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ABSTRACT

The Internet of Things (IoT) has orchestrated various domains in numerous applications, contributing significantly
to the growth of the smart world, even in regions with low literacy rates, boosting socio-economic development.
This study provides valuable insights into optimizing wireless communication, paving the way for a more connected
and productive future in the mining industry. The IoT revolution is advancing across industries, but harsh
geometric environments, including open-pit mines, pose unique challenges for reliable communication. The advent
of IoT in the mining industry has significantly improved communication for critical operations through the
use of Radio Frequency (RF) protocols such as Bluetooth, Wi-Fi, GSM/GPRS, Narrow Band (NB)-IoT, SigFox,
ZigBee, and Long Range Wireless Area Network (LoRaWAN). This study addresses the optimization of network
implementations by comparing two leading free-spreading IoT-based RF protocols such as ZigBee and LoRaWAN.
Intensive field tests are conducted in various opencast mines to investigate coverage potential and signal attenuation.
ZigBee is tested in the Tadicherla open-cast coal mine in India. Similarly, LoRaWAN field tests are conducted at
one of the associated cement companies (ACC) in the limestone mine in Bargarh, India, covering both Indoor-to-
Outdoor (I2O) and Outdoor-to-Outdoor (O2O) environments. A robust framework of path-loss models, referred
to as Free space, Egli, Okumura-Hata, Cost231-Hata and Ericsson models, combined with key performance metrics,
is employed to evaluate the patterns of signal attenuation. Extensive field testing and careful data analysis revealed
that the Egli model is the most consistent path-loss model for the ZigBee protocol in an I2O environment, with
a coefficient of determination (R2) of 0.907, balanced error metrics such as Normalized Root Mean Square Error
(NRMSE) of 0.030, Mean Square Error (MSE) of 4.950, Mean Absolute Percentage Error (MAPE) of 0.249 and
Scatter Index (SI) of 2.723. In the O2O scenario, the Ericsson model showed superior performance, with the highest
R2 value of 0.959, supported by strong correlation metrics: NRMSE of 0.026, MSE of 8.685, MAPE of 0.685, Mean
Absolute Deviation (MAD) of 20.839 and SI of 2.194. For the LoRaWAN protocol, the Cost-231 model achieved
the highest R2 value of 0.921 in the I2O scenario, complemented by the lowest metrics: NRMSE of 0.018, MSE of
1.324, MAPE of 0.217, MAD of 9.218 and SI of 1.238. In the O2O environment, the Okumura-Hata model achieved
the highest R2 value of 0.978, indicating a strong fit with metrics NRMSE of 0.047, MSE of 27.807, MAPE of 27.494,
MAD of 37.287 and SI of 3.927. This advancement in reliable communication networks promises to transform the
opencast landscape into networked signal attenuation. These results support decision-making for mining needs
and ensure reliable communications even in the face of formidable obstacles.
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1 Introduction

The process of extracting minerals and materials from the earth is called mining, and India is
fortunate to have 3100 mines scattered across various states. Based on the Indian Ministry of Mines,
these mines contribute 2.5%–3.5% to the country’s GDP [1]. In addition, India earns a substantial
income from the export of minerals abroad, which helps the country’s economy reach the five trillion-
dollar mark. This growth is partly due to rapid industrialization and infrastructure development. The
mining industry plays a crucial role in promoting socio-economic development on a global scale. In
India, this industry is overseen by the Ministry of Mines, which issues government orders, permits,
leases mines, levies taxes, and imposes fines for illegal mining activities. Most mines are located in
remote regions and provide significant employment opportunities, particularly for tribal communities.
The mining industry’s influence goes far beyond the extraction of raw materials. It has a far-reaching
impact on other sectors, such as transportation, construction, and equipment manufacturing. The
industry employs professionals in various fields, including engineers, technicians, and administrators,
contributing to economic growth. Mining is a process that involves several phases, each with its
challenges and hazards. Mining companies must overcome many hurdles, from pre-processing to
post-processing to end-product delivery. Historically, mining has posed significant risks to those who
work in the mines, as evidenced by past accidents. Deepening mines increases the likelihood of water,
chemical, or flammable gas intrusion. The process of previous excavations can also affect the stability
of mine roofs, leading to potential collapses. These problems require preventative measures to protect
employees and the surrounding communities. A list of abbreviations used throughout the manuscript
is included in Table 1.

Table 1: Abbreviations used in this study

Acrimony Full form

IoT Internet of Things
LoRaWAN Long Range Wireless Area Network
LPWAN Low Power Wide Area Network
ISM Industrial, Scientific, Medical
CSS Chirp Spread Spectrum
RFID Radio Frequency Identification
SF Spreading Factor
BW Band Width
NB Narrow Band
NFC Near Field Communication
ACC Associated cement companies
I2O Indoor to Outdoor
O2O Outdoor to Outdoor
LoS Line of Sight
NLoS Non-Line of Sight
RSSI Received Signal Strength Indicator
SNR Signal-to-Noise Ratio
SD Standard Deviation
GDP Gross Domestic product

(Continued)
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Table 1 (continued)

Acrimony Full form

NFC Near Field Communication
MLP Multilayer Perception
CDF Cumulative Distribution Function
HWSN Hybrid Wireless Networks
TILR Traffic Information Long Range
R2 Coefficient of Determination
NRMSE Normalized Root Mean Square Error
MSE Mean Square Error
MAPE Mean Absolute Percentage Error
MAD Mean Absolute Deviation
SI Scatter Index

Drilling in mines began as early as 1960 with the first generation of drilling rigs [2]. This
initial phase of mining was associated with many challenges. In the absence of advanced equipment,
blasting was often done with explosives [3], causing environmental pollution [4,5] and physical damage
to the surrounding areas [6]. The resulting ground shaking [7] can affect the health of nearby
populations, and communication is often non-existent, leaving miners unable to respond quickly to
emergencies. This lack of communication and inadequate safety precautions lead to lost production
and significant damage. The real upturn in mining began with the introduction of basic automation.
This allowed for improvements in various phases of mining, including safety, communication, and
production. Modern machinery produces higher production with fewer workers and improved safety
measures. However, wireless communication in mining still faces many challenges. Dealing with
harsh environments is made possible by sensors that monitor high temperatures, humidity, and dust,
and accordingly, through automatic oxygen delivery bottles. This real-time communication improves
worker safety, reduces the risk of accidents, and provides emergency alerts. Asset tracking and vehicle
management are facilitated to locate and monitor production. Due to the advancement of wireless
technology, everyone benefits by optimizing the process and reducing risks on both sides. As safety
increases, production also improves. However, wireless communication faces several challenges [8],
from planning to execution. As the IoT is growing rapidly, unifying advanced communication in the
mining industry remains a challenge. Various wireless communication protocols are used in mining,
starting with RF, Bluetooth, Wi-Fi, and NB-IoT, some of which are licensed, and others are free in
the Industrial, Scientific, and Medical (ISM) band. As mines must cover large areas, these devices
can only cover a minimal area. The power supply inside the mines is also a challenge, so they cannot
be operated over a long period. Due to the appearance of mines, the harsh environment, and other
obstacles, continuous wireless communication is difficult.

The advanced IoT [9] has significantly impacted the simplification of each solution step [10]
in various ways, such as getting the results within the specified time. For reusability or updating,
it can access services remotely from any place, and at any time, installation costs are reduced, and
less technical knowledge is required to interact with the devices. Due to all these benefits, IoT
has rapidly grown in almost all application areas, including healthcare [11,12], military, agriculture
[13,14], industry [15], transportation [16,17], mining, manufacturing, smart cities [18,19], smart grids
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[20,21], remote environmental monitoring [22], search and rescue applications [23], fire detection [24],
underwater [25], and satellite communications [26]. The advances in various technologies make IoT
a breakthrough technology for a new level of novel applications ranging from improved security to
higher energy efficiency and personalized experiences. For its tremendous growth and adoption, IoT,
as a revolutionary trend in wireless network infrastructure [27], plays a vital role in virtually connecting
devices and sensors with the Low Power Wide Area Network (LPWAN) [28,29], which supports long
distances [30,31] at low cost, which is enabled by IoT. Fig. 1a illustrates the various applications of
IoT, and Fig. 1b shows the interactions between the IoT modules.

(a) Applications (b) Interconnection

Figure 1: IoT Applications and Interconnections interaction framework

The IoT connects different things, such as data, processes, and people. It begins by collecting
and analyzing the data to take immediate action [32]. Different elements of the IoT process are
used in all application services [33,34] to fulfill their task. It contains sensors to collect data such
as temperature, gas, and humidity, which are forwarded to the network. Then, actuators or devices
take commands to perform the desired actions, such as controlling the room temperature or turning
the heater on and off. Gateways are employed to connect sensors and devices to the cloud. Different
network protocols are used for communication between the devices and the cloud, depending on the
technology or manufacturer. The cloud platform supports the development and deployment of IoT
applications [35,36]. It processes data locally on its edge computing systems, which include 202 × 5
computing systems. Tools are utilized for analysis to make decisions about data analytics. Unique
features [37,38] and strengths are frequency coverage, data rate, power consumption, security, latency,
compatibility, scalability, and reliability. Wireless protocols are the rules and standards for wireless
devices to communicate with each other for various applications. These protocols allow devices to
exchange data innovatively, making communication more accessible, efficient, and connected.

Table 2 lists an overview of the wireless protocols used in the IoT for various applications in
wireless technology. The history of wireless technology is rich with innovative protocols. Emerging
in the 1940s, RFID [39] utilized radio waves for object identification and tracking. The 1970s
saw the introduction of infrared communication, enabling short-distance wireless data transmission
for remote control. Radio Communication has a long history, dating back to the 19th century,
facilitating long-distance signal transmission through the air. The 1990s witnessed a surge in wireless
protocols. Bluetooth [40] emerged as a short-range communication solution for devices like cell phones.
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Alongside it came Wi-Fi [41], enabling high-speed data transfer between various electronic devices such
as mobile phones and computers. The 2000s introduced ZigBee [42], a low-power, low-speed protocol
for device communication in applications such as home automation. Near Field Communication
(NFC) [43], introduced in the early 2000s, facilitates cashless transactions, data communication, and
access control over short distances. LoRa, developed in 2009, established as a low-power Wide-Area
Network LPWAN [44] technology for long-distance communication. The continuous advancement
of these wireless protocols has revolutionized device communication, enabling reliable data exchange
over an extended range for a broad spectrum of applications. The various protocols are mentioned
below based on various parameters. Fig. 2 illustrates the critical enablers for classifying RF protocols
[45] based on eight main characteristics crucial for enhancing IoT. These characteristics include
closeness, which refers to how well the devices are positioned near one another, and power supply,
which involves selecting an appropriate energy source for the technology. Data transfer plays a vital
role, considering the quantity and frequency of data that must be transmitted. The range determines
the signal’s coverage area according to the protocol specifications. Location features help identify the
current position of the device. Tariff involves the cost, which can vary based on the selected protocol,
usage, and equipment. Reachability enriches the signal quality in various scenarios, influenced by the
proper hardware used, while protection ensures network security. These factors collectively decide the
categorization and upliftment of IoT through RF protocols.

Table 2: The standard RF protocols in IoT [46,47]

Protocol Frequency Range Data rate Power
consumption

Use cases

Radio commu-
nications

Varies Varies Low High Long-range
communica-
tions

Infrared com-
munications

300 to 400 GHz Short Low Low Remote
control
devices and
some
Computer
Peripherals

Bluetooth 2.4 GHz Up to 100 m Up to 24 Mbps Low Short-range
communica-
tion between
devices

Wi-Fi 2.4 or 3 GHz Up to 100 m Up to 10 Gbps Medium High-speed
data transfer
between
devices

(Continued)
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Table 2 (continued)

Protocol Frequency Range Data rate Power
consumption

Use cases

ZigBee 2.4 GHz Up to 7.5 m Up to
250 Kbps

Low Low-power,
low-speed
wireless
communica-
tion between
devices

RFID 13.56 MHz Up to 100 m Low Low Identifying
and tracking
objects using
radio waves

NFC 13.56 MHz Up to 10 cm 424 Kbps Low Short-range
communica-
tion between
devices

5G Various Varies Up to 20 Gbps Low High-speed
data
transfer,
Low latency,
increased
connectivity
for a wide
range of
devices and
applications

LoRa 915 or 868
MHz

Up to 10 km 0.3 to 50 Kbps Very low Low power,
Long range
communica-
tion in IoT
applications

1.1 Outline of ZigBee and LoRaWAN Protocols
This section provides an overview of ZigBee and LoRaWAN as dominant protocols in wireless

technology that support various IoT applications. LoRaWAN provides long-range wireless coverage
that supports long distances, lower power consumption, and longer battery life. On the other hand,
ZigBee is optimized for short-range applications with low power consumption over short distances.
Table 3 lists the critical differences between ZigBee and LoRa protocols, which operate under the free
ISM band radio frequencies and allow users to build networks without relying on service providers
or requiring licenses. These protocols overcome traditional RFID, Bluetooth, and Wi-Fi limitations,
such as higher costs, limited range, and excessive power consumption. They also eliminate the need
for service providers in remote locations. These issues can be mitigated by replacing older technologies
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with the low power consumption and short range of ZigBee and the long-range and security of
LoRaWAN with minimal power consumption [48,49].

Figure 2: Key enablers for classifying RF protocols

Table 3: Key parameters for ZigBee and LoRaWAN technology [50–52]

Feature ZigBee LoRa

Frequency band 865, 915 MHz and 2.4 GHz 863 to 870 MHz, 902 to 928 MHz,
2.4 GHz worldwide

Coverage range Indoor: Up to 100 m Indoor: Up to 100 m
Outdoor: Up to 1200 m with a line
of sight

Outdoor: Up to 15–20 km with a line
of sight

Power consumption Lower compared to LoRa Lower compared to ZiggBee
Data rate Up to 250 Kbps 37.5 Kbps based on SF and bandwidth
Topology Supports star, tree, peer-to-peer,

and mesh networks
Adopts a star-of-star topology

Cost Middle Lower due to lower power
consumption and simpler installation

Application Used as a Low Rate Wireless
Personal Area Network
(LR-WPAN)

Used for wide-area networks

Specification authority ZigBee alliance LoRa alliance
Year of development 1998 2009
Standard IEEE 802.15.4 IEEE 802.15.4
High security The AES-128 encryption

algorithm is used
LoRaWAN uses AES-128 encryption
algorithm

Bandwidth 250, 100, 40, and 20 KHz Varies from 125 to 500 KHz depending
on the spreading factor

Modulation Orthogonal Quadrature Phase
Shift Keying (QPSK), Binary
Phase Shift Keying (BPSK)

Chirp spread spectrum

(Continued)
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Table 3 (continued)

Feature ZigBee LoRa

Code rate Not explicitly mentioned 4/5, 4/6, 4/7, 4/8
Device class End device coordinator, router Class A, Class B, Class C

1.2 Motivations and Key Contributions
• This study focuses on optimizing network deployments for reliable communication driven by

the limited understanding of ZigBee and LoRaWAN performance in the harsh and complex
environments of mines, where traditional research often overlooks specific challenges. Ineffi-
cient network performance due to physical obstacles and unique propagation factors can lead
to safety hazards and operational disruptions. In orde to address these shortcomings, this study
conducts a comparative analysis of ZigBee and LoRaWAN in mining environments.

• This study is organized into different sections to comprehensively examine ZigBee and
LoRaWAN and their performance in mining environments.

• Section 2 lays the foundation with a thorough analysis of existing ZigBee and LoRaWAN
research in various applications such as smart metering, mining, and industrial environments.

• Section 3 presents experimental field tests of ZigBee performance in I2O and O2O mining
environments and provides initial observations and comparisons.

• Section 4 extends the investigation and focuses exclusively on LoRaWAN in I2O and O2O
mining environments, offering preliminary insights and comparative analyses.

• Section 5 establishes a robust framework for specific path-loss models, including Free space,
Egli, Okumura-Hata, Cost231-Hata, and Ericsson models and performance metrics that apply
to both ZigBee and LoRaWAN.

• Section 6 deals with interpreting the results through analysis and graphical representations,
drawing a critical comparison between ZigBee and LoRaWAN to gain insights into their
respective performance in these challenging environments.

• Section 7 summarizes the key findings from the path-loss modeling, the discussions, and their
implications for optimizing ZigBee and LoRaWAN deployments in different mining scenarios.

• Section 8 summarizes the results of the ZigBee and LoRaWAN field tests and concludes the
findings in mining environments in I2O and O2O scenarios. The evaluation includes various
parameters, such as R2, NRMSE, MSE, MAPE, MAD, and SI, to determine the suitability of
ZigBee and LoRaWAN for mining applications.

• Section 9 discusses the future scope of the research by extending the current results using
machine learning algorithms for dynamic path-loss prediction. The goal is to make faster and
more accurate predictions, enabling the development of simplified, customized communication
solutions for mining.

2 Related Works

Various RF protocols for IoT have been developed throughout history, including ZigBee and
LoRaWAN. These protocols utilize the ISM band, freely available for establishing wireless communi-
cation between a transmitter and receiver. This section examines how they employ signal attenuation
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for different applications. Table 4 lists the primary uses of ZigBee and LoRaWAN protocols across
various areas, highlighting their applications in IoT projects.

Table 4: Comparison of ZigBee and LoRaWAN applications

Reference Application Key findings

Liu et al. [53] Automation monitoring for
pharmaceutical factories with
ZigBee

The system aims to reduce the
overall operating temperature
and enhance industrial control
stability. Extensive testing was
conducted in both indoor and
outdoor environments.

Fahama et al. [54] Indoor localization in ZigBee
networks

MLP performs best in
Fingerprint-based localization,
achieving 100% CDF within
short distances with 1.7 m
average error, 0.9280 m RMSE,
0.3741 variance, and 5.97% error
over accuracy.

Lv et al. [55] Urban environment monitoring
with ZigBee

Collected climate-related
information from each taxi by
placing terminal nodes on them;
next, route nodes were placed on
streetlights to transfer to
coordinator nodes; and finally,
this information was sent to a
remote management system,
which could be a smartphone or
web receiver.

Bianchi et al. [56] RSSI based indoor localization for
smart homes with ZigBee

A threshold algorithm was
employed to set threshold values
based on Receiver Operating
Characteristic (ROC) analysis,
and an RSSI-proximity
algorithm was utilized to
determine the single person
interacting with the device
among multiple persons in the
same location. The system
achieved 98% accuracy and 96%
specificity.

(Continued)
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Table 4 (continued)

Reference Application Key findings

Wang et al. [57] Monitoring system for grassland
ecological protection

This system is beneficial and
serves as a guide to monitor and
manage grassland degradation.
Depending on the
ZigBeenetwork’s communication,
each node falls under
full-featured devices (FFDs) or
reduced-function devices
(RFDS).

Klaina et al. [58] Botanical garden monitoring with
both LoRa and ZigBee

Enabling better interaction to
maintain all trees in a garden
with live care on the campus.
With the deployment of ZigBee
nodes, LoRa communication was
established successfully for better
performance.

Liu et al. [59] Smart building environmental
monitoring with both LoRa and
ZigBee

Findings suggest that LoRa
generally performed better than
ZigBee, especially in covering
long distances through materials
like cement and concrete walls.

Bravo-Arrabal et al. [60] HWSN to search and perform
rescue operations

LoRa HWSN covers more
distance without Wi-Fi and does
not require intermediate nodes.
However, LoRa transfers data at
a slower rate than ZigBee.

Pereira et al. [61] Unmanned aerial vehicle (UAV)
with an attached ZigBee module

A drone vehicle was the
transmitter, and a Dell notebook
was the base station. The system
was tested in four scenarios with
different positions. The results
are 100% in the first scenario,
90% in the second, 80% in the
third, and 75% in the fourth.

(Continued)



CMES, 2025, vol.142, no.1 435

Table 4 (continued)

Reference Application Key findings

Faber et al. [62] Performance evaluation
by comparing different LPWAN
technologies

LoRaWAN communication
distance for cities was 3 km; for
rural regions, it was 10 km; the
average received signal was
100 dB, and the average SNR
was 5 dB.

Svertoka et al. [63] Demonstrated the strength of
LoRaWAN in different places like
underground, open ground, and
out-doors

These techniques are tested in
various machine learning (ML)
algorithms. The mean
localization errors for
underground, open ground, and
outdoor environments are 5, 6.6,
and 4 m, respectively.
K-NN and K-NN-W ML
algorithms perform well, while
DTR performs poorly.

Kumari et al. [64] Detects reckless driving and
estimating vehicle speed with
embedded nodes mounted close to
roads

The results for the Traffic
Information acquisition system
based on Long Range Network
(TILR) with accuracy are 92%
for right or left turns,94% for
turns, 91% for direction, 90% for
speed estimation, and for road
crossing.

Yao et al. [65] Vehicle-vehicle (V2V)
communications to avoid road
collisions between vehicles

For the simulation setup, they
used the Network Simulator
(NS) Version-2 on an actual
highway road of 8000 m distance
vehicles positioned within 0 to
4000 m with distribution based
on Poisson at the spot of the
vehicle of 2000 m under the
calculated average transmission
data speeds which are 3, 6 and
12 Mbps are correspondingly
542.5, 5404.0, and 256.6 m.

(Continued)
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Table 4 (continued)

Reference Application Key findings

Kumari et al. [66] Smart metering system that is
energy-effective and uses edge
computing with LoRaWAN

The power utilization of LoRa
node (LN’s) during the ideal
period was recorded as two μJ,
while during transmission, it was
32 μJ and during reception, it
was 11 μJ, and they assumed the
battery size of each LN, with a
capacity set at 2400 mAh, and
they also assumed that all LN’s
have a time taken for ON and
OFF cycle is 1%.

Baghel et al. [67] Better solution for water quality
monitoring system

In this TEMPSENSE, the battery
power usage in sleep mode
amounts to 0.33 mA. During
data acquisition, an average
current of 8.4 mA is consumed
for 0.5 s in transmission mode,
and the peak current reaches
18.5 mA. By this, they concluded
that a two-year battery life with
2000 mAh capacity.

Premsankar et al. [68] Enhance the network performance
by effectively customizing the
individual node’s radio
characteristics

They have simulated the network
using Flora, an open-source
solution software dependent on
OMNeT++.

Hu et al. [69] Indoor Mobile Tracking Robot
Model (LTrack)

The findings from LTrack
enhance the precision of TDoF
(Time of Flight) by a remarkable
302%, achieving a median error
of 4.5 and 5.72 for estimating the
Angle of Arrival (AoA) in LOS
and NLOS scenarios,
respectively, at a distance of
50 m. Additionally, LTrack
enables real-time tracking of
moving objects with a speed
increase of up to 0.5 m per
second while maintaining a
median error of 0.45 m.

(Continued)
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Table 4 (continued)

Reference Application Key findings

Manzano et al. [70] Waste Radiation Monitoring
(W-MON) with support of
monitoring of environmental
radiation at the European
Organization (CERN) based on
LoRa

The Meyrin premises at CERN
have the best overall LoRa range
of up to 1.7 km. The most ideal
for W-MON is an excellent
quality signal with an overall
efficiency of about 90% of packet
receiving capability.

Di Renzone et al. [71] UG2AG (underground-to-above
ground) communication to know
the transmission strength inside the
ground for different soil types

Nine samples were obtained and
placed in a container with known
weight and volume
measurements with an accuracy
of 0.001 g. The samples were
then placed in an oven set at
105°C and monitored for 12 h.
For the preliminary test, they
collected soil in a mixed
composition for result analysis,
which was 9% gravel, 26% sand,
and 65% clay, with a mean of
0.112 mm and a sorting of 2.0.

Soto-Vergel et al. [72] LoRaWAN performance in
industrial environments using
different Adaptive Data Rate
(ADR) algorithms ADR+, ADRx,
ADRmin, ADRGause, and
Exponential Moving Average
(EMA-ADR)

The simulation outcomes for
parameters ADRmax have the
greatest performance for the
center gateway, while ADRmin
performs best for the corner
gateway with more than 300
nodes. The highest possible PDR
is 80 percent, with a maximum of
100 nodes.

Branch et al. [73] Underground mining for
transferring location information by
using a LoRa-Attributed Linear
Sensor system

The system works well with more
relays that are less loaded, with
successful delivery around 0.85
for 20 relays, each with one tag.
When the number of tags
increases, the impact on the
successful delivery rate is reduced
to 0.76 for two tags per relay, 0.64
for three, and 0.60 for four tags.
Checked with two relays and two
tags for every 10 s to every 2 s

(Continued)
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Table 4 (continued)

Reference Application Key findings

RayChowdhury et al. [74] Model for underground mines to
find out the position of workers and
for the data transmission from
underground to the above control
room

At Pandaveswar Colliery, they
operated a field test by adopting
a 50 dB LoRa gateway and
obtained a range test similar to
an underground tunnel. Finally,
they have a better signal
transmission distance of 28.82 m
when compared to WPAN and
WLAN, which are only 13 and
17 m.

Ebi et al. [75] Synchronous LoRa network for
underground infrastructure to
monitor processes

Field test 1 was set up over three
days in Basel, Switzerland’s city
center. With the same SF by all
nodes, fewer packet losses were
observed with a very low 1.3%,
increasing packet delivery
reliability with a synchronous
LoRa mesh network. Field test 2
was conducted in the
municipality of Fehraltor,
Switzerland, with a mesh of 16
synchronous LoRa nodes placed
over 45 days, 11 Sensor Nodes
(SNs) placed underground, and 5
Repeater Nodes (RNs)
aboveground at a height of 3 m.
The separation space between the
gateway and repeater is 170, 370,
and 1830 m, respectively. As a
result, this mesh LoRa network
shows an extremely low loss of
packets of 2.2%.

Xu et al. [76] LoRa in multi-floor buildings to
know the impact on different
parameters regarding signal fading,
wide-ranging [30], and power
utilization

For every 5 min, each LoRa node
sent 500 reliable measurements
(8000 bytes). By giving 10-dBm
transmission power, they
achieved 90% PRR. They
recorded the transfer of 8000
bytes at a minimum data transfer
rate of 213 b/s once every five
min.

(Continued)
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Table 4 (continued)

Reference Application Key findings

Ragam et al. [77] Collecting live information
regarding blast-induced ground
information vibration (BIGV) for
mining staff to monitor and
surrounding persons to care for
them

The results they got for different
cases are Average RSSI is around
−119 dBm for O2O whereas for
I2O is −112.4 dBm, measured
values for average SNR are
−3 dBm for I2O and −2.45 for
O2O, the average of observed and
expected path loss in the case of
I2O are 1148.2 and 116.75 dBm;
on the other side, for O2O it is
151, 71 and 130.24 dBm.

Islam et al. [78] IoT system for home automation by
using server-based and LoRa

They proposed a methodology
for the coverage limit of each
protocol. Bluetooth covers up to
8–10 server-based LoRa gateway
covers up to 30 m, and finally,
LoRaWAN covers long distances
of up to 8 km.

The extensive tables presented were intended to contextualize previous research on IoT-based
protocols, particularly Zigbee and LoRa. These protocols were explored in various applications such
as garden monitoring, vehicle speed control, and climate monitoring, with studies assessing factors
like distance coverage in different environments such as I2O, O2O, I2I, and parameters like RSSI
and SNR. This study builds upon this foundation by focusing specifically on applying Zigbee and
LoRa protocols in mine environments, including both I2O and O2O scenarios. It extends the analysis
beyond previous studies by incorporating additional performance metrics such as R2, NRMSE, SI,
MAD, MAPE, and MSE. This research incorporates various performance models, including Free-
space, Egli, Okumura-Hata, and Cost-231 Ericsson path-loss models. These additions aim to provide
a more comprehensive understanding of the performance of Zigbee and LoRa protocols in challenging
mining environments.

3 Performance Evaluation Test for ZigBee

The most prominent feature of an IoT-enabled network should focus on establishing connectivity
among devices, as there are several protocols under the IoT sector, including Bluetooth, Wi-Fi,
and ZigBee. All these protocols are facilitated with energy-efficient features. This section’s primary
objective is to gain a deeper understanding of ZigBee network performance by conducting range
tests using IEEE 802.155.4 ZigBee devices of the S2C series as transmitter and receiver which are
manufactured by Digi International Inc, based in Hopkins, United States. This approach aims to
evaluate performance in various environments, such as I2O and O2O, where the signal strength of
ZigBee is observed in both rugged and clean areas, with and without interference.
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3.1 Configuration of ZigBee Devices
The ZigBee devices are short-range protocols. To setup a ZigBee device, go to the configuration

interface, select the operating mode as transmitter and receiver, and adjust parameters such as channel
and address to the network configuration. Fig. 3 depicts coverage tests conducted using two S2C series
ZigBee RF devices. One device was configured as a transmitter, and the other as a receiver. After setting
the ZigBee devices, output parameters such as the RSSI (in dB) and SNR (in dB) are noted to ensure
reliable communication. Both devices operate on a 2.4 GHz frequency band.

Figure 3: Configuration of ZigBee S2 series devices as Transmitter and Receiver

The following pseudo-code outlines the steps for configuring a ZigBee device to function in both
roles: Transmitter and Receiver.

Algorithm: ZigBee devices configuration using X-CTU software tool
Function: Configure ZigBee (PANID, Node Identifier, Application Programming Interface (API)
Enabled)
Inputs:
PANID: Personal Area Network ID
Node Identifier: Identifier for the node (e.g., Transmitter and Receiver)
API Enabled: Whether the API is enabled
Outputs:
None (function simply configures ZigBee)
Steps:

1. Initialization:
1.1. Initialize X-CTU software
1.2. Connect the ZigBee module to the Computer via the RS232 Serial Port

2. Discovery:
2.1. Discover devices in X-CTU
2.2. Add the discovered device

3. Configuration
3.1. Update firmware
3.2. Configure the Port Parameters (flow control, stop bits, Baud rate, and data bits parity)
3.3. Set Radio Settings (PAN ID, Node Identifier, API Enable)
3.4. Write Radio Settings

4. Completion:
4.1 Print Conformation Message or Perform Post-Configuration Actions

After receiving the confirmation message for the successful configuration parameters, the ZigBee
module displays various parameters indicating its current configuration and status. These parameters
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include the currently installed firmware version, device information details with the device serial
number, model number, network parameters with PAN ID, node identifier along with API status,
radio-related parameters of the ZigBee module, and the channel and power level. Finally, it displays
the device status, including whether the ZigBee module is active, sleeping, or in an error state.

3.2 Description of Mine Location
The experimental field test occurred at the Tadicherla open-pit mine in India, where coal is

mined in an open pit and sub-bituminous to C-grade coal. The tests were conducted in I2O and
O2O environments, which are critical for evaluating the performance of ZigBee in such environments.
The environmental conditions at the site are a temperature of 26°C, a humidity of 51%, a pressure of
14.7 PSI, and a wind speed of 12.8 km/h. The exact coordinates of the mine are 18.524052 latitude
and 79.744075 longitude, providing important contextual information for the experiment. A map of
the mine layout is included to understand the test area, as shown in Fig. 4.

Figure 4: Location of Tadicherla Mine, India

3.3 Field Test Procedure for ZigBee Protocol
ZigBee is one of the emerging standards for the Internet of Things. Wireless communication occurs

between Xbee devices that function as RF devices. Both devices must be connected to the same network
to send and receive data from one ZigBee module to another. The process of conducting a field test
for ZigBee in a specific mine begins with the hardware setup, where ZigBee devices are connected to
a computer via an RS-232 USB cable. This enables the configuration of these devices and establishes
connections between the RF modules. The X-CTU software configures the ZigBee devices to update
the firmware. Similarly, ZigBee devices are configured as transmitters and receivers with the specific
settings PANID, Channel Verification, Node Identifier, and API Activation. Select the Range Test
option in the tools menu to perform the range test. The ZigBee devices are then started with the
ZigBee_Transmitter and ZigBee-Reciver. After successful configuration, the range test is started, and
the data is collected to understand the performance under various parameters. In this view, the ZigBee
range test was performed in two environments, I2O and O2O, as shown in Fig. 5.
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(a) I2O (b) O2O

Figure 5: ZigBee system coverage map with blue location marks representing the measured location in
different scenarios

3.3.1 Indoor-to-Outdoor (I2O) Scenario

ZigBee, designated with the IEEE 802.15.4 operating standard, is characterized by its low-power
consumption and suitability for applications requiring lower data rates. For the indoor-to-outdoor
setup, the mine authority administration conference hall was chosen as the reference point, and the
RSSI values varied in the receiver’s position in various locations. Photos capturing key moments during
the field tests are shown below for further analysis. Fig. 6 shows the transmitter and receiver devices
for the ZigBee protocol. Both ZigBee devices operate at a frequency of 2.4 GHz.

Figure 6: Zigbee device units for Transmitter and Receiver in I2O scenario

3.3.2 Oustdoor-to-Outdoor (O2O) Scenario

ZigBee has proven its dynamic adaptability in many applications that require flexibility and
performance, even in complex environments such as mines. For the outdoor-to-outdoor setup, this
study chose transmitter and receiver reference points in the mine’s outdoor area. It noted the RSSI
values by varying the receiver’s position at various locations. Below are photos of key moments during
the field tests to further enhance the analysis. Fig. 7 shows the test setup of the ZigBee modules in an
outdoor environment.
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Figure 7: ZigBee module units for Transmitter unit and Receiver unit in O2O scenario

3.3.3 Observations through Field Test

These graphs reveal the essential findings of ZigBee performance in both I2O and O2O mining
environments and show trends in signal attenuation over different distances to shed light on signal
variability. This initial observation offers valuable guidance for further analysis and optimization
efforts.

I2O Environmental Analysis

Fig. 8a,b depicts a ZigBee network’s performance in an I2O environment, represented by the RSSI
as a function of logarithmic distance. The X -axis represents the logarithmic distance in meters between
the transmitter and receiver, while the Y -axis represents the dBm. RSSI decreases when the logarithm
distance increases, as signal attenuation degrades when the distance increases between the transmitter
and receiver for several reasons, including weather conditions and obstructions, all of which affect the
signal strength and range. The observed RSSI ranges from −32 dBm at the shortest distance, indicating
a strong signal, to −100 dBm at the longest, representing a weak signal. In addition, the SD of RSSI
varies between 0 and 13 dBm, highlighting the fluctuations in signal strength due to environmental
factors.

(a) Avg RSSI vs. Logarithmic Distance (b) SD vs. Logarithm Distance 

Figure 8: ZigBee network performance in an I2O scenario
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Outdoor to Outdoor Environment Analysis

Fig. 9a,b illustrates the relationship between logarithmic distance and RSSI values for O2O
environments. The X -axis represents the logarithmic distance, varying from 1.1 to 1.8 m, while
the Y -axis shows the RSSI values, ranging from −36 to −100 dBm. This graph is crucial for
understanding the RSSI across varying distances, providing insights into the performance of ZigBee
communication in an O2O environment where signal quality can be significantly affected by distance
and environmental factors. Similarly, graph b examines the relationship between logarithmic distance
and SD, with the X -axis ranging from 1.1 to 1.65 m and the Y -axis showing SD values from 1.6 to 6.4
dBm. This shows the perspective on the variability of signal quality across distances, highlighting the
stability and reliability of ZigBee communication in O2O scenarios.

Figure 9: ZigBee network performance in an O2O scenario

4 Performance Evaluation Coverage Test for LoRa Network

This study utilizes the test bed to trace the performance of LoRa for both I2O and O2O scenarios.
To experimentally evaluate the strength of the LoRa, the RSSI values were recorded by adjusting the
input parameters, changing the receiver to different locations, and maintaining the transmitter at a
fixed point for both I2O and O2O scenarios.

4.1 Configuration of LoRa Devices
The configuration process was carefully designed to ensure the LoRaWAN efficiency in the

challenging environment of mines. The field tests were conducted in both I2O and O2O environments.
The transmitter and receiver were configured with specific parameters. RSSI and SNR measurement
values were collected during the range test. Fig. 10 depicts the LoRa-based experimental setup of
the coverage field test. This setup includes transmitter and receiver units. The transmitter module is
connected to the PC via an RS-232 USB cable to capture the observations. The receiver LoRa module
operates independently. Here, Both the LoRa devices function at the frequency of 868 MHz.
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Figure 10: Configuration of Pycom-based Semtech SX1276 LoRa devices

The following pseudo-code outlines the steps for configuring a LoRa device to function in both
roles: transmitter and receiver (Algorithm 1).

Algorithm 1: LoRa devices configuration
Function: Configuration LoRa(Region, Frequency, SF_ range, CR_ range, TXP)
Inputs:
Region: LoRa region(e.g., EU868, US915)
Frequency: Base frequency (in Hz)
SF_range: a tuple of minimum and maximum SF
CR_range: a tuple of minimum and maximum Coding Rates (CR)
TXP: Transmission Power(in dBm)
Outputs:
None (function simply configures LoRa)
Steps:
1. Initialization
1.1 Create a LoRa object with a specified mode, transmission power, and region
lora_obj = LoRa(mode=LoRa.LORA, tx_Power = TXP, region = Region)
1.2 Remove unwanted channels from the LoRa object
lora_obj.remove_channel (1,2,3)# Assuming these are unwanted channels
2. Frequency and Data Rate Loop:
2.1 Iterate over frequency from minimum to maximum
for frequency in range (Frequency _min, Freqency_max+1)
2.2 Iterate over Spreading factor from minimum to maximum
for SF in range (SF_range [0], SF_range [1]+1)

2.3 Iterate over the coding rate from minimum to maximum for CR in range(CR_range [0], CR_range
[1]+1)
2.4 Add a channel to the LoRa object with specified frequency, minimum data rate, and maximum
data rate Lora_obj.add_channel (frequency= frequency, dr_min=SF, dr_max=SF)
2.5 Performed additional configuration or calculations
Completion:
3.1 # Print configuration message or perform post-configuration actions

After performing the LoRa device configuration, it will receive a confirmation message as
configuration was successful and show specified parameters, including the currently installed firmware
version, details about device information containing the device serial number, model number, network
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parameters with PAN ID, node identifier along with API status, and radio-related parameters of
LoRaWAN module along with the channel and power level. Finally, it displays the device status,
including whether the LoRa module is active, sleeping, or in error.

4.2 Description of Mine Location
The experiment was performed in the Dungri limestone mine in Odisha’s Bargarh district in

India as shown in Fig. 11. The mining method employed is surface, open-cast. The exact coordinates
of Dungri limestone have a longitude 83°32′57.4′ ′ and 21°41′24′ ′ latitude. In order to examine the
performance of the LoRa coverage distance, different distance scenarios were utilized by changing
the positions of the LoRa receiver to what extent of distance it can receive the signal of LoRa in terms
of RSSI (dBm) and SNR (dB).

Figure 11: Google image of the location of ACC Dungri limestone

4.3 Field Test Procedure for LoRa
LoRaWAN offers ideal advantages for improving mine operations, making them easier, safer, and

more accurate with good signal coverage throughout the mine. These benefits are possible only with
LoRaWAN’s unique features, including long-range communication, low power usage, battery backup
lasting for years, and strong signal connectivity. This study uses the LoRa devices as Semtech SX1276
LoRaWAN transceivers with a sensor shield for data collection. In addition, B210 USRP (Universal
software radio peripheral) was employed, configured for an RF frequency of 868 MHz and capturing
data at various time intervals. Two LoRa modules of Pycom FIPY supporting five networks were
utilized, which are manufactured by Pycom Ltd., a company based in Fareham, Hampshire, United
Kingdom. An external antenna connected to the LoRa device was configured with an RF frequency of
868 MHz, having a 125 KHz bandwidth, a 4/5 coding rate, and an SF of 7. The transmitter and receiver
sides utilized Pycom boards and were programmed using Micro Python programming version 3. This
environment provides built-in features and basic Python libraries for working with microcontrollers.
Pymakr was employed to run the Read-Eval-Print Loop (REPL) console code. The antenna used at the
transmitting and receiving end is 14 dBi power and has a height of 0.19 m. The field experimental test
was conducted in different environmental scenarios, such as Indoor-to-Outdoor (I2O) and Outdoor-
to-Outdoor (O2O).
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4.3.1 LoRa Test in Indoor-to-Outdoor Environment

This study ran the indoor experimental setup for performance assessment while avoiding an
outdoor environment and collected the RSSI values. This experiment was conducted by changing
LoRa’s receiver locations and keeping the transmitter fixed. The transmitter will send messages to the
receiver from different locations to make uniform channel conditions. Fig. 12a,b depicts the deployed
LoRa devices as transmitter and receiver units at field locations.

(a) Transmitter Unit (b) Receiver Unit

Figure 12: LoRa device deployment setup

The LoRa coverage investigation was performed at various receiver locations, and the RSSI, SNR,
and other vital values were collected. Observations are captured in various ranges, starting from the
initial location of the transmitter point with minimum value and gradually enhancing the distance
(range). Fig. 13a,b illustrates the aerial images of the I2O test scenario at ACC Dungri limestone mine,
India.

(a) I2O (b) I2O

Figure 13: Google map of I2O test case in ACC Dungri open-cast mine, India

4.3.2 LoRa Test in Outdoor-to-Outdoor (O2O) Environment

Usually, the LoRa network signal is attenuated by the surrounding environments, such as high-
rise buildings, trees, hill areas, and others. In this regard, the coverage test must be conducted in the
LoS case, also known as O2O. In order to assess the LoRa coverage range, this study conducted the
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experimental test in O2O by deploying the LoRa test bed, as shown in Fig. 14a,b. The experimental
setup collected the RSSI values and other key values. This test was performed by changing different
receiver locations of LoRa, keeping the transmitter in a fixed location. The transmitter will send the
same messages to the receiver for different locations to ensure uniform channel conditions.

Figure 14: Field deployement of LoRa units for O2O

4.3.3 Outcomes of the Field Test

These graphs shed light on LoRa’s behavior in I2O and O2O mining environments, charting
distinct signal strength patterns across distances and illuminating its unique variability. These initial
insights hold for further analysis and optimization for robust deployments in these challenging
environments.

Indoor to Outdoor Environment

Fig. 15a depicts the outcomes for LoRaWAN in an I2O environment, showing that the captured
RSSI values range from −132 dBm, indicating weak signal strength, to −51 dBm, indicating strong
signal strength. The observation is that the signal strength decreases as the distance between the
transmitter and the receiver increases. Fig. 15b indicates that the captured SD values range from 2
to 34 dBm, reflecting the stability and reliability of LoRaWAN in I2O environments.

(a) Avg RSSI vs. Logarithmic Distance (b) SD vs. Logarithm Distance   

Figure 15: LoRaWAN I2O performance evaluation
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Outdoor to Outdoor Environment

Fig. 16 illustrates the RSSI and SD for the LoRaWAN in O2O environments. The captured
RSSI values ranged between −14 and −125 dBm as the shortest and longest distances, as shown in
Fig. 16a. It indicates a negative correlation between RSSI and distance. The RSSI values progressively
decrease as the distance increases on the logarithmic scale, indicating a weakening signal. This wide
range highlights LoRaWAN’s ability to communicate over significant distances in O2O environments.
Fig. 16b exhibits that the SD spans from 0.25 to 16 dBm at the longest distance, indicating that signal
strength becomes more variable as the transmission distance increases.

(a) Avg RSSI vs. Logarithmic     (b) SD vs. Logarithm Distance for O2O

Figure 16: LoRaWAN O2O performance evaluation

5 Path-Loss (PL) Modeling
5.1 Overview

Path-loss refers to the loss in the signal path due to many effects, such as changes in environmental
concerns such as disturbances in the airflow, temperature, the physical spacing between the sender and
the receiver, the foot to head, and the placement of antennas.in proper locations. Path loss is measured
in decibels (dB) and is expressed mathematically as:

PLMeasured = Pt − Pr + Gt + Gr (1)

By considering Pt and Pr as the signals being sent and received powers in dBm, Gt and Gr as the
sender and receiver gains in dB, and the assigned values for Gt and Gr are 1.8 dB. Path loss modeling is a
decisive factor in wireless communication, serving as the reference point to grade the originality of the
signal between the sender and the recipient. In this research work, the path-loss models implemented
are the Free Space Propagation Model, Egli Model, Okumura-Hata Model, COST 231-Hata Model,
and Ericsson Model.

5.1.1 Space Propagation Model

The Free space model is a fundamental concept in wireless communication. It assumes that all
signals are radiated uniformly in all directions. It is typically mathematically represented as follows:

PL (dB) = 32.45 + 20log10 (d) + 20log10(f ) (2)
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where f is the frequency and d is the distance.

5.1.2 Egli Propagation Model

The Egil model is designed to extend the capabilities of the Free space model, incorporating addi-
tional considerations such as antenna heights at the sender and receiver. It is typically mathematically
represented as follows:

PLEGLI = 40log10d + 20log10f − 20log10hb + LM (3)

LM = 76.3 − 10log10 hm for hm ≤ 10 m

LM = 85.9 − 20log10 hm for hm ≥ 10 m

where d is the distance, hb is the height of the antenna over ground level in meters, and f is the frequency
in megahertz.

5.1.3 Okumura-Hata Propagation Model

The Okumura-Hata model considers the multipath propagation of signals. Path-loss prediction
can be performed in three areas: open, suburban, and urban [66]. The equation for the Hata model is
given as follows:

1. For urban area:

LdB = 69.55 + 26.16log (f ) − 13.82log [hb] + (44.9 − 6.55log (hb)) log (d) − C (4)

where
For f ≥ 3000M, C = 3.2 [log10 (11.75 hm)]2 − 4.97
For f < 3000M, C = 8.29 [log10 (1.54)]2

2. For medium to small cities:

C = (1.1log10f − 0.7)hm − (1.56log10f − 0.8) (5)

3. For suburban areas:

(LdB = 69.55+16log10f −13.82log10hb+ [44.9−6.55log10hb]log10d −{2(log10(f | 28)x2 +5.4

(6)

4. For open areas:

LdB = 69.55 + 26.16log10f − 13.882log10hb + [44.9 − 6.55log10 (hb)] log10d − {4.78 [log10f ]

2 − 18.33log10f } + 40.94 (7)

5.1.4 Cost231 Hata Propagation Model

The Cost231 model, also known as the Hata model, is often used in urban environments
and is suitable for handling multipath and terrain shadowing effects. It is typically mathematically
represented as follows:

PLCOST = 46.3 + 33.9log10 (f ) − 13.82log10 (hb) − ahm + [44.9 − 6.55log10 (hb)] log10d + cm (8)

where

(f ) is the frequency in megahertz (MHz),
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(d) is the separation between the transmitter and receiver in kilometers,

(hb) is the elevation of the base station antenna over the ground levels in meters, and considering
the criterion for the parameter (cm) is set to 0 dB for suburban or open settings and 3 dB for urban
environments, the parameter (ahm) is specifically defined for urban settings as:

ahm = 3.20 [log10 (11.75hr)] 2 − 4.97 For f > 400 MHz (9)

For Suburban or Rural environments, as follows:

ahm = (1.1log10f − 0.7) hr − (1.56log10f − 0.8) (10)

where hr is the elevation of the mobile device’s antenna, measured meters above the ground surface.

5.1.5 Ericsson Propagation Model

The Ericsson model is similar to Cost231 and can handle reflections and diffractions indoors and
outdoors. It is typically mathematically represented as follows:[(
PL

)]
_Ericsson = a0 + a1.log10(d) + a2.log10(hb) + a3.log10(hb).log10(d)

− 3.2[log10(11.75hr)]2 + g(f ) (11)

where

g ( f ) = 44.49log10 (f ) − 4.78 [log10 (f )]2 (12)

f is Frequency in MHz,

hb is the height of the transmitting antenna in meters,

hr is the height of the receiving antenna in meters.

Specifications a0, a1, a2, and a3 are predefined constants that can be changed to adopt certain
propagation conditions. The values of a0 and a1 in suburban and rural regions depend on the least
squares (LS) approach. Table 5 shows the default settings for these parameters in different terrains.

Table 5: Default parameter values in the Ericsson model

Environment a0 a1 a2 a3

Urban 36.20 30.20 12.0 0.1
S rban 43.20 68.93 12.0 0.1
Rural 45.95 100.6 12.0 0.1

5.2 Performance Metrics
It is essential to examine the performance of various path-loss models to achieve accurate path-

loss modeling for reliable wireless communication. This will help identify the most effective model
to enhance the signal strength, quality, and continuity. Proper analysis using key metrics, specifically
MSE, MAD, MAPE, SI, NRMSE, and R2, can provide insights into the best model performance.
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5.2.1 Mean Squared Error (MSE)

MSE is the most concise criteria metric to evaluate the regression analysis. It is calculated by aver-
aging the squared discrepancies among the predicted and actual path loss values. The mathematical
equation for this is given below:

MSE =
(

1
n

)
∗

∑
(actual − predicted)

2 (13)

where n is the sum of all the values. Actual and prediction represent the actual and predicted path
losses, respectively. The symbol

∑
indicates the summation procedure. The lessened MSE suggests a

more accurate model as the perdition values are nearer to the actual path loss values.

5.2.2 Mean Absolute Deviation (MAD)

MAD is one of the metrics used to estimate performance. It calculates the model’s performance
based on the average discrepancy between the actual and predicted path losses. The mathematical
equation for this is given below:

MAD =
(

1
n

)
∗

∑
|actual − prediction| (14)

A minimized MAD represents an accurate model, suggesting that the predicted path loss values
closely approximate the actual path loss values.

5.2.3 Mean Absolute Percentage Error (MAPE)

MAPE is also a metric to evaluate the performance of a model, particularly when the actual path
losses are approaching zero. It is the sum of the average of the absolute percentage among the actual
and predicted path loss values. The mathematical equation for this is provided below:

MAPE =
((

100
n

))
∗

∑(∣∣∣∣(actual − prediction)

actual

∣∣∣∣
)

(15)

A smaller value of MAPE signifies a more accurate model where the predicted and actual path
loss values closely match.

5.2.4 Scatter Index (SI)

The SI is a statistic for evaluating the accuracy of a model’s performance. It considers all the values
and their relative frequencies. The SI is computed by dividing the RMSE by the mean of all values and
multiplying the result by 100. The mathematical equation for this is given below:

SI = RMSE
Mean (values)

∗ 100 (16)

Lower values of SI indicate a better performance model.

5.2.5 Normalized Root Means Square Error (NRMSE)

NRMSE is a variant of the RMSE metric. While RMSE calculates the differences between the
actual and predicted path loss values, NRMSE offers a relative error indicator. This is achieved by
dividing the RMSE by a scaling factor, and it can be the mean, which could be the mean, standard
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deviation, range, or interquartile range of the observed values. Normalizing the RMSE simplifies
comparisons, making it easier to assess the performance of models or dataset scales with different
scales.

NRMSE = RMSE
Scale_factor

(17)

where

The Scale factor can be the mean (mean (values), standard deviation (std_dev (values), range max
(values)-min (values), or interquartile range (Q1–Q3) of the actual values.

RMSE =
√((

1
n

)
∗

(∑
(Pi − Oi)

2
) )

(18)

where

n is the total number of values∑
is summation symbol

Pi is the predicted value for ith

Oi is the actual value for ith

6 Path-Loss Modeling for ZigBee Network

In order to gain deeper insights into ZigBee performance in both II2O and O2O environments,
various path-loss models were developed, including Free space, Egli, Okumura-Hata, Cost231-
Hata, and Ericson models, and their performance was evaluated using key performance evaluation
metrics, including MSE, MAPE, MAD, SI, R2, and NRMSE. The subsequent graphs illustrate the
performance of each path-loss model. Figs. 17a and 18a indicate that the X -axis represents the distance
between the transmitter and the receiver, while the y-axis displays the performance metrics. They
illustrate signal strength and path-loss prediction between the transmitter and receiver at various
distances. The X -axis in Figs. 17b and 18b is logarithmically scaled to represent the distances between
the transmitter and the receiver, and the Y -axis shows the NRMSE values. This graph provides an
overall assessment of the path-loss model’s performance based on NRMSE.

Figure 17: Performance and error analysis of ZigBee I2O
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Figure 18: Performance and error analysis of ZigBee O2O path-loss models

6.1 Path-Loss Modeling Related to LoRa Network
Figs. 19 and 20 present a comparative analysis of the path-loss models for LoRa I2O and O2O

environments. The analysis focuses on the model’s performance metrics and how the model fits the
data. These figures evaluate the performance of various path-loss models incorporating Free space,
Eli, Okumura-Hata, Cost231-Hata, and Ericsson models. The performance is measured using MSE,
MAPE, MAD, and SI metrics. The horizontal axis in Figs. 19a and 20a represents the separation
distance between the transmitter and the receiver, while the vertical axis shows the corresponding
performance metrics. These visualizations demonstrate the effectiveness of different path-loss models
in estimating the signal strength or path loss at varying distances within LoRa I2O and O2O
environments. Figs. 19b and 20b utilize a logarithmic scale on the X -axis to depict the distance between
the transmitter and the receiver. The Y -axis displays the NRMSE values. This visualization provides
a clear view of how the different path-loss models predict the signal strength across various distances
in I2O and O2O environments, specifically in terms of NRMSE.

Figure 19: An overall perspective, outlining the evaluation of path-loss models for I2O



CMES, 2025, vol.142, no.1 455

Figure 20: LoRa O2O path-loss model performance comparssion

7 Results and Discussion

In the province of wireless communication, this study conducted field tests in both I2O and
O2O environments to analyze the propagation characteristics of ZigBee and LoRaWAN protocols.
The findings indicate that both technologies exhibit similar patterns in RSSI measurements across
varying distances between the transmitter and the receiver. As the distances increase, signal attenuation
becomes more pronounced, a phenomenon crucial for understanding the performance of wireless
communication in real-world scenarios. RSSI measurements were collected at multiple points along
I2O and O2O paths between the transmitter and the receiver, enabling a comprehensive analysis
of the signal propagation characteristics. Various path loss models were applied to investigate the
data collected from these field experiments. These models, including the Free space, Egli, Okumura-
Hata, Cost231-Hata, and Ericsson path-loss models, were utilized to predict signal degradation over
distance. The application of these models provides a deeper insight into the factors influencing the
performance of ZigBee and LoRaWAN protocols in different environments. The selection of the best
path-loss model was determined by performance metrics such as R2, NRMSE, MSE, MAPE, and SI.
These criteria were employed to evaluate the validity and reliability of path-loss models in predicting
signal degradation over distance. The model with the highest R2 and the lowest NRMSE, MSE, and
MAD was identified as the best model in each environment for the ZigBee and LoRaWAN protocols,
highlighting its effectiveness in accurately predicting the path-loss model characteristics.

7.1 Analysis of ZigBee Protocol
7.1.1 Understanding Signal Attenuations in the I2O Environment

In an I2O environment, unique challenges significantly dampen radio signals. This attenuation
contrasts with outdoor environments, which face obstructions and varying terrain, further degrading
signal attenuation between the transmitter and the receiver. It is important to choose the most
appropriate path-loss model to overcome degradation in signal attenuation and achieve reliable
communication in the ZigBee I2O environment. These models can mathematically determine signal
attenuation, which can predict the weakening of radio signals. This analysis will evaluate the perfor-
mance of six path-loss models along with six performance metrics for the ZigBee I2O environment.
Among all of them, the best overall fit model can be suggested.

Analyzing the path-loss models for ZigBee I2O communication reveals a trade-off between R2 as
a correlation with the measured signals and error metrics with NRMSE, MSE, MAPE, MAD, and SI.
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The Cost231-Hata model boasts the highest R2 value as 0.955 but exhibits slightly higher error metrics
NRMSE as 0.111, MSE as 57.072, MAPE as 1.814, MAD as 79.950 and SI as 6.7198 compared to
the Egli model with n R2 value as 0.945 and NRMSE as 0.019, MSE as 1.808, MAPE as 0.231, MAD
as 14.232 and SI as 3.368. The Okumura-Hata model achieves a high R2 value of 0.950 with slightly
higher values of NRMSE at 0.131, MSE at 80.54, MAD at 94.978, SI at 22.49, and lower values for
MAPE at 1.559. The Ericsson model offers a moderate R2 value of 0.949 with a lower NRMSE of
0.074, MSE of 25.746, and MAD of 53.698 but a higher MAPE of 3.660 and SI of 12.709 Compared
to the Cost231-Hata model, Finally Free space achieves decent R2 value of 0.940 but suffers from
the highest error metrics of NRMSE as 0.027, MSE as 3.4418, MAPE as 0.830, MAD as 19.566 and
SI as 4.630. Therefore, the Egli path-loss model emerges as the preferred model for the ZigBee I2O
environment if minimizing deviation from measurements is crucial due to its lowest scatter index and
minimal prediction errors. However, for applications prioritizing a strong correlation with measured
signals, the Cost231-Hata or Okumura-Hata could be viable alternatives, considering trade-offs with
error metrics.

7.1.2 Understanding Signal Attenuations in the O2O Environment

In an O2O environment for ZigBee networks, maintaining signal strength over long distances is
compounded by external factors such as sudden climate changes and the increased distances between
the router and the coordinator. These factors collectively degrade the signal strength, requiring
inclusive analysis within these devices. Analyzing the performance of all six path-loss models along
with the six performance metrics leads to an effective model that reduces the signal attenuation between
devices.

The evaluation of these models reveals that the Cost231-Hata model, with an R2 value of 0.906,
exhibits the highest R2 value, indicating its effectiveness in predicting signal strength. Although, it is
necessary to analyze all the performance metrics to determine the most suitable model. The Cost231-
Hata model got relatively low error metrics, including NRMSE as 0.136, MSE as 6.747, MAPE as
1.279, MAD as 6.872, and SI as 2.592, suggesting its robustness in this environment. The Okumura-
Hata model, with an R2 value of 0.900, presents higher error rates compared to the Cost231-Hata
model, with NRMSE as 1.266, MSE as 463.339, MAPE as 30.529, MAD as 56.950 and SI as 1.802.
This indicates a trade-off between its R2 value and error rates, suggesting a need for a balanced
approach in model selection. The Free space model, with an R2 value of 0.893, shows higher error rates
than the Cost231-Hata model but lower error rates than the Okumura-Hata model with NRMSE as
0.358 MSE as 46.408 MAPE as 3.926 MAD as 18.023 and SI as 3.470. This model’s performance
suggests a middle ground between the Cost231-Hata and Okumura-Hata models, indicating its
potential as a viable alternative. The Egli model, with an R2 value of 0.891, exhibits high error
rates across all metrics, making it less effective than the Cost231-Hata and Okumura-Hata models.
Specifically, the Egli model’s NRMSE is 0.821, MSE is 243.87, MAPE is 4.725, MAD is 41.316, and
SI is 2.249. The Ericsson model, with the lowest R2 value of 0.866, also shows high error rates across
all metrics, making it the least effective among the models evaluated. The specific metric values for
the Ericsson model are NRMSE 0.136, MSE 6.738, MAPE 1.084, MAD 6.868, and SI 0.902. These
values underscore the model’s inefficiency in assuring signal attenuation between devices. Accordingly,
the Cost231-Hata model is suggested as the most suitable model for an O2O environment in the
ZigBee network. The Free space model, while having higher error rates than the Cost231-Hata model,
presents better performance than the Egli and Okumura-Hata models as an alternative model. The
least effective model among all is the Ericsson model, with the lowest R2 value and higher rate across
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all metrics. To ensure reliable communication, choose the most appropriate path-loss model with the
highest R2 values and the lowest error rates across all metrics.

7.2 Analysis of LoRa Performance
7.2.1 Understanding Signal Attenuations in the I2O Environment

The rapid growth of the IoT is significantly advancing, with LPWAN technologies, such as
LoRaWAN, playing a pivotal role in connecting battery-powered devices. Particularly within the I2O
environment, the study of communication within the LoRaWAN protocol network to achieve proper
signal attenuation among LoRaWAN devices presents a complex challenge. This analysis aims to
address all the challenges in signal propagation within the I2O environment and investigate the effect
of various path-loss models and other performance metrics to suggest the most appropriate model.

In evaluating various path-loss models in the I2O environment, the Cost231-Hata model has
the greatest R2 value of 0.917, indicating its potency in predicting signal strength. Nevertheless,
performance metrics must be considered in order to choose the most appropriate model. The Cost231-
Hata model also presents the strongest lowest error metrics, including NRMSE as 0.01, MSE as
0.133, MAPE as 0.054, MAD as 3.347, and SI as 0.398, which underscores its suitability for the
I2O environment. The Okumura-Hata model, with an R2 value of 0.910, exhibits error rates higher
than those of the Cost231-Hata model, with an NRMSE as 0.06, MSE as 17.42, MAPE as 1.175,
MAD as 38.252 and SI as 5.108. These values suggest a trade-off between the R2 values and error
rates of metrics, which advised the need for a balanced approach in model selection. The Free space
model achieves an R2 value of 0.909; it exhibits more error compared to the Cost231-Hata model
and less error compared to the Okumura-Hata model. Specifically, it has NRMSE as 0.02, MSE as
2.991, MAPE as 0.308, MAD as 15.850, and SI as 2.116. The Free space model positions between
the Cost231-Hata and Okumura-Hata models regarding error, indicating its potential as a viable
alternative for applications prioritizing accuracy and simplicity. Although the Egli model achieves
a high R2 value of 0.907, it exhibits higher error rates across all metrics than the Cost231-Hata and
Okmura-Hata models. This suggests that the Egli model might be a less suitable choice. The Egli
model’s specific metric values are NRMSE as 0.03, MSE as 4.950, MAPE as 0.249, MAD as 20.391,
and SI as 2.723. These metrics indicate lower efficiency in predicting signal attenuation between
devices. Therefore, it is crucial to prioritize models with a balance of high R2 values and low error
metrics for optional performance in device communication. Among the evaluated models, the Ericsson
model exhibits the lowest R2 value of 0.901 and the highest error rates across all performance metrics.
This suggests that the Ericsson model is the least effective for predicting signal attenuation. Specifically,
it has an NRMSE of 0.08, MSE of 40.93, MAPE of 0.514, MAD of 58.642, and SI of 7.831. Due
to these high error rates, the Ericsson model is not recommended for applications requiring reliable
communication between devices. Based on the analysis, the Cost231-Hata model emerges as the most
recommended path-loss model for the I2O environment within the LoRaWAN networks. It achieves
the highest R2 value, indicating a strong correlation with measured signals while exhibiting lower
error rates across all performance metrics, including NRMSE, MSE, MAPE, MAD, and SI. This
combination makes it the most effective model for predicting signal strength in these scenarios. The
Free space model recorded higher error rates than the Cost231-Hata model, but its performance is
better than the Egli and Okumura-Hata models, suggesting an alternative model. The Ericsson model
is the least effective model with the lowest R2 value and higher error rates among all performance
metrics.
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7.2.2 Understanding Signal Attenuations in the O2O Environment

The IoT relies on reliable communication between devices. This is especially critical in LoRaWAN
networks and LPWAN communication, where O2O communication is crucial for various applications.
LoRaWAN networks are known for their lower power consumption and long-range communication
capacities, often powered by batteries. However, in the O2O environment, external factors like sudden
climate change can weaken the signal strength and disrupt reliable communication. This investigation
of different path-loss models and their performance metrics aims to furnish a thorough understanding
of selecting the most efficient model for reliable communication between devices in LoRa O2O
environments.

The analysis of these models in the O2O environment reveals the Cost231-Hata model as the
most effective for predicting signal strength. This is due to its combination of a high R2 value of 0.980,
indicating a strong correlation with the measured signals and lower error metrics across all categories,
NRMSE as 0.004, MSE as 0.289, MAPE as 0.210, MAD as 3.806, and SI as 0.400. Therefore, the
Cost231-Hata model is recommended for this O2O environment. The Okumura-Hata model, with
an R2 value of 0.978, exhibits higher error rates than the Cost231-Hata model. This is evident in its
NRMSE as 0.047, MSE as 27.807, MAPE as 27.494, MAD as 37.287, and SI as 3.927. The Ericsson
model with an R2 value of 0.959 also shows high error rates across all metrics, making it the least
effective among the models evaluated. The specific metric values for the Ericsson model are NRMSE
as 0.026, MSE as 8.685, MAPE as 0.685, MAD as 20.839, and SI as 2.194. The Egli model, despite
achieving a relatively high R2 value of 0.954, also exhibits higher error rates across all metrics compared
to the Cost231-Hata and Okumura-Hata models. This is evident in its NRMSE as 0.007, MSE as 0.617,
MAPE as 0.243, MAD as 5.556, and SI as 0.5585, indicating it might be less effective for accurate
signal prediction. The Free space model, with an R2 value of 0.906, exhibits r error rates higher than
the Cost231-Hata model but lower error rates than the Okumura-Hata models. This is reflected in
NRMSE as 0.006, MSE as 0.482, MAPE as 0.280, MAD as 4.913, and SI as 0.517. Hence, the Free
space model positions itself between the Cost231-Hata and Okumuura-Hata models in terms of error,
potentially making it a viable alternative for applications that prioritize a balance between accuracy
and simplicity. Based on this analysis, the Cost231-Hata model is the most suitable choice for O2O
environments within LoRaWAN networks. This is because it achieves the highest R2 value, indicating
a strong correlation with the measured signals, while exhibiting lower rates across all performance
metrics, including NRMSE, MSE, MAPE, MAD, and SI. This combination suggests its effectiveness
in accurately predicting signal strength. The Free space model, although exhibiting higher error rates
than the Cost231-Hata model, offers better performance than the Egli and Okumura-Hata models.
Therefore, it can be considered a viable alternative, particularly for applications prioritizing accuracy
and simplicity. Finally, the Ericsson model demonstrates the lowest R2 value and the highest error rates
across all metrics. This suggests that it is the least effective model among those evaluated for predicting
signal attenuation in LoRa O2O environments.

7.3 Range Test Analysis
7.3.1 Range Test of Signal Coverage in I2O and O2O for ZigBee Networks

This section outlines the ZigBee Range test, which evaluated performance in both I2O and O2O
scenarios. Prior to the field test, the router and coordinator were configured. For the indoor setup, the
coordinator was positioned in a fixed location within a mining conference area, while the router was
relocated to various reference points within the mine area. The RSSI decreased as the distance between
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the transmitter and the receiver increased. The overall signal packets were successfully received up to
a distance of 58 m.

In the O2O environment, the transmitter and receiver were strategically placed in open areas
within the mine. The transmitter was stationed at a single, fixed reference point, while the receiver
was relocated to various points until a signal null was observed between the two devices. The coverage
range was approximately 210 m between both the transmitter and receiver. The coverage strength in
O2O scenarios was noted through observation, as it contains several obstacles between the transmitter
and the receiver.

7.3.2 Range Test of Signal Coverage in I2O and O2O for LoRaWAN Networks

The study explores the capabilities of LoRaWAN technology in enhancing long-range commu-
nication within both the I2O and O2O environments. A range test was conducted to demonstrate
LoRa’s potential in Long Range communication. In the I2O scenario, the transmitter and receiver were
configured according to the selected parameters. The transmitter was positioned at a fixed location
within a mine conference area, while the receiver was moved to various distances to observe the
RSSI values across different location points. The results showed that LoRaWAN can maintain signal
coverage between the transmitter and receiver, covering a distance of 750 m in the I2O scenario.

For the O2O scenario, a similar configuration was employed to determine the coverage range
between the transmitter and the receiver. The transmitter was fixed in a specific location within the
mine area, and the receiver was moved to different locations until the signal broke. The findings
indicated that Lora could cover up to 2100 m in the O2O scenario. This difference in coverage is
attributed to the absence of obstacles in the O2O environment that can degrade signal strength, unlike
in the I2O scenario, where physical barriers may interface with the signal.

7.4 Evaluative Performance Comparison for ZigBee and LoRa
The performance of various path loss models was evaluated for ZigBee and LoRa in both I2O

and O2O mining environments. Table 6 lists a comparative analysis of these models, which provides
insights into how each model predicts signal strength, offering valuable information for optimizing
ZigBee network design and performance. The Cost231-Hata model is the most accurate predictor of
signal attenuation, with an outstanding R2 value of 0.906 and the least NRMSE, MSE, MAPE, and
MAD across both settings. Despite the Egli Okumura-Hata models exhibiting comparable R2 values,
their higher error metrics indicate less reliable predictions. Table 7 shows a detailed comparison of
path-loss models suitable for LoRa communication to understand the effectiveness of each model
in predicting signal propagation for LoRa networks. The Cost231-Hata model again demonstrates
superior performance, achieving the highest R2 value of 0.980 and minimal error metrics in both I2O
and O2O environments. The Egli model also exhibits excellent performance with an R2 value of 0.954
and lower error metrics, suggesting the next alternative model for path loss prediction in these settings.

Table 6: Performance of all path-loss models for ZigBee

Scenario Path loss
models

R2 NRMSE MSE MAPE MAD Scatter
index

I2O Free space 0.940 0.027 3.418 0.830 19.566 4.630

(Continued)
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Table 6 (continued)

Scenario Path loss
models

R2 NRMSE MSE MAPE MAD Scatter
index

Egli 0.945 0.019 1.808 0.231 14.232 3.3684
Okumura-
Hata

0.950 0.131 80.54 1.559 94.978 22.479

Cost231-
Hata

0.955 0.111 57.072 1.814 79.950 6.7198

Ericsson 0.949 0.074 25.746 3.660 53.698 12.709
O2O Free space 0.893 0.358 46.408 3.926 18.023 3.470

Egli 0.891 0.821 243.87 4.725 41.316 2.249
Okumura-
Hata

0.900 1.266 463.339 30.529 56.950 1.802

Cost231-
Hata

0.906 0.136 6.747 1.279 6.872 2.592

Ericsson 0.866 0.136 6.738 1.084 6.868 0.902

Table 7: Performance of all path-loss models for LoRa

Scenario Path-loss
models

R2 NRMSE MSE MAPE MAD Scatter
index

I2O Free space 0.909 0.02 2.991 0.308 15.850 2.116
Egli 0.907 0.03 4.950 0.249 20.391 2.723
Okumura-
Hata

0.910 0.06 17.42 1.175 38.252 5.108

Cost231-
Hata

0.917 0.01 0.133 0.054 3.3470 0.398

Ericsson 0.901 0.08 40.93 0.514 58.642 7.831
O2O Freespace 0.906 0.006 0.482 0.280 4.9134 0.517

Egli 0.954 0.007 0.617 0.243 5.5560 0.585
Okumura-
Hata

0.978 0.047 27.807 27.494 37.287 3.927

Cost231-
Hata

0.980 0.004 0.289 0.210 3.806 0.400

Ericsson 0.959 0.026 8.685 0.685 20.839 2.194

8 Conclusion

The research comprehensively assesses the significance of various insights into optimizing wireless
communication in mines to enhance signal attenuation in challenging environments. It conducts the
performance comparison between the ZigBee and LoRa protocols in I2O and O2O mining scenarios.
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• For the ZigBee field test, the parameters were set to operate under the IEEE 802.15.4 standard,
utilizing a frequency of 2.4 GHz, a transmitted power of 5 dBm, and a power gain of 1.8
dBm. The RSSI values were collected within the range of −32 to −100 dBm over a distance
of 58 m in the I2O environment. In the O2O environment, the RSSI values ranged from −36
and −100 dBm over a distance of 210 m. As the distance between the transmitter and receiver
increases, there is a corresponding decrease in the RSSI values.

• In contrast, for the LoRa Field test, the setup involved different criteria, specifically a frequency
of 868 MHz, a bandwidth of 125 KHz, a coding rate of 4/5, an SF of 7, a transmitter power
of 14 dBm, and a power gain of 6 dBm. The RSSI values observed in the I2O environment fall
within the −51 to −132 dBm over a distance of 750 m. Similarly, in the O2O environment, the
RSSI values were recorded between −14 and −125 dBm over 2100 m. As distances from the
transmitter to the receivers increase, the RSSI value decreases, indicating degradation in signal
strength at the receiver’s antenna.

• In order to assess signal attenuation, a robust framework of various path-loss models, including
Free space, Egli, Okumura-Hata, Cost231-Hata, and Ericsson models, was examined using an
experimental setup of actual and predicted path-loss values.

• To determine the most efficient path-loss model, a set of performance metrics, including RMSE,
R2, NRMSE, MSE, MAPE, and MAD, was reinforced to assess the accuracy and reliability of
the path-loss model.

• All the path-loss models were framed for a thorough analysis by plotting different graphical
representations for the ZigBee and LoRa protocols in I2O and O2O scenarios.

• For the ZigBee network, the Cost231-Hata model emerged as the most accurate predictor of
signal attenuation, achieving the highest R2 value of 0.906 and the least NRMSE, MSE, MAPE,
and MAD for both settings. The other models gained comparable R2 values, but their higher
error metrics suggest less reliable ZigBee predictions.

• For the LoRa network, the Cost231-Hata model achieved a high R2 value of 0.980 and minimal
error metrics in both settings. The Egli model also achieved the next highest R2 value of 0.954
with lower error metrics, serving as an alternative model.

• These findings contribute to the understanding of optimizing the deployment of ZigBee and
LoRa in mining environments, particularly in path-loss modeling.

9 Future Scope

While traditional Path Loss models like the Cost231-Hata model excel in static analysis, the
future of optimized mining communication lies in embracing the dynamic capabilities of Machine
learning algorithms. These algorithms can leverage vast datasets and diverse performance metrics to
unlock new advances, including real-time path loss predictions that dynamically adjust to factors like
tunnel closures, machinery activity, and weather changes. ML can also accelerate prediction speed and
accuracy, streamline investigation steps through automation, and generate customized communication
solutions tailored to specific mining layouts.
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