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ABSTRACT

In engineering practice, it is often necessary to determine functional relationships between dependent and
independent variables. These relationships can be highly nonlinear, and classical regression approaches cannot
always provide sufficiently reliable solutions. Nevertheless, Machine Learning (ML) techniques, which offer
advanced regression tools to address complicated engineering issues, have been developed and widely explored.
This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation
behavior of metallic materials. The ML-based regression methods of Artificial Neural Networks (ANNs), Support
Vector Machine (SVM), Decision Tree Regression (DTR), and Gaussian Process Regression (GPR) are applied
to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.
Although the GPR method has not been used for such a regression task before, the results showed that its
performance is the most favorable and practically unrivaled; neither the ANN method nor the other studied ML
techniques provide such precise results of the solved regression analysis.
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Nomenclature

ANN Artificial Neural Network
DTR Decision Tree Regression
EDX Energy-Dispersive X-Ray
FF-MLP Feed-Forward Multilayer Perceptron
GP Gaussian Process
GPR Gaussian Process Regression
GRNN Generalized Regression Neural Network
ML Machine Learning
RB Radial Basis

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.055219
https://www.techscience.com/doi/10.32604/cmes.2024.055219
mailto:petr.opela@vsb.cz
mailto:josef.walek@vsb.cz


714 CMES, 2025, vol.142, no.1

RBN Radial Basis Neuron
RBNN Radial Basis Neural Network
SV Support Vector
SVM Support Vector Machine
ai Response vector (axon) of i-th neuron of a lower-level layer
aj Response vector (axon) of j-th neuron of a higher-level layer | j-th RBN axon
b Bias
bj Bias of j-th neuron of a higher-level layer
C Box constraint
Cj j-th RBN center
f Vector of latent variables
G

(
SVj, P

)
j-th vector of a high-dimensional feature space

H Basis matrix
K (Ptr, Pn) Covariance (kernel) matrix
m Number of neurons in a lower-level layer
MAPE Mean Absolute Percentage Error (%)
maxDN Maximal no. of decision nodes within a layer
minLS Minimum of leaf size
n Number of neurons in a higher-level layer | Number of RBNs | Number of SVs | Space

dimension | Number of all data points
P Predictor matrix
p Number of observations | Polynomial order | Number of data points in either training

or testing (predicting) subset
Pn Predictor matrix containing new observations
Ptr Predictor matrix containing training observations
ptr Number of training observations
R2 Coefficient of determination
rk k-th response (leaf) returned by the DTR model
RMSE Root Mean Square Error (MPa)
SVj j-th support vector
T Deformation temperature (K)
T Mean value of target responses (MPa)
tadapt Adaptation runtime (s)
Tak Lower bound of the temperature interval delimiting the k-th predictor subspace
Tbk Upper bound of the temperature interval delimiting the k-th predictor subspace
Ti i-th target true flow stress response (MPa)
wij Synaptic weight connecting the i-th and j-th neuron
wj Synaptic weight connecting the j-th neuron axon of the last hidden layer with the output

layer neuron
x Unnormalized vector of input or output variable
xmax Maximal value of unnormalized vector of input or output variable
xmin Minimal value of unnormalized vector of input or output variable
y Normalized vector of input or output variable
Δi Difference between the i-th target and returned true flow stress response (MPa)
αj Lagrange multiplier
α∗

j Lagrange multiplier
β Vector of basis function coefficients
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γ Spread of the Gaussian function
δf Signal standard deviation
δl Characteristic length scale
δn Noise standard deviation
δ (σtr) Training response standard deviation
ε True strain | Epsilon-insensitive loss
εak Lower bound of the strain interval delimiting the k-th predictor subspace
εbk Upper bound of the strain interval delimiting the k-th predictor subspace
ε̇ Strain rate (s−1)
ε̇ak Lower bound of the strain rate interval delimiting the k-th predictor subspace
ε̇bk Upper bound of the strain rate interval delimiting the k-th predictor subspace
σ True flow stress (MPa)
σtr Response variable considering a training subset

1 Introduction

For centuries, cold and hot forming represented an irreplaceable element in building the modern
civilization as we know it today [1–4]. From conventional techniques, such as rolling [5], forging [6],
drawing [7], and extrusion [8], to unconventional ones, e.g., methods of severe plastic deformation
[9–12], incremental forming [13,14], or rotary swaging [15,16], forming technologies are typically
employed to fabricate numerous components in a wide range of industrial fields (construction
engineering, transportation, nuclear and chemical engineering, food industry, or bioengineering
[17–21]).

The flow stress is a significant factor associated with the forming processes, influencing the
processing parameters, such as forming forces and the development of structures and properties
of the formed materials [22,23]. The flow stress evolution can have quite a complicated character,
especially when forming under hot conditions, due to the occurrence of structure softening processes
[24]. For decades, researchers have focused on modeling hot flow stress evolution based on numerous
experimentally acquired datasets to improve the control of hot-forming processes [25,26]. From the
mathematical point of view, the hot flow stress of a plastically deformed material represents an
outcome nonlinearly dependent on three predictors—strain, strain rate, and temperature [27]. Regres-
sion analyses of experimental datasets typically result in the formulation of parametric relationships
offering the possibility of predicting hot flow stress behavior with various degrees of accuracy [28–30].
For example, Savaedi et al. [31] performed a unique study in which they compared the performance
of several models, such as Arrhenius, ANN, modified Zerilli-Armstrong, Johnson-Cook, Hensel-
Spittel, and Dislocation density-based ones, when applied for predicting flow stress of high entropy
alloys (HEAs). Shafaat et al. [32] conducted predictions of hot compression flow stress curves for the
Ti6Al4V alloy using the hyperbolic sine constitutive equation (Sellars model), Cingara, and Johnson-
Mehl-Avrami-Kolmogorov (JMAK) models. They acquired reliable flow stress curve predictions using
the Cingara and JMAK models. Nevertheless, the unfading effort to increase the prediction accuracy
drives the researchers towards developing even more accurate models.

The mass expansion of computer technology resulted in the development of various ML tech-
niques, offering advanced possibilities for regression analysis [33–37]. Regarding modeling flow stress
utilizing ML techniques, the ANNs have gained primary attention. ANNs provide the possibility
to model the hot flow stress evolution with higher precision than classical parametric relationships.
In addition, the undisputed advantage of ANNs is the possibility of describing the course of flow
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stress for a relatively wide range of associated predictors via a single regression model [38–42]. The
parametric equations are often limited to relatively narrow ranges of strains (given by the everlasting
competition between the work hardening and softening processes). Therefore, equations derived to
model wider strain ranges are usually burdened by higher errors [29,31,32]. Among for-the-regression-
suitable ANNs topologies, an FF-MLP is the most popular approach employed to model the hot flow
stress evolution. For example, Quan et al. [43] compared the usually applied by-strain-compensated
Garofalo’s parametric flow stress model to a classic feed-forward multilayer perceptron network when
studying the hot deformation behavior of as-cast Ti6Al2Zr1Mo1V alloy, and revealed that the relative
percentage error returned by the neural network ranges between −10 % and 10 %, while the error for
the usual flow stress model ranges from −20 % to 30 %. They further compared these two approaches
when investigating extruded 7075 aluminum alloy [39], confirming that the perceptron model features
are more accurate. Lin et al. [44,45] improved the accuracy of the multilayer perceptron response
containing a higher number of hidden layers by applying a restricted Boltzmann machine during the
training stage.

Some researchers also applied the RBNN architecture, which has a simpler structure and
calculation mechanism compared to FF-MLP and thus offers an incomparably higher computing rate,
though with a slightly lower accuracy [46,47]. Modifications of the FF-MLP and RBNN flow stress
models, such as the Cascade-Forward Multilayer Perceptron [48], GRNN [49], or Layer Recurrent
Network [50], have also been studied. Nevertheless, among these methods, the FF-MLP approach
provides the most reliable description accuracy, although one must also consider its disadvantages,
such as the time and hardware-demanding adaptation phase.

In addition to the ANN-based regression models, hot flow stress modeling is frequently performed
via an SVM approach [51,52]. For example, Quan et al. [53] introduced novel Latin Hypercube
Sampling (LHS) and Genetic Algorithm (GA) Support Vector Regression prediction models to
characterize the hot flow behavior of a forged Ti-based alloy in wide temperature and strain rate
intervals, according to experimentally acquired stress-strain data. Both models can accurately predict
the alloy’s highly non-linear flow stress behavior and feature improved computational efficiency
compared to mathematical regression and ANN models. Song [54] compared different algorithms for
modeling hot deformation flow stress curves of 316 L stainless steel. They indicated that the ANN and
SVM approaches featured improved RMSE values compared to calculations based on the Arrhenius
equation. However, the applied algorithms cannot extrapolate and predict flow stress beyond the
monitored data range. Qiao et al. [55] further dealt with ANN and SVM methodology in studying
the flow stress of AlCrFeNi multi-component alloy. Application of the DTR method has also been
documented [56–58]. By its structure, the SVM regression technique is very similar to the mentioned
ANNs, specifically to the RBNN one; the SVM can be considered as its extension or modification.
In contrast, the DTR method represents an entirely different approach, which has not been widely
examined for modeling hot flow stress.

This research compares the above ML techniques (FF-MLP, RBNN, GRNN, SVM, and DTR) in
modeling the hot flow stress behavior of conventional medium-carbon steel. The primary emphasis is
on the accuracy of a model response, prediction capability, and required computing time. Possible
disadvantages of the approaches are also mentioned. In addition, since the introduced machine
learning techniques are not entirely comprehensive, the comparison of the ML techniques is enriched
with another promising approach, which has probably not been applied for hot flow stress modeling
yet, the GPR [59,60]. Another aim of the research is thus to assess the possibility and suitability of
applying the GPR approach in hot flow stress modeling.
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2 Acquiring Experimental Dataset

The performance of the selected ML techniques in modeling the flow stress behavior under hot
conditions was evaluated using a flow curve dataset for a C45-type medium-carbon steel acquired
experimentally via uniaxial hot compression testing using Gleeble 3800 equipment. The C45 steel
type is highly advantageous for producing medium-strength elements resistant to abrasion, such as
electric motor shafts, pump impellers, shafts, spindles, and fasteners. It is also utilized to fabricate
non-quenched gear wheels, rods, wheel hubs, levers, and numerous tools, such as knives. The chemical
composition of the steel was verified by EDX analysis using a Tescan FERA 3 equipped with
EDAX software. Both datasets are listed in Table 1 (EDX cannot relevantly detect carbon content).
In addition, the EDX spectrum chart documenting the performed analysis is shown in Fig. 1. The
acquired data confirms that the chemical composition of the examined steel corresponds to that
declared by the producer. Therefore, the results acquired within the presented study can be considered
widely applicable to commercially available steel of such a type.

Table 1: Given and experimentally acquired chemical composition of examined C45 steel

Element C Mn Si Cr Ni Cu P S

wt. % given 0.42–0.5 0.5–0.8 0.17–0.37 Max. 0.25 Max. 0.3 Max. 0.3 Max. 0.4 Max. 0.4
wt. % acquired – 0.6 0.2 0.2 0.3 0.1 0 0.08

Figure 1: EDX spectrum chart of chemical composition of studied C45 steel

As for the utilized testing device, Gleeble 3800 is a universal thermal-mechanical physical
simulation machine produced by Dynamic Systems Inc. (Austin, TX, USA), which can be utilized
to perform complex studies of hot deformation behaviors of various materials via a variety of tests
(dilatometric tests, nil strength temperature tests, tensile tests, compression tests). It is also capable of
performing simulations of multi-pass forming processes. One of its mobile conversion testing units,
Hydrawedge (see the photo of its testing chamber in Fig. 2a) is purposefully designed to perform
hot compression tests in a wide range of deformation temperatures and strain rates, which enables to
perform thorough studies of the influences of various thermomechanical conditions on the flow stress
evolutions of examined materials.
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Figure 2: Gleeble 3800 Hydrawedge testing chamber (a); testing sample with welded thermocouple
wires (b)

The samples for the hot compression testing were cylindrical shapes with a length of 15 mm
and a diameter of 10 mm. The uniaxial compression was performed for each sample up to a true
strain of −1.1. The deformation temperature and strain rate conditions were variable. Specifically,
temperatures of 1173, 1273, 1373, 1473, and 1553 K were combined with strain rates of 0.1, 1, 10, and
100 s−1, which provided an experimental dataset consisting of twenty individual flow stress curves. The
required deformation temperature for each testing sample was achieved via direct electrical resistance
heating, and the temperature was directly measured using a pair of thermocouple wires welded on each
sample in its middle length, see a photo of the prepared sample in Fig. 2b. Oxidation was prevented by
keeping the testing chamber under vacuum. Before each test, the anvil-sample interface was covered
with a layer of nickel-based high-temperature grease and a tantalum foil.

3 Machine Learning Regression Analysis
3.1 Preparing Experimental Dataset for Processing

The hot compression flow stress curve dataset represents a highly non-linear dependency of a
single outcome, σ (true flow stress (MPa)), on three predictors—temperature, T (K), strain rate, ε̇

(s−1) and true strain, ε (-). The examined experimental dataset is, in its basic form, arranged as a
two-dimensional matrix, where each row corresponds to a single T-ε̇-ε observation and the column
vectors represent the individual predictors and target outcome. Since varying dimensions and ranges
of the variables within the dataset can negatively influence model response and convergence speed
when applying some machine learning regression techniques, the matrix columns were normalized to
be dimensionless and ranging in the interval of [0, 1] ⊂ Q (Eq. (1)) [61]:

y = x − xmin

xmax − xmin

(1)

where x, y, xmin, and xmax are unnormalized and normalized forms of the examined matrix and minimal
and maximal values of the unnormalized matrix columns, respectively. Before the strain rate predictor
column was normalized, the strain rate was transformed into a logarithmic form. Although some of
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the above-listed ML models do not require any normalization procedure, a normalized dataset was
used for all MLs to increase the reliability of subsequent comparisons of the computed data.

Given the nature of machine learning, ML regression models tend to overfit the characterized
data, i.e., they return nonsensical predictions if they are not assembled with proper settings. In order
to overcome this issue, ML techniques with various settings were assembled on 70% of the data of the
experimentally acquired dataset (training subset), and the model’s performance was verified using the
remaining 30% portion of the dataset (testing subset). The dataset split is listed in Table 2.

Table 2: Dataset split for subsequent machine learning regression

ε̇ (s−1) T (K)

1553 1473 1373 1273 1173

0.1 Train Train Test Train Train
1 Test Train Train Train Test
10 Train Test Train Train Train
100 Test Train Train Test Train

3.2 Essence of Applied Machine Learning Techniques
3.2.1 Artificial Neural Networks

ANNs for regression analyses are constructed to provide functional relationships between pre-
dictors and outcomes based on networks of artificial neurons arranged into layers. The structure of
such a network and the nature of a neuron’s inner calculation mechanism are then influenced by the
selected ANN topology, the most prominent of which are characterized below.

The standard FF-MLP model consists of an input layer, one or more hidden layers, and an output
layer. The first hidden layer has a synaptic weight connection from the predictor matrix (input layer),
and each subsequent layer has a connection from the previous one. The output layer then produces
the FF-MLP regression model response. As for the herein presented regression, the inner calculation
mechanism of the FF-MLP hidden neuron can be expressed as Eq. (2) [61,62].

aj = tanh

[
m∑

i=1

(
ai · wij

) + bj

]
(2)

where ai is the response vector (axon) of i-th neuron of a lower-level layer, aj and bj are the axon and
bias of j-th neuron of a higher level layer, and wij is the synaptic weight connecting the i-th and j-th
neurons. i = [1, m] ⊂ N and j = [1, n] ⊂ N, where m and n represent the number of neurons in the
lower level and higher level layer, respectively. The number of neurons in the input and output layers
corresponds with the number of predictors and outcomes. Since the herein presented research is only
characterized by a single outcome, the final desired FF-MLP model response is a single vector returned
as the linear combination of the neuron responses of the last hidden layer added to the bias b (Eq. (3))
[61,62]:

σ =
n∑

j=1

(
aj · wj

) + b (3)
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where wj is the weight connecting the j-th neuron axon of the last hidden layer with the output
layer neuron, and n is the number of neurons in the last hidden layer. The number of hidden layers
and neurons then represents the hyperparameters of the FF-MLP model, which have to be tuned
to ensure its reliable performance. Optimization of the weights and biases from Eqs. (2) and (3) in
order to minimize the network response error was, in each case, solved via the Levenberg-Marquardt
optimization with the backpropagation learning algorithm and by the application of the Bayesian
regularization. This optimization was performed for 20 various pseudo-randomly generated sets of
initial w-b values at each combination of the examined hyperparameters.

The structure of the RBNN model and the GRNN model consists of a single input layer, an RB
layer, and a single output layer. The purpose of the RB layer is to convert a non-linear regression
issue into a linear form via mapping of a low-dimensional predictor feature space (R3 in the presented
research) to a high-dimensional one (Rn). The inner calculation mechanism of a single RB layer neuron
(RBN) can be formulated as Eq. (4) [63–65].

aj = exp

⎡
⎣−

(∥∥Cj − P
∥∥ ·

√− ln (0.5)

γ

)2
⎤
⎦ (4)

where aj and Cj are the j-th RBN axon and a corresponding neuron center, respectively; j = [1, n] ⊂ N,
where n is the number of RBNs;

∥∥Cj − P
∥∥ is the vector of Euclidean distances between the center of

j-th neuron and data points of a predictor matrix, P; γ is the spread of the Gaussian function and
represents a tunable hyperparameter of the RBNN and GRNN models.

For the RBNN model, its output layer’s inner calculation mechanism can be expressed similarly
to the FF-MLP model, i.e., by Eq. (3). However, the GRNN model’s response is given differently, as
shown in Eq. (5) [63,64].

σ =
∑n

j=1 aj · wj∑n

j=1 aj

(5)

The neuron centers in Eq. (4) are set to be equal to the observations of the predictor matrix (T-ε̇-ε
triplets). For the RBNN model, the weights and biases of Eq. (3) are then estimated via the simple least
square method, and the weights in Eq. (5) are set to be equal to the datapoints of the outcome vector
(σ singletons). Based on the nature of the RBNN and GRNN models, the number of neurons in the
RB layer is practically equal to the number of observations involved in the training subset. However,
unlike the GRNN model, the RBNN model only employs a restricted amount of these neurons due
to the collinearity phenomenon.

3.2.2 Support Vector Machine

The SVM regression model is, by its nature, similar to the RBNN method described above. The
SVM approach also benefits from mapping a low-dimensional predictor space to a high-dimensional
feature space, i.e., the transformation of a non-linear regression issue into a linear one. The SVM
model response can be formulated via Eq. (6) [65].

σ =
∑n

j=1

[
G

(
SVj, P

) · (
αj − α∗

j

)] + b (6)

where G
(
SVj, P

)
is the j-th vector of a high-dimensional feature space, SVj is the j-th support

vector, and α-values represent the corresponding Lagrange multipliers, where j = [1, n] ⊂ N, n
is the number of predictors in the high-dimensional feature space (number of SVs). This space is
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represented by the Gram matrix, which is assembled based on a specific non-linear kernel function
(Gaussian or polynomial). Determining the α-values and bias b is based on a linear ε-insensitive
regression technique—solved via the sequential minimal optimization algorithm within the presented
research. The applied regression technique brings two basic hyperparameters, which must be tuned,
into the SVM model—specifically, ε-insensitive loss and box constraint. The performance of the
SVM regression model is further influenced by the selection of the above kernel function and the
corresponding hyperparameter (spread of the Gaussian function and polynomial order with regard to
the Gaussian and polynomial kernel, respectively).

3.2.3 Decision Tree Regression

The DTR model is denominated based on its characteristic tree-like structure. The DTR model
consists of nodes, which are hierarchically divided from the root node (nonterminal decision node
storing the examined predictor matrix) through layers of subnodes (inner nonterminal decision nodes),
to leaves (terminal nodes representing model outcomes). From the mathematical point of view,
the examined predictor space is gradually divided by a sequence of decisions on a finite number
of separated subspaces bound by specific intervals of examined predictors. These subspaces are
further associated with specific outcome values. The DTR model response on a submitted predictor
observation is thus given by the assignment to a proper subspace. For the presented research, this can
be expressed by the following conditional function (Eq. (7)):

σ = rk |for T = [Tak, Tbk] ∧ ε̇ = [ε̇ak, ε̇bk] ∧ ε = [εak, εbk] (7)

where Tak, Tbk, ε̇ak, ε̇bk, εak, and εbk are the lower (a-subscript) and upper (b-subscript) bounds of
the temperature, strain rate, and strain intervals delimiting the k-th predictor subspace. The specific
k-th response (leaf) rk is returned by the DTR model when the input predictor observation falls
under the corresponding k-th predictor subspace. The complexity of a decision tree, the number of
predictor subspaces, and thus the number of leaves is influenced by the nature of the processed dataset,
utilized learning algorithm, and model hyperparameters. As for the presented research, the interaction-
curvature algorithm, for which the maximum number of decision nodes within a layer, in connection
with the minimum leaf size, represent the tunable DTR model hyperparameters, was applied to
determine the way the particular decision nodes are split (considering node binary partition). The
resulting complexity of the assembled tree then represents a tradeoff between the response accuracy
and prediction capability.

3.2.4 Gaussian Process Regression

The GPR model applies a probabilistic-based approach to predict a proper outcome response. In
this research, the GPR model response can be expressed as Eq. (8) [66].

σ = H · β + f (8)

The GPR model consists of two main elements. The first one is given by a p × n basis matrix
H, representing the projection of the original predictor space (R3 in the presented research) into a
new feature space (Rn), where the space dimension n is influenced by the selection of the explicit basis
function, and p is the number of observations. Then, β is the corresponding n × 1 vector of basis
function coefficients (one for each feature). The second element of the GPR model, f , then represents
the p × 1 vector of latent variables (one for each predictor observation). The vector f is considered to
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be distributed as a GP with a zero mean and covariance (kernel) matrix K (Ptr, Pn) (Eq. (9)) [66]:

f ∼ GP [0, K (Ptr, Pn)] (9)

The K (Ptr, Pn) matrix determines how the response at one predictor observation is affected
by responses at other observations—Ptr and Pn are predictor matrices containing training and new
observations, respectively. The new observations from the testing subset are considered in the model
training process. Then, the trained model is prepared to accept entirely new observations. In other
words, the basic strategy behind the GPR is to get a regression model in which the residuals are
modeled via GP. The K (Ptr, Pn) matrix is then assembled based on a specific kernel function—see
Table 3. Considering Eq. (9), the values of the required f -vector can be acquired by incorporating the
zero mean and K (Ptr, Pn) into the known multivariate Gaussian distribution model.

Table 3: Hyperparameter state spaces of examined machine learning models

Model Hyperparameter Examined state space

FF-MLP No. of hidden layers [1, 2] ⊂ N

No. of neurons within a single
hidden layer

[1, 20] ⊂ N

RBNN & GRNN Gaussian function spread γ = [0.01, 0.99] ⊂ Q with step of 0.01
γ = [1, 100] ⊂ Q with step of 0.1

SVM Kernel function {linear | gaussian | polynomial}
Gaussian function spread γ = [10−3, 103] ⊂ Q

Polynomial order p = [2, 4] ⊂ N

Epsilon-insensitive loss ε = [10−3, 102] · iqr (σtr) /1.349 ⊂ Q a

Box constraint C = [10−3, 103] ⊂ Q

DTR Maximal no. of decision
nodes within the layer

maxDN = [1, max (2, ptr − 1)] ⊂ N c

Minimum of leaf size minLS = [1, max (2, floor (ptr/2))] ⊂ N c

GPR Basis function {none | constant | linear | pure-quadratic}
Kernel function {exponential | squared-exponential | matern32

| matern52 | rational-quadratic |
ARD-exponential |
ARD-squared-exponential | ARD-matern32 |
ARD-matern52 | ARD-rational-quadratic}

Initial kernel parameters
[

max (max (Ptr) − min (Ptr)) · 10−3,
max (max (Ptr) − min (Ptr))

] ⊂ Qb

Initial noise standard
deviation

[
10−4, max

(
10−3, 10 · δ (σtr)

)] ⊂ Q d

Note: aiqr (σtr) the interquartile range of the response variable considering the training subset. bmax (Ptr) the vector of the maximum values
of the examined predictors considering the training observations, and analogically for the vector min (Ptr). cptr the number of training
observations. dδ (σtr) training response standard deviation.

The performance of the GPR model is influenced by several hyperparameters: selection of the
above basis function, kernel function, and the value of noise standard deviation δn. In addition,
the kernel functions introduce other variables into the model—signal standard deviation δf , and
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characteristic length scale δl. The initial values of δn, δf , and δl parameters and the above β-values
were in each case refined using the quasi-Newton optimization algorithm, and the parameters of the
Automatic Relevance Determination-based kernels (GPR model) were not optimized.

3.2.5 Hyperparameter State Space

The optimal values must be estimated since the proposed machine learning models are associated
with various hyperparameters. Table 3 lists their overview and the corresponding state spaces examined
within the presented research. As regards the FF-MLP, RBNN, and GRNN models, the optimal
hyperparameter settings were found through a trial-and-error method by testing each value of the
corresponding state space. The state spaces of other models were then browsed via the Bayesian
optimization algorithm.

4 Results and Discussion

Accordingly, the proposed ML-based regression models must be tuned concerning the training
subset and the new observations to return a proper outcome response, i.e., to enable reliable predicting.
The applied models’ reaction to new observations is evaluated using a specific testing subset, as detailed
in Table 2. The optimal hyperparameters of the applied machine learning techniques, resulting from
the performed tuning, are summarized in Table 4.

Table 4: Ideal hyperparameters of examined machine learning models

Hyperparameter FF-MLP RBNN GRNN SVM DTR GPR

No. of hidden layers 2
No. of hidden neurons | RBN | SV 13 11 686 168
Activation function tanh Gauss Gauss
basis function Linear
Kernel function Gauss Matern32
γ 65.2 0.17 0.617
ε 0.01416
C 0.19435
maxDN/minLS 715 / 3
δf 0.07456
δl 0.62014
δn 0.00974
tadapt (s) 4236 78.23 37.19 131.685 42.646 190.088

The bottom row in Table 4 summarizes adaptation runtimes for all the applied ML techniques
to enable indicative comparison of the individual approaches. The most time-consuming adaptation
phase (exceeds the time of an hour) is associated with the FF-MLP regression model; the other models
exhibited computing times lower than 4 min, some even lower than 1 min. The fact that the FF-
MLP adaptation is the most time-consuming can be directly attributed to trial-and-error searching
for optimal initial weights and biases, which are repeatedly pseudo-randomly generated under each
examined combination of hidden layers and hidden neurons during the computations.
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The first tentative insight into the accuracy of the assembled regression models using the RMSE
indicator (MPa) (Eq. (10)) is depicted in Fig. 3.

Figure 3: Comparison of root mean squared errors of examined machine learning models

RMSE =
√

1
p

·
∑p

i=1
�2

i (10)

where Δi (MPa) is the difference between the i-th target and returned true flow stress response, i.e.,
model residuum i = [1, p] ⊂ N, where p is the number of data points in the training or testing
(predicting) subset.

Considering the returned RMSE values, the ANN-based regression models, FF-MLP, RBNN,
and GRNN (especially the GRNN one), feature lower response accuracy than the other applied ML
techniques. In addition, the ANN models show relatively higher differences between the training
and testing subsets, implying that the reaction of the examined ANN models on a new dataset
can be less reliable. Fig. 3 indicates that the SVM, DTR, and especially GPR methods offer higher
fitting accuracy and predicting reliability when compared to the presented ANN models. Additional
statistical indicators, namely the Mean Absolute Percentage Error (MAPE) (%) (Eq. (11)) and the
coefficient of determination R2 (−) (Eq. (12)), confirm the dominant position of the GPR method, as
listed in Table 5. The ANN model built on the FF-MLP architecture is very close to this GPR model’s
accuracy.

Table 5: Additional statistical indicators

Indicator FF-MLP RBNN GRNN SVM DTR GPR

MAPE (%) 1.4843 4.8482 8.7108 3.5561 1.4371 0.3673
R2 0.9988 0.9935 0.9745 0.9978 0.9979 0.9999

MAPE = 1
n

·
∑n

i=1

∣∣∣∣�i

Ti

∣∣∣∣ · 100 (11)

R2 = 1 −
∑n

i=1 Δ2
i∑n

i=1

(
Ti − T

)2 (12)

where Ti (MPa) and T (MPa) are the i-th target true flow stress response and the mean value of target
responses, respectively, for i = [1, n] ⊂ N, where n is the number of all data points (training and testing
subset).

A box-and-whisker diagram, expressing the analysis of the returned flow stress residues simply and
comprehensively, is presented in Fig. 4 to acquire a deeper insight into the accuracy of the examined
models.
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Figure 4: Box-and-whisker diagrams of returned residues: train subset (a); test subset (b)

Fig. 4 indicates that the most favorable regression response is achieved when applying the GPR
model. The absolute values of residues provided by this model are for the training and testing subsets
not higher than 8 MPa. The FF-MLP regression model provides the second most favorable response.
The absolute residues associated with the testing subset are generally lower than 10 MPa. Fig. 4 also
shows that the third model providing the most reliable response is the SVM one. As for both the
training and testing subsets, the absolute residues returned from the SVM regression are, similar to
the FF-MLP model, generally not higher than 10 MPa. However, the SVM residue vector contains
an outlier (approx. −22 MPa) in the testing subset. Nevertheless, a detailed analysis revealed that
this outlier is associated with the true strain value of 0.039, i.e., with the beginning of deformation
processing (the first flow curve datapoint). From a practical point of view, a deceptive prediction for
such a small strain value can be considered low in significance. Therefore, from a statistical point of
view, the reliability of the SVM model can be considered comparable to that of the FF-MLP approach.

The ranges of RBNN, GRNN, and DTR model residues for the training subset are approximately
from −25 to 12, −29 to 12, and −23 to 16 MPa, respectively. In other words, the scatters of these
residues are prominently larger when compared to the scatters observed for the other models; similar
results were also acquired for the testing subset. Regarding the DTR methodology, absolute residues
higher than 10 MPa are associated with true strain values of up to 0.16, i.e., in the early deformation
stage. On the other hand, for the RBNN and GRNN models, the absolute residues higher than 10 MPa
are more or less homogeneously distributed through the entire strain range.

Figs. 5 and 6 further depict graphical comparisons of target flow and flow stress curves returned
by the applied regression models to enhance the performed statistical analysis. Fig. 5a–d confirms the
presented statistical evaluation of the ANN-based models. Neither the RBNN model nor the GRNN
one can reliably follow the curve shape. This finding is consistent with the acquired large scatters of
residuals presented in Fig. 4. The FF-MLP model exhibits higher reliability as it shows significant
deviations only for predictions. The FF-MLP model is against the RBNN model and GRNN model
more robust. The simplified architecture of the RBNN and GRNN models is not robust enough to
capture the complicated nature of hot flow curves. The GRNN model, especially, whose weights are
formed only by the values of the input and output variables, practically does not provide sufficient
variability. Fig. 6a–d compares target flow stress curves with those returned by the other examined
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ML techniques. These comparisons confirm that the GPR method offers the most reliable regression
performance. The training and testing subsets exhibit an incomparably higher regression fit than those
acquired by the other applied models. The success of the GPR model lies in its probabilistic-based
approach, where the regression model is constructed in such a way that residual values are modeled
via the Gaussian process. Fig. 4 indicates that the accuracy of the SVM method is just behind the
accuracy of FF-MLP. This finding is confirmed by Figs. 5 and 6; as can be seen, the SVM flow stress
curve shapes deviate slightly from the target flow curve shapes but not as much as those provided
by the RBNN and GRNN approaches. The SVM methodology is very close to the RBNN model.
However, SVM is more robust thanks to a slightly different way of calculating the output variable,
i.e., linear ε-insensitive regression technique instead of classic linear regression, which provides two
other key parameters; by properly tuning them, higher accuracies can be achieved. However, as the
time requirements of the RBNN and GRNN regression techniques are lower than that of the SVM
approach, i.e., these techniques are fast, simple to assembly, and do not require sophisticated software,
see Table 4, they can be applied if a quicker estimation (at the expense of lower reliability) is required.
As also ensues from Fig. 6a–d, the DTR approach seems rather inappropriate for a reliable description
of the flow stress curve. The disadvantage of the DTR method is that the assembled model divides the
strain range into several subranges, and the influence of increasing strain on a flow stress change
is practically omitted; see the returned groups of constant responses depicted by green points in
Fig. 6a–d.

(a) (b)

(c) (d)

Figure 5: Comparison of target (experimental) data and data modeled via ANN-based models: strain
rate of 0.1 s−1 (a); strain rate of 1 s−1 (b); strain rate of 10 s−1 (c); strain rate of 100 s−1 (d)
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(a) (b)

(c) (d)

Figure 6: Comparison of target (experimental) data and data modeled via other ML-based models:
strain rate of 0.1 s−1 (a); strain rate of 1 s−1 (b); strain rate of 10 s−1 (c); strain rate of 100 s−1 (d)

Table 6 further summarizes an overview of the critical characteristics of individual machine
learning techniques in connection with hot flow stress response modeling.

Table 6: Advantages and disadvantages of individual machine learning techniques

Feature FF-MLP RBNN GRNN SVM DTR GPR

Flow stress level accuracy Very high High Low Very high Very high Very high
Flow curve shape accuracy Very high Low Low High Very low Very high
Time for finding a solution Very long Very short Very short Very short Very short Very short
Complexity of architecture Very high Very low Very low Low Low High
Complexity of algorithms High Very low Very low High High High
Special software required Yes No a No a Yes Yes Yes
Note: ano RBNN and GRNN techniques can be very easily assembled and trained in a basic spreadsheet application.
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5 Conclusions

This research presents the possibilities of various ML techniques, specifically three ANN-based
methods (FF-MLP, RBNN, and GRNN), and SVM, DTR, and GPR approaches when applied
to mathematically describe the evolution of flow stress for steels plastically deformed under hot
conditions. Mutual comparison of the ANNs approaches shows that the FF-MLP regression offers
the most favorable results; the RBNN and GRNN models featuring simpler structures failed in
characterizing the experimental flow stress curves, most probably given by their shape diversity.
Nevertheless, contrary to the RBNN and GRNN, the FF-MLP structure is highly non-linear and
requires longer computing time. The DTR, SVM, and GPR methods also provide more reliable results
than the RBNN and GRNN ones. The flow stress curve shapes calculated by the DTR method are
highly inaccurate, although the predicted flow stress levels are comparable with the experimental
data. Although the mathematical base of the SVM method is comparable to that of RBNN and
GRNN, its higher robustness probably resulted in more reliable results as regards the flow stress curve
shape diversity. The most accurate regression fit is acquired when applying the GPR method, even
though this technique was not employed before to solve such a regression task. Based on the acquired
results, its unique approach is practically unrivaled, and the GPR model can thus be recommended for
handling tasks that deal with descriptions of hot flow stress curves. The accuracy of the GPR model is
followed by the FF-MLP and SVM techniques, the application of which can also be recommended to
solve such regression tasks. Nevertheless, the application of the RBNN, GRNN, and DTR models can
still be considered if keeping the exact shape diversity of the modeled flow stress curves is not strictly
required.
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24. Kocich R, Kunčická L. Crossing the limits of electric conductivity of copper by inducing nan-
otwinning via extreme plastic deformation at cryogenic conditions. Mater Charact. 2024;207:113513.
doi:10.1016/j.matchar.2023.113513.

25. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and
alloys in hot working. Mater Des. 2011;32(4):1733–59. doi:10.1016/j.matdes.2010.11.048.

26. Wang Z, Zhang Y, Liogas K, Chen J, Vaughan GBM, Kocich R, et al. In situ synchrotron X-ray
diffraction analysis of two-way shape memory effect in Nitinol. Mater Sci Eng A. 2023;878:145226.
doi:10.1016/j.msea.2023.145226.
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