground. De
Angelis et al. [20] investigated the optimal design of a TMDI for pedestrian bridges. By modeling
the pedestrian bridge in reduced order, the study has made TMDI a very efficient control system for
pedestrian bridges. Su et al. [21], with their proposed approach to TMDI, reduced wind and seismic
induced responses using closed-form solutions by up to 60% and 55%, respectively, and provided
guidance for determining the optimal parameters of TMDI systems. Bian et al. [22] investigated
the optimum design of the TMDI system for vibration control of circular elements in structures
to control the structure’s vibration. The results obtained from different optimization schemes show
that the TMD system has vibration control performance and validity. Zahedin et al. [23] proposed
the use of a hybrid control system (HCS) combining a base isolation system (BIS) with TMDI to
reduce the seismic response of cylindrical tanks and investigated its multi-objective optimization. The
optimally designed HCS significantly reduced the base shear, convective, and thrust displacements
compared to the conventional design. Djerouni et al. [24] designed TMDI to minimize the peak
of frequency response functions of the inter-story shear of adjacent buildings in ground motion
excitation. The results showed that TMDI is effective in response reduction. Prakash et al. [25]
optimized the tuning frequency ratio and damping of the TMDI in a damped structure subjected
to constant white noise earthquake excitation. As a result, the optimally designed TMDI reduced
the acceleration and displacement response of the structure. Jangid [26] found the optimum values
of the damping and tuning frequency ratio in the base-isolated structure and demonstrated the
effectiveness of TMDI and that the inertia increases as the mass ratio increases. Cao et al. [27] proposed
multiple-tuned mass dampers-inerters (MTMDI) to control the structure’s response. The study results
showed that the MTMDI installed in a single-degree-of-freedom (SDOF) structure makes it robust
against earthquakes. Elias et al. [28] optimized the parameters of TMDI considering the soil structure
interaction (SSI). The results indicated that TMDI optimization is important to improve the structure’s
seismic performance. Djerouni et al. [29] optimized TMDIs to control the displacement of structures
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affected by near-fault ground motions. The results revealed that the optimized TMDI effectively
controlled the structure’s response. Chen et al. [30] proposed a set of closed-form formulas for the
optimal design of the TMDI system. The proposed closed formulas were analyzed with the frequency
domain and time domain of a building and showed superior performance.

In this study, the seismic responses of the building equipped with a TMDI device on different
floors are examined using the Adaptive Harmony Search (AHS) optimization algorithm, and their
performance in the time domain is compared to the performance of conventional TMD. At the same
time, the optimal physical parameters of the TMDI system are also obtained. Thus, the values of
the TMDI that will minimize the structure’s response to the earthquake load are obtained. Various
earthquake records are used in time-history analyses that are considered in the determination of the
objective function of the optimization in all iterative processes. Compared to close-form methods, the
methodology is effective considering different time-history analyses of different earthquake data and
multiple vibration modes.

2 Material and Methods
2.1 Tuned Mass Damper Inerter (TMDI)

TMDIs are effective systems that minimize the negative responses of the structure. However, for
TMDI systems to work effectively in the structure, various parameters can be adjusted to maximize
the system performance and minimize reactions such as displacement and acceleration.

The increase of the mass of TMD is limited due to reasons such as structural space and
manufacturing price. The larger the additional mass, the better the vibration reduction performance
of the TMD, but the additional mass is limited [22]. For this reason, the concept of the “inerter”,
introduced by Smith in 2002, has two independently movable terminals that develop an internal
force proportional to the relative acceleration of their terminals, as shown in Fig. 1. The inerter is a
mechanical element that can increase the mass by converting linear motion into rotation. TMDI takes
advantage of the mass amplification effect of the inerter possessed by a two-terminal flywheel device to
achieve better performance than TMD [9]. TMDI uses mass amplification, called inertia, to improve
the vibration suppression properties of the TMD [31]. Through the mass amplification effect of the
inerter, the performance of the energy dissipator can be significantly improved, and the structure’s
vibration can be effectively controlled [22]. Inerters also have some physical mass. For example, the
physical mass of a rack and pinion inertia with an inertia of 700 is 3.5 kg [32].

Figure 1: Schematic drawing of the inerter [8]

Where ẍ1 and ẍ2 are the accelerations and b is the inerter (kg) [8].

Although the inerter concept, introduced in 2002, was first used for research in electrical
engineering, the use of inerters to improve the vibration control performance of dampers began in the
1990s [33,34]. Because it is also possible to obtain mechanical components such as rack and pinion
gears and others with the same properties in civil engineering [35]. An inerter was initially developed
for the suspension systems of Formula 1 cars [36]. Based on the definition of inertia, the relationship
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in Eq. (1) is valid [37,38].

F = b (ẍ1 − ẍ2) (1)

The equation given by Eq. (1), for TMDI, the inertial force produced by the inertial device
proportional to the relative acceleration of its terminals, is written as Eq. (2).

Finerter = b
(
ẍtmdi − ẍf

)
(2)

where ẍtmdi is the second derivative of the displacement of the auxiliary oscillating mass, ẍf is the second
derivative of the displacement of the ground to which the inerter attaches the auxiliary mass. Hence,
the inerter contributes to the mass-dependent inerter force of the primary structure [39].

A mechanical schematic of an inerter consisting of a flywheel connected to the rack and pinion
with a gear is shown in Fig. 2. The rack [40] is the rod usually used to convert circular motion into
linear motion. The circular gear that passes to this rod is called a pawn. The flywheel provides the
energy.

Figure 2: Schematic illustration of an inertial with four gears, rack, and pinion [41]

b = mf

γf
2

γpr
2

(∏n

k=1

rk
2

rpk
2

)
(3)

where mf is mass of the gear and γ f is radius of the gear. γ pr is the radius of the flywheel pinion. rk and
rpk (k = 1,2, ..., n) are the radii of the kth gear and its corresponding pinion, respectively, connecting
the rack to the gear pinion [41,42].

A vibration-damping device that directs the mass of the TMD to the ground was first introduced
in 2014 by Marian and Giaralis, called as “Tuned Mass Damping Inerter” (TMDI). A TMDI-attached
single degree of freedom (SDOF) structure is shown in Fig. 3.

Figure 3: A TMDI attached SDOF system [42]
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Where ms, ks and cs is the mass, stiffness and damping of the structure.

The TMDI device consists of a system that have mass (mt), stiffness (kt), and damping (ct)
called TMD, and it has an inerter device with inertia b. The inerter device connects the ground and
the auxiliary mass through. The vibration of the structure resonates the TMD. TMD dissipates the
incident energy by damping it. The TMD system can be characterized using the parameters of natural
frequency (wtmd) and damping ratio (ξ tmd). The expression of these two parameters is shown in Eqs. (4)
and (5) [25].

wtmd =
√

ks

ms

(4)

ξtmd = cs

2msws

(5)

The damping ratio of the TMDI and natural frequency of the TMDI are expressed in Eqs. (6)
and (7).

ξtmdi = ctmdi

2(mtmdi + b)wtmdi

(6)

wtmdi =
√

ktmdi

mtmdi + b
(7)

where ξ tmdi is the damping ratio of the system, mtmdi is the mass of the TMDI system, wtmdi is the natural
frequency of the TMDI system, ctmdi is the damping coefficient of the TMDI system, and ktmdi is the
stiffness of the TMDI system.

The optimum parameters of TMDI are investigated within the scope of the study, and in the
following section, information about the studies in the literature on this subject is presented.

This study investigates a new TMDI design strategy based on a simplified model developed for
vibration control of tall buildings to maintain high efficiency in designing TMDI parameters. In order
to minimize the displacement and acceleration responses at the top floor of the structure, TMDI
parameters were optimized using Adaptive Harmony Search (AHS), and the results were compared.

In order to obtain the best performance for the TMDI, the appropriate optimization of its
parameters is required. This study uses structural dynamics to optimize the parameters of TMDI. The
equations of motion of the structure with TMDI were solved using MATLAB Simulink (2018) [43].

2.2 Optimization
Optimization is the process of reaching the best solution among existing solutions, which has

existed since human existence. An optimization problem is a problem with more than one suitable
solution. An optimization problem generally consists of design variables, constraints, and objective
functions. Optimization for the computation of complex problems has become one of the areas most
intensively studied by the current artificial intelligence community.

The solution to many real-world problems is complex due to their limitations and various
variables. The solution of engineering problems cannot be calculated directly since the optimum design
variables impact the analysis of design constraints. This leads to the need for highly efficient methods
for solving increasingly complex numerical optimization problems. For example, design cost problems
in engineering often require methods to find the optimum from many available solutions [44]. The
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easiest way to solve a nonlinear problem is to use iterative solution trials, which can take a very long
time. Iterative algorithms are essentially metaheuristics. Each process has objective functions that will
minimize or maximize the objectives that it must meet [45].

Metaheuristic term was coined by Glover [46] and represents a well-defined class of algorithms
for solving complex optimization problems [47]. Recently, many metaheuristic algorithms have been
successfully applied to solve challenging problems. One of the reasons for the widespread use of these
algorithms is that they can reach the optimum solution to enormous problems in a short time.

Metaheuristic algorithms have many applications. They can be applied in processes such as finding
the shortest way to get to a place, obtaining the minimum cost for the delivery of goods in the
field of logistics, optimally assigning workers to tasks during the organization of night shifts in a
hospital, finding the minimum cost of the optimum distribution of aircraft crew. In the same problem,
metaheuristic algorithms can perform differently due to the different searching processes and updating
candidate solutions. Therefore, many optimization algorithms have been developed to find better
solutions to optimization problems. In the literature, there are many metaheuristics inspired by nature.
Optimization algorithms are inspired by the honey badger’s intelligent foraging behavior [48] or the
principle of buoyancy applied upwards to an object partially or completely immersed in liquid [49].
Fig. 4 shows the stages in which the positions of the honey badgers are updated. In the digging phase,
the honey badger digs and walks around, mimicking the heart shape, as shown in Fig. 4a. In the second
phase, the search for honey, the honey badger accelerates with increasing density [48], as shown in
Fig. 4b, obeying the Inverse Square Law.

Figure 4: (a) Cardioid movement of the honey badger. (b) Inverse square law [48,50]

In this study, the properties of the TMDI system, which are explored as separate cases at the
10th, 9th, and 5th floor of a 10-storey superstructure, are optimized under 44 earthquake records,
including FEMA [51] far fault records. The aim of the study is to present an optimal system with high
structural control performance. The seismic data were utilized to the structure through MATLAB
Simulink (Matlab R2018a, 2018). Adaptive Harmony Search (AHS) was used in the optimization,
and the optimum algorithm parameters were obtained. The optimization process was implemented
for three cases using the critical earthquake component.

Existing metaheuristic algorithms cannot solve all optimization problems [52]. The lack of a
single algorithm with perfect characteristics that can simultaneously solve all optimization problems
leads to the continuous development of new optimization algorithms. Therefore, new or improved
optimization algorithms are always needed to better solve current and future problems that are too
complex to be solved by existing methods [53]. In this study, a variant of the Harmony Search algorithm
that was proposed by Geem et al. [54] was used. The goal of the HS algorithm is to optimize the
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objective function (cost, benefit, or efficiency) of the problem. The musician searches for optimal
states determined by the value of the objective function, such as an optimization algorithm when
continuously tuning the instrument to find the most beautiful harmony [55]. HS has been successfully
applied to the engineering problems [56–60]. The main components of HS are harmony memory size
(HMS), harmony memory consideration ratio (HMCR), pitch adjustment ratio (PAR), and stopping
criterion. These parameters are responsible for exploration and exploitation.

The harmony search method has five steps. In the first step, the optimization problem is
introduced, and the algorithm parameters are initialized. In Step 2, the initial harmony memory (HM)
matrix is constructed via the process of randomization of design variables In Step 3, a new harmony
vector is generated according to specific rules of HS. In Step 4, initial and new solutions are compared,
and the best one is added to HM. If the termination criterion is met in Step 5, the iteration is stopped.
If not, Steps 3 and 4 are reiterated [61].

HS uses some tuning parameters such as HMS, HMCR and PAR. In conventional HS, fixed values
are assigned to the tuning parameters. Improved/modified HS algorithms were developed recently to
increase the method’s efficiency [62]. For this reason, techniques independent of parameterization
were also developed for the HS algorithm [63]. Since the time HS was proposed, with the efforts
of scientists worldwide, good results have been achieved in the implementation and solution of
optimization problems by improving the algorithm parameters, introducing new mechanisms and
strategies, and others [64]. It is like the artist finalizing his/her unfinished work by changing it
according to the audience’s opinions. For example, Kaveh et al. [65] developed an improved harmony
search algorithm (Improved Harmony Search-IHS) for cost optimization of composite floor systems.
Kayabekir et al. [66] optimized active tuned mass dampers (ATMDs) with the Modified Harmony
Search algorithm, which is an updated version of the parameters of HS.

Saka et al. [63] developed an adaptive harmony search algorithm (AHS) for design code opti-
mization of steel structures. Unlike HS, their proposed AHS automatically updates the HMCR and
PAR values depending on the experience gained during the design process. The algorithm changes the
harmony values by considering the HMCR and PAR parameters obtained from the design process.
Therefore, the algorithm automatically selects the changing characteristics of a design space to strike
a balance between exploration and exploitation search for the most successful optimization process.
AHS eliminates the problem of having to perform analyses with different values of parameters, making
the algorithm more general and applicable to the optimal design of large-sized steel structures [63]. In
order to increase the convergence capacity, an attempt has been made to reduce the dependency on
parameters to provide harmony to the problem optimization.

2.3 Adaptive Harmony Search (AHS)
Since the parameters are fixed in the harmony search algorithm, it cannot show harmony to

changing conditions during the search, AHS, one of the developed algorithms, has a similar general
framework to HS, except for the updating of the parameters. AHS has similar steps to classical HS,
but instead of the fixed HMCR and PAR the updated HMCR and PAR values are used in each search
step. With AHS, the dependency on parameters can be reduced and the convergence capacity can
be increased. HMCR and PAR parameters were adapted to create AHS. Firstly, HMCR and PAR
parameters are given initial values. It was then reduced using these initial values. In this case, optimum
results are sought in a smaller range around the current solution by reducing the PAR. As HMCR
decreases, the convergence to the best solution, the local search phase, increases. Eqs. (8) and (9) show
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the HMCR and PAR calculation in iterations.

HMCR = HMCRinitial

(
1 − t

mt

)
(8)

PAR = PARinitial

(
1 − t

mt

)
(9)

where mt is the maximum number of iterations and the number of iterations is shown with t. HMCR
and PAR initial values are called HMCRinitial and PARinitial, respectively. The main parameters of the
AHS are harmony memory size (HMS), HMCR, PAR and stopping criteria.

2.3.1 Initializing the Optimization Problem and Control Parameters

First, the parameters to be used in AHs are assigned. HMS, HMCR and PAR are the algorithm
parameters. The values of the parameters are determined according to the problem to be solved. The
stopping criterion (maxiter) is defined. The next step is taken after the design variables and their lower
and upper limit ranges are defined.

2.3.2 Starting Harmony Memory

A harmony memory (HM) is created with randomly generated design variables within the defined
solution space. The algorithm calculates the objective function values corresponding to each solution
using Eq. (10).

HM =

⎡
⎢⎢⎣

x1
1 x2

2 . . . f (x1)

x1
1 x2

2 . . . f (x2)
...

...
...

...
x1

HMS x2
HMS . . . f (xHMS)

⎤
⎥⎥⎦ (10)

The objective function is calculated by changing the rows of the HM matrix. Where x1 and x2 are
the design variables and f (x) is the objective function.

xi,new = xi,min + rand() × (xi,max − xi,min) (11)

where xi is the newly produced i, xi,min and xi,max are the limit values of the design variables, respectively,
and rand is a number between 0–1.

2.3.3 Generating a New Harmony Vector

HMCR randomly selects the newly created decision variable from the existing solution space.
How the selection process will be done is given in Eqs. (12) and (13). k is a randomly selected solution
(Eq. (14)).

xi,new = xi,min + rand () × (
xi,max − xi,min

)
if HMCR > r1 (12)

xi,new = xi,k + rand () × PAR
(
xi,max − xi,min

)
if HMCR ≤ r1 (13)

k = ceil(rand × HMS) (14)
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2.3.4 Updating Harmony Memory

Those in the newly created harmony memory are compared in terms of the values of the objective
functions. If the newly created fit vector is better than the worst harmony, the worst harmony vector
is replaced by the new harmony vector.

2.3.5 Evaluation of the Search Process

The steps of creating a new harmony vector and updating the harmony memory (2.3.3 and 2.3.4)
are repeated until the defined stopping criterion is reached.

Fig. 5 shows the flow chart of AHS. For the selection of the current solution, the best solution
(BSCR) parameters are defined by considering the ratio that defines the probability of using the
best solution. Thanks to BSCR, modifying the algorithm using the best available solution solves the
vibration problem involving random vibration of seismic excitations [66].

Figure 5: Flow chart of AHS

2.4 Equation of Motion for the TMDI System
This study proposes an approach for the seismic design of a 10-storey shear building equipped with

the 10th floor with TMD, the 10th floor with TMDI, the 9th floor with TMDI, and the 5th floor with
TMDI. The proposed approach aims to obtain optimum TMDI parameters based on minimizing the
displacement response and acceleration response of the structure. The structure whose response will
be examined consists of a 10-degree-of-freedom structure with mass, stiffness, and damping ratio ms,
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ks, and ξ s, respectively. TMD with mass, stiffness, and damping ratio mtmd, ktmd, and ξ tmd, respectively,
and a TMDI with mass, stiffness, and damping ratio mtmdi, ktmdi, and ξ tmdi.

The structure’s motion equation was shown in matrix using the mass, stiffness and damping
properties obtained through TMDI and was modeled in MATLAB Simulink. Considering one degree
for lateral movement of each floor, an n-storey building can be described with n degrees. By applying
TMDI above, the system becomes a system with n + 1 degrees of freedom (Fig. 6).

Figure 6: Shear-type frame structure equipped with TMDI [67]

The structure’s motion equation was formed in matrix form using the mass, stiffness, and damping
properties obtained through TMDI and was modeled in MATLAB Simulink. Considering one degree
for lateral movement of each floor, n-storey building can be described with n degrees. By applying
TMDI above, the system becomes a system with n + 1 degrees of freedom, as seen in Fig. 6.

In buildings under the influence of earthquakes, TMDs are generally positioned on top floor since
the first mode shape has the maximum amplitude at the top floor. The equations of motion of the N-
storey shear building controlled by the TMDI system are expressed as in Eq. (15). The equation of
motion can be expressed as a single matrix equation as shown in Eq. (15). In Eq. (15), the matrices
of mass (M), stiffness (K) and damping (C) are combined with the corresponding derivative of their
displacements relative to the ground for each floor and the displacement vector (x(t)) including TMDI
(xtmdi). is multiplied. Earthquake forces coming to the floor; A unit vector [1] is used to define M and the
ground acceleration resulting from earthquakes by multiplying it with the external excitation defined
as Ẍg. The dot operator (˙) on the vectors indicates the derivative with respect to time t. x(t) and -M
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[1] are the ground displacement and load vector, respectively. The parameters of the TMDI system
are shown as mtmdi, ktmdi, and ctmdi, which are the mass, stiffness, and damping of the TMDI system,
respectively. All matrices and vectors of Eq. (15) are shown in Eqs. (16)–(18):

Mẍ (t) + Cẋ (t) + Kx (t) = −M [1] Ẍg (15)

M, C, and K in Eqs. (16)–(18) are mass, damping, and stiffness matrices, respectively.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 . . . 0 0 0

0 M2 . . . 0 0
...

...
...

. . .
...

...
...

0 0 . . . MN−1 + b 0 −b
0 0 . . . 0 MN 0
0 0 . . . −b 0 Mtmdi + b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

K =

⎡
⎢⎢⎢⎢⎢⎣

(K1 + K2) −K2

−K2 (K2 + K3) · · · ...
...

...
. . .

...
0 0 · · · KN + Ktmdi − Ktmdi

0 0 · · · −Ktmdi Ktmdi

⎤
⎥⎥⎥⎥⎥⎦ (17)

C =

⎡
⎢⎢⎢⎢⎣

(C1 + C2) −C2

−C2 (C2 + C3)
· · · ...

...
. . .

...
... · · · CN + Ctmdi −Ctmdi

−Ctmdi Ctmdi

⎤
⎥⎥⎥⎥⎦ (18)

The matrices in Eqs. (16)–(18) are formularized as three diagonal stiffness matrices specific to
shear frame structures. The components of the response vectors are shown in Eq. (19).

X =

⎡
⎢⎢⎣

X1

X2

...
Xtmdi

⎤
⎥⎥⎦ , Ẋ =

⎡
⎢⎢⎢⎣

Ẋ1

Ẋ2

...
Ẋtmdi

⎤
⎥⎥⎥⎦ , Ẍ =

⎡
⎢⎢⎢⎣

Ẍ1

Ẍ2

...
Ẍtmdi

⎤
⎥⎥⎥⎦ (19)

2.5 Optimization Problem
A ten-storey shear building was selected to investigate AHP to optimize TMDI parameters. The

uniform mass of the building is 360 t, its stiffness is 650 MN/m, and the damping coefficient is
6.2 MNs/m on each floor. The objective function was chosen as the displacement of the top floor
of the building to analyze the problem using AHP. The structural response was simulated using
MATLAB Simulink under seismic excitation and solved using the optimization algorithm. In the
TMDI optimization problem, the design variables are the mass (mtmdi), period (Ttmdi), damping (ctmdi),
and inerter (b) of the TMDI system. Explicit constraints are defined as the mass, stiffness, and damping
values of the TMDI system, and the design constraint is set as the maximum inter-storey drift of the
TMDI (stroke capacity limit of the damping system). After the initial values and constraint limits of
the problem were determined, the maximum floor displacement relative to the ground was calculated
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with MATLAB based on 44 different earthquake records, and the maximum ceiling displacement was
defined as the objective function for minimization. Finally, optimum TMDI parameters for minimum
upper displacement were obtained.

Optimization problem with TMDI has four design variables, as shown by Eq. (20). In the TMDI
optimization problem, the design variables are the mass (mtmdi), period (Ttmdi), damping (ctmdi) and
inerter (b) of the TMDI system. The calculation of the period (Ttmdi) and damping ratio (ξ tmdi) of the
TMDI system is given in Eqs. (21) and (22).

X = {mtmdiTtmdiξtmdib}T (20)

Ttmdi = 2π

√
mtmdi

ktmdi

(21)

ξtmdi = ctmdi

2(mtmdi + b)

√
mtmdi

ktmdi

(22)

The natural angular frequency of the structure, the natural angular frequency of the TMDI
system, and the stiffness calculation, which are among the equations required for the analysis and
written in the codes, are calculated with Eqs. (23)–(25), respectively.

ws =
√

k
m

(23)

wtmdi =
√

ktmdi

mtmdi

(24)

ktmdi = mtmdi × wd,opt
2 (25)

The purpose of optimization in the method used is to minimizes the structure’s response. The
answer is the displacement of the upper layer (xN) where the TMDI is placed. The objective function
is calculated using the values of randomly generated design variables in each iteration and population.
The first objective function for an N-storey building is formulated as Eq. (26).

f (x) = min(max |X |) (26)

The objective function is limited to a function (g1) that will limit the movement (displacement) of
the TMDI. It is formulated as Eq. (27). In Eq. (27), xtmdi refers to the maximum displacement value of
the floor where TMDI is located, and xN refers to the floor below it. Due to this constraint, the stroke
capacity limitation value (stmax) determined by the user is not exceeded. In Eq. (27), xtmdi refers to the
maximum displacement value of the floor where TMDI is located, and xN refers to the lower floor
where the control system is not located.

g1 = max(|xtmdi − xN|)TMDI ′li

max(|xN|)TMDI ′siz

< stmax (27)

stmax is a value that defined by the user for TMDI’s stroke capacity limitation. In Eq. (27), the only
restriction for this problem is normalization based on the uncontrolled structure.
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The primary purpose of this study is to propose the design of the optimum TMDI system for
seismic vibration control of structures exposed to earthquakes. To achieve this goal, the optimum
parameters of the TMDI system in terms of mass, stiffness, damping ratio, and inerter are determined
by minimizing the maximum absolute value of the displacement of the top floor (Eq. (27)). Thus, with
the control system, values that will minimize the response of the structure will be obtained.

2.6 Optimization with Adaptive Harmony Search Algorithm
As the first step in optimization, algorithm parameters, design constants, ranges of design

variables, earthquake excitations, and limit values entered by the user are defined. In this optimization
problem, the design constants are the mass, stiffness, and damping values of the structure. Simulation
time and stroke capacity limitation (stmax) according to the time of earthquake excitations are values
entered by the user. The design parameters of the algorithm are harmony memory size (HMS), Initial
Harmony Memory Considering Rate (HMCR), initial pitch adjusting rate (PAR), population number
(pn) and the best solution considering rate (BSCR).

In the optimum setting of TMDI, four different design parameters were considered, which will
minimize the value of the objective function is the displacement of the upper floor. Optimization aims
to find out the optimum mass, optimum period, optimum damping ratio, and optimum b inerter value
of the TMDI system. These four features of the TMDI system were taken as design variables.

The range of the period of TMDI (Ttmdi), one of the design variables, is between 0.5 and 1.5 times
that of the structure (Eqs. (28) and (29)). The period value of TMDI is spaced around the critical
period of the structure.

Ttmdimin = 0.5 × Tn (28)

Ttmdimax = 1.5 × Tn (29)

In Eqs. (28) and (29), Ttmdi,min and Ttmdi,max are the lower and upper limits of the TMDI period.

Design constants are defined in a metaheuristic-based optimization process. In this method, the
earthquake record data and the ranges of the design variables are fixed. Design variables are physical
parameters of the TMDI system. The mass of the TMDI system is defined in proportion to the total
mass of the building.

The inerter (b) of the TMDI system is between 1% and 5% of that of the structure (Eqs. (30)
and (31)).

bmin = 0.01 × mn (30)

bmax = 0.05 × mn (31)

The lower and upper limits of the damping ratio of TMDI are given in Eqs. (32) and (33).

ξmin = 0.01 (32)

ξmax = 0.5 (33)

In Eqs. (32) and (33), ξmin and ξmax are the lower and upper limits of TMDI damping.

Table 1 represents the limit values of the design variables of the TMDI system.
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Table 1: Limit values of design variables of the TMDI system

Parameter Unit Upper and lower limits

Mass kg 360 ≤ mtmdi ≤ 180,000
Period s 0.4947 ≤ Ttmdi ≤ 1.4840
Damping ratio – 0.01 ≤ ξ tmdi ≤ 0.5
Inerter kg 360 ≤ b ≤ 180,000

2.7 Simulation of TMDI System with MATLAB Simulink
MATLAB/Simulink is useful for modeling systems with equations and combining them with other

systems. Using MATLAB/Simulink, many systems can be simulated without writing code. Simulink
can be accessed by using the Simulink shortcut button in MATLAB. Its extension is Simulink Models
(.slx).

In the simulation study conducted with MATLAB/Simulink blocks, models of uncontrolled and
controlled cutting buildings were proposed. The cycle of the motion equations (Eq. (34)) was modeled
in Simulink using MATLAB/Simulink block diagrams. Since the structure’s response will be modeled,
one of the responses is selected. In this study, acceleration response was selected, and Eq. (34) was
modeled. The equations of acceleration include velocity and displacement. The 1st and 2nd integrals
of acceleration are present in the equation. Acceleration value (Eq. (35)) was given as input to the
control system created in MATLAB/Simulink environment, and displacement was obtained as output.
Fig. 7 shows the simulation of the uncontrolled shear building model via Simulink. Fig. 8 shows the
simulation of the TMDI-controlled shear building.

Figure 7: MATLAB/Simulink simulation of the uncontrolled shear building model

Mẍ (t) + Cẋ (t) + Kx (t) = −M [1] Ẍg (34)

ẍ (t) = −M [1] Ẍg − Cẋ (t) − Kx (t)
M

(35)
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When TMDI is added, b is added to the equation. This situation is expressed with Mimatrix in
Gain4 (Fig. 8).

Figure 8: MATLAB/Simulink simulation of TMDI-controlled shear building

3 Results

To examine the TMDI, 44 earthquake records previously recorded (FEMA) were used, and the
structure was designed as 10 floors. In the study, analyses were conducted with different stroke capacity
limitations and different mass ratio values for 4 different cases: the cutting building with TMD placed
on the top floor, the cutting building with TMDI positioned on the top floor, the cutting building with
TMDI positioned on the 9th floor, and the cutting building with TMDI positioned on the 5th floor.
The shear building analyzed is shown in Fig. 9.

Figure 9: (a) Building with TMD positioned on the top floor (b) Building positioned as TMDI on the
top floor (c) System where the inerter force is connected to the 9th floor (d) System where the inerter
force is connected to the 5th floor

The features of the building are listed in Table 2.



CMES, 2024, vol.141, no.3 2487

Table 2: Features of the building

Feature Value

Floor mass (mi) 360 ton
Floor stiffness (ki) 650 MN/m
Floor damping coefficient (ci) 6.2 MNs/m

Past earthquake records were used and tested while analyzing the time domain. The earthquake
records used is listed in Table 3. To examine the TMDI performance, firstly, in a 10-storey building,
the maximum displacements under the earthquake records were given as a warning to the system, the
maximum acceleration values occurring in the system were obtained, and AHP was used. The AHS
algorithm was analyzed on an IntelI CoreI I7-5005U CPU @ 2.00 GHz (4 Cores) PC. MATLAB
program was used for the results, which were obtained based on the time domain. The number of
iterations used in the analysis is 5000. The description and numerical values of the parameters of the
AHS algorithm are listed in Table 4. Using BSCR 30% prevented getting stuck in the local optimum
solution.

Table 3: Earthquake records [51]

Earthquake Record number Record Record number Record Date
Northridge 1 NORTHR/MUL009 2 NORTHR/MUL279 1994
Northridge 3 NORTHR/LOS000 4 NORTHR/LA270 1994
Duzce, Turkey 5 DUZCE/BOL0000 6 DUZCE/BOL090 1999
Hector mine 7 HECTOR/HEC000 8 HECTOR/HEC090 1999
Imperial valley 9 IMPVALL/H-DLT262 10 IMPVALL/H-DLT352 1979
Imperial valley 11 IMPVALL/H-E11140 12 IMPVALL/H-E11230 1979
Kobe, Japan 13 KOBE/NIS000 14 KOBE/NIS090 1995
Kobe, Japan 15 KOBE/SHI000 16 KOBE/SHI090 1995
Kocaeli, Turkey 17 KOCAELI/DZC180 18 KOCAELI/DZC270 1999
Kocaeli, Turkey 19 KOCAELI/ARC000 20 KOCAELI/ARC090 1999
Landers 21 LANDERS/PLACE270 22 LANDERS/YER360 1992
Landers 23 LANDERS/CLW-LN 24 LANDERS/CLW-TR 1992
Loma Prieta 25 LOMAP/CAP000 26 LOMAP/CAP090 1989
Loma Prieta 27 LOMAP/G03000 28 LOMAP/G03090 1989
Manjil, Iran 29 MANJIL/ABBAR-L 30 MANJIL/ABBAR-T 1990
Superstition hills 31 SUPERST/B-ICC000 32 SUPERST/B-ICC090 1987
Superstition hills 33 SUPERST/B-POE270 34 SUPERST/B-POE360 1987
Cape Mendocino 35 CAPEMEND/RIO270 36 1992
Chi-Chi, Taiwan 37 CHICHI/CHY101-E 38 CHICHI/CHY101-N 1999
Chi-Chi, Taiwan 39 CHICHI/TCU045-E 40 1999
San Fernando 41 SFERN/PEL090 42 SFERN/PEL180 1971
Friuli, Italy 43 FRIULI/A-TMZ000 44 FRIULI/A-TMZ270 1976

3.1 Optimum Results Achieved with AHS Algorithm Optimization
Optimum TMDI parameters with the Adaptive Harmony Search (AHS) algorithm created by

changing the HMCR and PAR parameters depending on the iterations given in Eqs. (8) and (9), were
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obtained and compared with the parameters and response values obtained by TMD. The optimization
process was conducted for different stmax values of 0.5, 1, 1.5, and 2 and for different mass ratio values
of 0.01, 0.02, and 0.05.

Table 4: AHS algorithm parameters

Parameter Value

HMS 10
HMCRin 0.5
PARin 0.05
pn (population number) 10
BSCR (Best solution considering rate) 0.3

Case 1, where the TMD system is connected to the top floor of the building (10th floor), Case 2,
where the TMDI system is connected to the top floor of the building (10th floor), Case 3, where the
TMDI system is connected to the lower floor of the top floor of the building (9th floor), Case 4 refers
to the situation where the TMDI system is connected to the 5th floor of the building.

Table 5 shows the optimum TMD and TMDI system results at different locations for stmax = 0.5%
and 1% mass ratio.

Table 5: Optimum results for TMD and TMDI systems in different locations (stmax = 0.5 and μ = 0.01)

Stmax = 0.5,
μ = 0.01

Case 1 Case 2 Case 3 Case 4

Md (kg) 36,000 36,000 36,000 36,000
Td (s) 0.65754405788 0.60084844868 0.59255598314 1.48402144798
ξ r 0.5 0.5 0.5 0.5
b (kg) – 48,025.5273289 39,945.1144770 180,000
X (f((x)) (m) 0.4011 0.4022 0.4016 0.4069
X2 0.5 0.5 0.5 0.5257
a (m/s2) 18.3588 18.5947 18.5226 18.9299

Table 5 indicates that for the case where the stroke capacity limitation is 0.5 (stmax = 0.5) and the
maximum system mass is 1% of the system’s mass (μ = 0.01), TMD, TMDI 10th floor, TMDI 9th
floor, and TMDI 5. The optimum mass of the system for the first floor is equal to the upper limit
value defined for the mass (1% of the building mass). The optimum period values for four different
situations are close to each other, but a higher period value is reached in the case of TMDI on the 5th
floor. The damping ratio also equals the upper limit value defined for the damping ratio in four cases.
The X2 is the ratio of the TMD or TMDI displacement to its maximum uncontrolled displacement.
When the TMDI is compared for the b value, if there is an inerter on the lower or upper floor, it is
seen from Table 5 that a lower b value is obtained by positioning the TMDI on the 9th floor. X2 in
Table 5 is the ratio of TMD or TMDI displacement to its maximum uncontrolled displacement. The
value of X2 is the same for the first three cases and is higher in the fourth case.
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Table 6 shows the optimum TMD and TMDI system results at different locations for stmax = 0.5%
and 2% mass ratio.

Table 6: Optimum results for TMD and TMDI systems in different locations (stmax = 0.5 and μ = 0.02)

Stmax = 0.5,
μ = 0.02

Case 1 Case 2 Case 3 Case 4

Md (kg) 72,000 72,000 72,000 71,743.8624196
Td (s) 0.67396856790 0.60872531904 0.61390064629 0.50899266686
ξ r 0.5 0.5 0.5 0.5
b (kg) – 99,682.3350970 60,486.8456989 77,657.3143468
X (f((x)) (m) 0.3916 0.3940 0.3923 0.3864
X2 0.5 0.5 0.4987 0.5095
a (m/s2) 17.4484 18.0064 17.7186 17.7886

Table 6 indicates that for the case where the stroke capacity limitation is 0.5 (stmax = 0.5) and the
maximum system mass is 2% of the mass of the system (μ = 0.02), the system is optimum for TMD,
TMDI 10th floor and TMDI 9th floor. The mass equals the upper limit value defined for the mass
(2% of the building mass). In the case where the TMDI system is located on the 5th floor, it is very
close to 2% of the system’s mass. The optimum period values for four different situations are close to
each other. The damping ratio also equals the upper limit value defined for the damping ratio in four
cases.

When the TMDI is compared for the b value, if there is an inerter on the lower or upper floor,
Table 6 reveals that a lower b value is obtained by positioning the TMDI on the 9th floor, and the X2
value is very close to each other for four different situations.

Table 7 shows the optimum TMD and TMDI system results at different locations for stmax = 0.5%
and 5% mass ratio.

Table 7: Optimum results for TMD and TMDI systems in different locations (stmax = 0.5 and μ = 0.05)

Stmax = 0.5,
μ = 0.05

Case 1 Case 2 Case 3 Case 4

Md (kg) 180,000 180,000 180,000 180,000
Td (s) 0.73045561972 0.66444473894 0.67834441385 0.55285436188
ξ r 0.5 0.5 0.5 0.5
b (kg) – 180,000 92,935.8590696 180,000
X (f((x)) (m) 0.3588 0.3648 0.3609 0.3464
X2 0.5 0.5 0.5 0.5
a (m/s2) 14.8592 15.9772 15.3387 15.5999

Table 7 demonstrates that for the case where the stroke capacity limitation is 0.5 (stmax = 0.5) and
the maximum system mass is 5% of the system’s mass (μ = 0.05), TMD, TMDI 10th floor, TMDI
9th floor, and TMDI 5. The optimum mass of the system for the first floor is equal to the upper limit



2490 CMES, 2024, vol.141, no.3

value defined for the mass (5% of the building mass). The optimum period values for four different
situations are close to each other. The damping ratio also equals the upper limit value defined for the
damping ratio in four cases.

When the TMDI is compared for the b value, if there is an inerter on the lower or upper floor,
Table 7 shows that a lower b value is obtained by positioning the TMDI on the 9th floor, and X2
values are equal for four cases.

Table 8 shows the optimum TMD and TMDI system results at different locations for stmax = 1%
and 5% mass ratio.

Table 8: Optimum results for TMD and TMDI systems in different locations (stmax = 1 and μ = 0.05)

Stmax = 1,
μ = 0.05

Case 1 Case 2 Case 3 Case 4

Md (kg) 180,000 180,000 180,000 180,000
Td (s) 0.93037751201 0.86345313550 0.77823446202 0.69892632243
ξ r 0.29997608347 0.27271633948 0.22742716878 0.25473694180
b (kg) – 60,906.8513718 98,224.0877457 180,000
X (f((x)) (m) 0.3204 0.3292 0.3301 0.3057
X2 1 1 1 0.9775
a (m/s2) 14.3745 15.1780 15.0344 15.5048

Table 8 illustrates that for the case where the stroke capacity limitation is 1 (stmax = 1) and the
maximum system mass is 5% of the mass of the system (μ = 0.05), TMD, TMDI 10th floor, TMDI
9th floor, and the optimum mass of the TMDI system for the 5th floor is equal to the upper limit
value defined for the mass (5% of the building mass). The optimum period values for four different
situations are close to each other. The lowest damping ratio value was achieved by connecting TMDI
to the lower floor.

When the TMDI is compared for the b value, if there is an inerter on the lower or upper floor,
Table 8 reveals that a lower b value is obtained by positioning the TMDI on the 10th floor, and X2
values are equal for the first case, but less in the fourth case.

Table 9 shows the optimum TMD and TMDI system results at different locations for stmax =
1.5% and 5% mass ratio.

Table 9 indicates that for the case where the stroke capacity limitation is 1.5 (stmax = 1.5) and the
maximum system mass is 5% of the mass of the system (μ = 0.05), TMD, TMDI 10th floor, TMDI
9th floor, and TMDI 5 It is seen that the optimum mass of the system for the first floor is equal to the
upper limit value defined for the mass (5% of the building mass). The optimum period values for four
different situations are close to each other. The lowest damping ratio value was achieved by connecting
TMDI to the 5th floor.

When the TMDI is compared for the b value, if there is an inerter on the lower or upper floor,
Table 9 shows that a lower b value is obtained by positioning the TMDI on the 10th floor and X2
values are close to each other for four cases.

Table 10 shows the optimum TMD and TMDI system results for stmax = 2% and 5% mass ratio at
different locations.
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Table 9: Optimum results for TMD and TMDI systems in different locations (stmax = 1.5 and μ = 0.05)

Stmax = 1.5,
μ = 0.05

Case 1 Case 2 Case 3 Case 4

Md (kg) 180,000 180,000 180,000 180,000
Td (s) 0.93956984417219 0.8992230103384915 0.8181815985481549 0.686264701115513
ξ r 0.14470298091 0.16497636620 0.09945453517 0.06586148470
b (kg) – 49,857.5449682 52,102.6667461 137,332.375714
X (f((x))
(m)

0.2941 0.3096 0.3007 0.2906

X2 1.498 1.3625 1.4626 1.4315
a (m/s2) 13.7168 14.9429 14.0097 14.4273

Table 10: Optimum results for TMD and TMDI systems in different locations (stmax = 2 and μ = 0.05)

Stmax = 2,
μ = 0.05

Case 1 Case 2 Case 3 Case 4

Md (kg) 180,000 180,000 180,000 180,000
Td (s) 0.94130822644 0.85729278990 0.82043457676 0.68626470111
ξ r 0.05945213926 0.11236777786 0.08799919560 0.06586148470
b (kg) – 39,597.0875208 50,823.4080624 137,332.375714
X (f((x)) (m) 0.2826 0.3015 0.3001 0.2906
X2 1.9760 1.4938 1.5130 1.4315
a (m/s2) 13.1070 14.1682 13.9298 14.4273

Table 10 demonstrates that for the case where the stroke capacity limitation is 2 (stmax = 2) and the
maximum system mass is 5% of the mass of the system (μ = 0.05), TMD, TMDI 10th floor, TMDI
9th floor, and the optimum mass of the TMDI system for the 5th floor is equal to the upper limit
value defined for the mass (5% of the building mass). The optimum period values for four different
situations are close to each other. The lowest damping was achieved by positioning the TMD on the
10th floor.

When the TMDI is compared for the b value, if there is an inerter on the lower or upper floor,
Table 10 shows that a lower b value is obtained by positioning the TMDI on the 10th floor, and the
lowest X2 value is reached by connecting TMDI to the 5th floor.

Uncontrolled situation and four different cases (Case 1-TMD system is connected to the top floor
of the building (10th floor), Case 2-TMDI system is connected to the top floor of the building (10th
floor), Case 3-TMDI system is connected to the bottom floor of the building. Displacement graphs of
the 6th earthquake record for different stmax and mass ratio (μ) values for the cases where the building
is connected to the 9th floor (9th floor), Case 4-TMDI system is connected to the 5th floor of the
building) are in Fig. 10, total acceleration graphs are shown in Fig. 11.
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Figure 10: Displacement graphs of the 6th earthquake record for different stmax and mass ratio (μ)
values for the cases

Figure 11: (Continued)
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Figure 11: Total acceleration graphs of the 6th earthquake record for different stmax and mass ratio (μ)
values for the cases

4 Discussion

The optimization of TMDI under earthquake loads was conducted in this study using earthquake
records. The data obtained from the optimum design of the TMDI with metaheuristic algorithms were
analyzed and compared, and the values that will minimize the TMDI’s response to the structure’s
earthquake load were obtained. Table 11 is created by combining the displacement and acceleration
values.

Table 11: Displacement and total acceleration values for the TMD and TMDI systems at different
locations

Uncontrolled structure Case 1 Case 2 Case 3 Case 4
Displacement Total

acceleration
(m/s2)

Displacement Total
acceleration
(m/s2)

Displacement Total
acceleration
(m/s2)

Displacement Total
acceleration
(m/s2)

Displacement Total
acceleration
(m/s2)

stmax = 0.5
μ = 0.01

0.4101 19.2833 0.4011 18.3588 0.4022 18. 5947 0.4016 18.5226 0.4069 18.9299

stmax = 0.5
μ = 0.02

0.3916 17.4484 0.3940 18.0064 0.3923 17.7186 0.3864 17.7886

stmax = 0.5
μ = 0.05

0.3588 14.8592 0.3648 15.9772 0.3609 15.3387 0.3464 15.5999

stmax = 1
μ = 0.05

0.3204 14.3745 0.3292 15.1780 0.3301 15.0344 0.3057 15.5048

stmax = 1.5
μ = 0.05

0.2941 13.7168 0.3096 14.9429 0.3007 14.0097 0.2906 14.4273

stmax = 2
μ = 0.05

0.2826 13.1070 0.3015 14.1682 0.3001 13.9298 0.2906 14.4273

Table 11 reveals that the displacement value, which is 0.4101 m in the uncontrolled system, is
0.4011 m for stmax = 0.5 and μ = 0.01, 0.3916 m for stmax = 0.5 and μ = 0.02, 0.3588 m for stmax =
0.5 and μ = 0.05, 0.3204 m for stmax = 1 and μ = 0.05, 0.2941 m for stmax = 1.5 and μ = 0.05, and
0.2826 m for stmax = 2 and μ = 0.05. The system appears to perform effectively.

The least displacement and total acceleration reduction are when the TMDI system is connected
to the upper floor (Case 2), the stmax value is 0.5, and the mass ratio is 1%. At these stmax and mass ratio
values where the displacement and total acceleration values are reduced the least, the displacement
reduction for Case 1 is 2.19%, the displacement reduction is 1.92% for Case 2, the displacement
reduction is 2.07% for Case 3, the displacement reduction is 0.78% for Case 4. The total acceleration
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reduction for Case 1 is 4.79%, the total acceleration reduction for Case 2 is 3.57%, the total acceleration
reduction for Case 3 is 3.94%, and the total acceleration reduction for Case 4 is 1.83%.

The maximum displacement and total acceleration reduction is in the TMD system (Case 1)
when the stmax value is 2, and the mass ratio is 5%. At these stmax and mass ratio values, where the
displacement and total acceleration values are reduced the most, the displacement reduction is 31.08%
for Case 1, and the displacement reduction is 26.48% for Case 2, the displacement reduction is 26.82%
for Case 3, the displacement reduction is 29.13% for Case 4. The total acceleration reduction for Case
1 is 32.02%, the total acceleration reduction for Case 2 is 26.52%, the total acceleration reduction for
Case 3 is 27.76%, and the total acceleration reduction for Case 4 is 25.18%.

Upon investigating the change in mass ratio, displacement values of 0.4016 m for stmax = 0.5
and μ = 0.01, 0.3923 m for stmax = 0.5 and μ = 0.02, and 0.3609 m for μ = 0.05 were obtained.
Acceleration values of 18.5226 m/s2 for stmax = 0.5 and μ = 0.01, 17.7186 m/s2 for stmax = 0.5 and
μ = 0.02, and 15.3387 m/s2 for stmax = 0.5 and μ = 0.05 were obtained. For Case 4, different mass
ratios were examined in the TMDI system at the same stmax value (stmax = 0.5). Displacement values of
0.4069 m for stmax = 0.5 and μ = 0.01, 0.3864 m for stmax = 0.5 and μ = 0.02, and 0.3464 m for μ =
0.05 were obtained. These results showed that increasing the mass ratio reduces displacement and total
acceleration. Bekdaş et al. [68] indicated that in the problem they solved in their study, it is possible to
reduce the objective function value by 20.5% and 63.8%, respectively, using a mass ratio between 1%
and 40%.

In displacement reduction, the best performance is shown by Case 4, where the TMDI system is
positioned on the 5th floor, except for stmax = –μ = 0.01 and stmax = 2–μ = 0.05. For example, in the
case of the structure tested for stmax = 1 and μ = 0.05, it is possible to minimize the maximum upper
floor displacement by 25.45% with the TMDI system, while TMD is effective by 21.87%. TMD and
TMDI connected to the 5th floor reduce the total acceleration by 25.45% and 19.59%, respectively.

After examining the parameters, the optimum TMDI mass equals the upper limit values defined
in the program (36,000 kg for μ = 0.01, 72,000 kg for μ = 0.02, 180,000 kg for μ = 0.05). The
optimum TMDI period value indicated that as the stmax value increases, the period value also increases,
depending on the stmax and mass ratio (μ). For example, the optimum TMDI period for the inerter
connected to the 10th floor (Case 2) is 0.6644 s for stmax = 0.5 and μ = 0.05, and 0.8572 s for stmax =
2 and μ = 0.05. In contrast to the period, the optimum TMDI damping ratio decreases inversely as
stmax increases. For example, the optimum TMDI damping ratio for the inerter connected to the 10th
floor (Case 2) is 0.5000 s for stmax = 0.5 and μ = 0.05 and is 0.1123 for stmax = 2 and μ = 0.05. After
examining the optimum inerter (b) value, the b value decreases as stmax increases. For example, for the
inerter connected to the 10th floor (Case 2), the optimum inerter value is 180,000 kg for stmax = 0.5 and
μ = 0.05 and is 39,597.0875 kg for stmax = 2 and μ = 0.05. The damping ratio and inerter values are
inversely proportional to the stroke capacity limitation (stmax). As stmax increases, movement becomes
easier as the arm can extend further. In cases where the stmax limit value is exceeded, optimization is
optimized to the smallest physically possible collapse value.

5 Conclusions

Mass damping devices are frequently used in high-rise buildings in earthquake zones and
effectively protect structures from dynamic stimuli. The emergence of the TMDI system was influenced
by issues such as the need for a large mass to be effective against earthquakes. The inerter can create
a virtual mass larger than the real mass of the device and thus meet the real mass requirement. The
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TMDI system is obtained by combining the TMD with an inerter device that acts as a mass amplifier
to minimize the TMD mass in seismically excited systems.

TMD and TMDI systems exhibit similar control performance in analyses using far-fault records.
When TMDI is examined, more effective control performance is obtained when the inerter is
connected to the lower floors than when the inerter is connected to the upper floors. Since TMD and
TMDI, which are examined in three different cases, show similar performances, they can suit different
building types and earthquake records. The TMDI system is effective in reducing displacements under
critical stimulation. Both systems have positive and negative aspects. Therefore, it can be decided which
system to use by examining the structural situation.

However, there is no significant difference in terms of displacement reduction between connecting
the TMDI system to the 10th floor (Case 2), 9th floor (Case 3), and 5th floor (Case 4) and connecting
the TMD system to the 10th floor. In displacement reduction, the best performance is shown by Case
4, where the TMDI system is positioned on the 5th floor, except for stmax = 0.5 and μ = 0.01, and stmax

= 2 and μ = 0.05. TMD and TMDI systems are equally effective in reducing displacement. TMD and
TMDI perform very closely to each other.

When the TMDI system is compared within itself in terms of displacement reduction according
to the floor to which the inerter is connected, the case of connecting the inerter force to the 5th floor
(Case 4) gives better results. Also, normalized TMDI displacement (X2) is generally less in Case 4.

As a result of this study, the control efficiency of TMD and TMDI systems is very sensitive to
the mass ratio. To increase the control efficiency of these control systems, a large mass ratio (2%–5%)
is generally required. It is also concluded that TMD and TMDI systems reduce the displacement by
21.87% and 25.45%, respectively. Reducing the displacement indicates that damage due to earthquakes
will be minimized. Therefore, using control systems such as TMDI will have a protective effect on the
structure. The performance of the control systems increases as the arm extension limit value (stmax)
increases with the same mass ratio. The inerter is a mechanical element that can increase mass by
converting linear motion into rotation, opening up new possibilities for reducing the mass fraction of
the TMD. In the future, lighter control systems can be achieved by optimally modifying the properties
of the inerter used in the TMDI system. In future studies, newly developed optimization techniques
can be employed to ensure the structure’s safety against dynamic effects, and a comparative analysis
can be made using the findings of this study. The performance of TMDI can be analyzed by changing
the number of stories in the building. Further improvements in the design and performance of TMDI
can be achieved using new methods emerging with technological development.

As a limitation of the system, the connection location of the inerter device plays a vital role in the
design. While the placement of the device is optimal for upper stories, the connection of the inerter
is best suited for lower stories or the ground. This complicates the control system application, and a
specified design must be provided according to the architecture and design of the structure.
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