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ABSTRACT

In the realm of Intelligent Railway Transportation Systems, effective multi-party collaboration is crucial due to
concerns over privacy and data silos. Vertical Federated Learning (VFL) has emerged as a promising approach
to facilitate such collaboration, allowing diverse entities to collectively enhance machine learning models without
the need to share sensitive training data. However, existing works have highlighted VFL’s susceptibility to privacy
inference attacks, where an honest but curious server could potentially reconstruct a client’s raw data from
embeddings uploaded by the client. This vulnerability poses a significant threat to VFL-based intelligent railway
transportation systems. In this paper, we introduce SensFL, a novel privacy-enhancing method to against privacy
inference attacks in VFL. Specifically, SensFL integrates regularization of the sensitivity of embeddings to the
original data into the model training process, effectively limiting the information contained in shared embeddings.
By reducing the sensitivity of embeddings to the original data, SensFL can effectively resist reverse privacy attacks
and prevent the reconstruction of the original data from the embeddings. Extensive experiments were conducted on
four distinct datasets and three different models to demonstrate the efficacy of SensFL. Experiment results show that
SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning
task. These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based
intelligent railway systems, addressing critical security concerns in collaborative learning environments.
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1 Introduction

In this digital age, various industries and people are extensively utilizing big data and artificial
intelligence to improve their operations [1–4]. Although abundant data offers significant opportunities
for AI applications [5–7], most of this data is inherently highly sensitive and exists in isolation.
Traditional methods fail to effectively address the issues of training models across different locations
and privacy concerns, which means organizations might have to risk data leakage to train models
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[8,9]. Federated learning (FL) has emerged to tackle these issues. FL is a machine learning paradigm
that collaboratively trains machine learning models involving multiple data repositories in a privacy-
preserving manner, and this technology has been applied in multiple fields [10–14]. In Verdict
Federated Learning (VFL), participants have overlapping data samples but differ in the feature space,
which is quite similar to the data distribution in the railway industry. For instance, freight trains
change their cargo at different stations. In addition, FL enables railway companies to grasp real-time
information on trains, facilitating adjustments to train operations and cargo transportation plans [15].

The use of FL in the rail transit field is pervasive [16,17]. For example, FL allows railway
companies to grasp real-time information about trains, which is convenient for adjusting train
operations and cargo transportation plans. Furthermore, FL helps in real-time monitoring of track
health, timely detection of issues such as cracks and deformations, and prediction of potential future
failures, ensuring the safety and stability of railway lines. Sometimes, some information also fits the
data distribution of VFL quite well, such as the replacement of cargo by freight trains at different
stations. The schematic diagram of the scene is shown in Fig. 1.

Figure 1: The structure of VFL in intelligent railway transportation systems

Although VFL has made gratifying progress in utilizing scattered data from different participants,
its distributed nature makes it vulnerable to malicious attacks [18–22]. For example, some honest
but curious servers might launch data reconstruction attacks on clients using the feature embeddings
uploaded by local clients to grasp clients’ private data, which is undoubtedly a massive challenge for
VFL. Differential privacy is a standard defense method against privacy leakage, which mainly reduces
the relationship between the embedding vectors and the original data by adding noise to alleviate
privacy leakage. However, the added noise will inevitably reduce the accuracy of the model’s primary
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task. Therefore, defending against privacy leakage attacks without affecting the utility of VFL is still
a considerable challenge.

In this work, we propose a new privacy-enhancing method. Its main task is to maintain the
accuracy of the model’s main task while resisting privacy theft attacks. Overall, we enhance the model’s
ability to defend against privacy theft attacks by limiting the maximum mutual information between
the embedding vectors and the input samples. This method not only solves some common privacy
leakage issues in the railway industry but also ensures the accuracy of the main task.

We evaluated the effectiveness of our method on four datasets and three models, considering the
impact of different embedding dimensions. The experiments prove that our method effectively resists
privacy inference attacks without sacrificing the accuracy of the main task.

Our research has made the following contributions:

• We have investigated the relationship between sensitivity and data privacy in the VFL and found
that the sensitivity between the embedding vectors and the client’s input information can directly
affect the effectiveness of privacy attacks.

• Based on the above findings, we designed a defense method based on sensitivity regularization.
This method resists privacy inference attacks by limiting the correlation between the embedding
vectors and the sensitive input information. At the same time, this method does not affect the
accuracy of the model’s primary task.

• We conducted a comprehensive experiment and evaluation of the proposed method. The
experimental results show that it can effectively resist privacy inference attacks without affecting
the main task. These findings indicate that this method is essential in promoting the robust
development of privacy protection technology in the railway transportation system.

2 Background
2.1 Federated Learning

FL is a distributed machine learning paradigm. It allows multiple clients, such as mobile devices,
servers, and databases, to co-train a model and ensure data is only stored locally. This method has
significant advantages in data privacy and security because it does not require centralized storage of
data in the cloud or on a single server. Google proposed the FedAvg [23] algorithm in 2016, which is
considered the beginning of FL.

FL can be divided into three categories [24]: Horizontal Federated Learning (HFL), VFL, and
Federated Transfer Learning (FTL). The difference between them lies in how data is divided in the
sample and feature spaces.

• HFL: HFL refers to the situation where participants share the same feature space but have
different data samples. It is the most commonly used FL model. For example, Google has
applied HFL to train language models on mobile devices [23].

• VFL: In VFL, participants have overlapping data samples, but their feature space is different.
For example, Webank [25] uses the VFL to build financial risk models for their enterprise
customers.

• FTL: FTL refers to an FL model where the datasets have differences in both the feature space
and the sample space, with limited overlap. For example, one study [26] suggested that it can run
Anomaly Detection (AD) models on edge devices to ensure the safety of agricultural equipment.
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We now consider an easy FL setting: N clients exist, and each client i has its local dataset Di. w is
the model parameter. In each round of training, the client i uses the gradient descent to update local
model parameters on the local dataset.

w(t+1)

i = w(t) − η∇Li(w(t)) (1)

where the η is learning rate and ∇Li(w(t)) is the gradient of local loss function. Next, the central server
aggregates the model parameters from all clients.

w(t+1) = 1
N

N∑

i=1

w(t+1)

i (2)

The execution of FL can be divided into three stages [27], including Data and Behavior Auditing,
Training, and Predicting. The model faces different security and privacy threats at each phase of FL
execution. Because of the distributed characteristics of FL, it is susceptible to various security threats,
such as poisoning attacks, backdoor attacks, privacy inference attacks, etc. For instance, distributed
backdoor attacks [28] exploit the distributed nature of FL by breaking down the backdoor trigger
into multiple local triggers and embedding them into the training data of different malicious clients. To
enhance the effectiveness of backdoor attacks, Bagdasaryan and others proposed a model replacement
attack [29] that replaces the original global model with a malicious local model designed by the
attacker.

2.2 Privacy Inference Attacks in VFL
In VFL, features are private because they contain sensitive information. Therefore, people have

already proposed various methods used to obtain the features of the data. The attackers can attack
the model at any state, including the training phase and inference phase.

Training phase attacks: In the training phase, the attacker may have more information about the
model and data. Ye et al. [30] proposed a Binary Feature Inference attack (BFI). It can reconstruct
the sensitive binary features from the passive user’s local output, and this research has proven that
under the assumption of binary features, this attack is a Non-deterministic Polynomial-time hard
(NP-hard) problem. Weng et al. [31] proposed two privacy attacks: reverse multiplication attack for
the logistic regression VFL protocol and reverse sum attack for the XGBoost VFL protocol. The
attacker uses encrypted intermediate multiplication results to infer the passive party’s original training
data in a reverse multiplication attack and uses unique. Magic Number to reveal partial sequences
of the passive party’s features. Jin et al. [32] extended gradient inversion to the white-box VFL, and
they proposed Catastrophic Data Leakage in Vertical Federated Learning (CAFE), which exploits the
shared aggregated gradients in VFL to recover batch data efficiently. Compared to traditional data
leakage attacks, CAFE demonstrates higher efficiency and recovery quality when handling large-scale
data recovery.

Inference phase attacks: Luo et al. [33] proposed three feature inference attacks: Equality Solving
Attack (ESA), Path Restriction Attack (PRA), and Generative Regression Network (GRN) to attack
logistic regression, decision tree, and neural network. When the number of the passive party’s features
is small, the feature values of the passive party can be accurately inferred by using ESA. In PRA, the
attacker can restrict the path in the decision tree to infer the passive party’s features. GRN infers the
private features by analyzing the model’s prediction outputs. He et al. [34] proposed a black-box model
inversion attack, it can learn the passive party’s features by training a shadow model to mimic the local
model using auxiliary data in SplintNN.
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2.3 Defense against Privacy Inference Attacks in VFL
In response to these attacks, researchers have proposed a variety of defense mechanisms aimed

at protecting privacy and security in VFL. Mostly, the defense strategies can be classified based on
whether cryptographic encryption is used.

Cryptographic defense: These strategies employ secure computation methods to evaluate the
functions of multiple participants while exposing only the necessary information to the intended
parties to prevent potential attackers from inferring private data [35–37]. Hardy et al. [38] proposed
HardyLR, which is a privacy-preserving FL method on vertically partitioned data based on entity
resolution and homomorphic encryption (HE). Secure Logistic Regression for Vertical Federated
Learning (SecureLR) [39] is HardyLR’s follow-up work, it removes the coordinator from the training
and inference procedure by relaxing either the efficiency or privacy constraint. SecureBoost [40] trains
a high-quality tree-boosted model (XGBoost) for each party and exploits additive HE to maintain the
confidentiality of the training data among multiple parties. Chamani et al. [41] found the weakness
in SecureBoost and proposed a leakage-abuse attack based on its leakage profile. This research also
proposed two countermeasures based on a Trusted Execution Environment (TEE) to mitigate feature
leakage.

Non-cryptographic defense: In essence, non-cryptographic defense methods reduce the corre-
lation between private data and leaked data, for example, adding noise, differential privacy [42]
and knowledge distillation [43]. A hybrid differentially private VFL methods [44] was proposed
to ensure the data confidentiality of VFL participants. This strategy adds Gaussian noise to all
parties’ intermediate results. Dryden et al. [45] proposed Gradient Discretization (GD), which explores
quantizing gradient updates before communication, encoding originally continuous gradients into
discrete ones to reduce the leakage of private information. Gradient Sparsification (GS) [46] indicates
that most of the gradient updates are close to zero, so setting the original gradients with smaller
absolute values to zero and exchanging them with a sparse matrix can alleviate privacy leakage without
affecting the convergence of the original VFL task. Beyond the common defense methods that detect
suspicious local gradients based on plaintext, some approaches have also been proposed that can resist
poisoning attacks without sacrificing accuracy [47]. In the field of Intelligent Transportation and Next
Generation Internet-of-Things (NG-IoT), individual equipment has become computing platforms,
which also brings the risk of privacy leakage. Yazdinejad’s research [48] also proposes a hybrid privacy-
preserving federated model based on a combination of synchronous and asynchronous methods, which
improves issues related to user dropout and low-quality data.

3 Problem Setup
3.1 Vertical Federated Learning

The core idea of VFL is the vertical partitioning of data, where each participant possesses different
dimensions or features of the data but shares the same data subjects [33]. We now consider a classical
VFL setting: there are N clients and a central server S collaboratively trains a VFL model with
parameters θ on a dataset D = {(xj, yj)}M

j=1 with M samples, x ∈ RP. Each training data x is split
by N unique and distinct subset for all clients, i.e., x = {x1, x2, · · · , xN}. Each client trains its bottom
model fBi to extract high-level feature embeddings for local data, i.e., ei = fBi(xi), e ∈ RK . Then, the
generated feature embeddings ei will be sent to the server. The server concatenate the embeddings
ecat = Concat[e1, e2, · · · , eN] and ground-truth labels y to train a top model FT . Therefore, the training
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of VFL is formulated as follows:

min
θ

E(x,y)∈D[�main(x, y; θ)], (3)

where the θ is the collection of all bottom model and top model parameters, i.e.,
θ = {θB1

, θB2
, · · · , θBN

, θT}. The �main is the loss function and it can be represented as:

�main(FT(Concat(fB1
(x1), fB2

(x2), . . . , fBN
(xN)), y; θ) (4)

The server needs to update the top model by optimizing the objective function Eq. (3). After
updating, it will dispatch the gradients of this function relative to the feature embeddings of each
local client to themselves. Every client receives these gradients and utilizes them to perform backprop-
agation, updating their local bottom models.

3.2 Privacy Inference Attack
The goal of the privacy attack [32] is to divulge some private training pieces of information

about the clients and their bottom models. In this paper, we attempt to reconstruct the data within
the image dataset and infer the features of the tabular data. Because the structures and attributes
of these two types of data are different, we need to use different processing methods to perform
attacks. When the dataset is images, the features can be some compositional information, such as
pixel values and channel count, etc. We consider using the Data Reconstruction (DR) attack, and
the attackers need to obtain various features of the images to reconstruct the content of the original
images. However, since the server does not come into direct contact with the bottom model, it cannot
obtain the corresponding model knowledge. Therefore, before conducting DR, Model Stealing (MS)
should be used first to learn a surrogate model that can be used to replace the original true bottom
model. In attacks targeting tables, the main purpose is to capture the correlations between the feature
embeddings and corresponding target property values. Therefore, attackers need to use auxiliary data
to mock the corresponding and infer real data’s features [33].

3.2.1 Attacks to Image Data

In this attack method, the attacker first needs to clone the client’s bottom model to obtain the
corresponding feature embeddings. More specifically, we use xaux to denote the auxiliary data created
by the attacker, the target bottom model fBt will generate the embeddings of xaux and denote it as
fBt(x

aux). The surrogate model f̂Bt with its parameters ω̂Bt can be trained by minimizing the loss function
�MS between it and bottom model. The process can be represented as:

arg min
ω̂B

�MS(f̂Bt(x
aux; ω̂B), fBt(x

aux)) (5)

By optimizing Eq. (5), if the attacker has the same input as clients, the surrogate model f̂Bt can
produce approximately the same embeddings as the true bottom model fBt .

After learning the surrogate model, the goal of the attack is to find an estimate of the features of
the target training data. The attacker first obtains the feature embedding of the surrogate model and
then optimizes the embedding results to approach the embedding results of the true bottom model.
Afterward, through reverse optimization, an attempt is made to recover the real data features. Given a
random piece of noise x̂t, surrogate model f̂Bt can output its specific feature embedding results f̂Bt(x̂t).
Similarly, the true bottom model fBt will also output its corresponding feature embedding fBt(xt) when
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the input is true data xt. This task can be represented as follows:

arg min
x̂t

�DR(f̂Bt(x̂t), fBt(xt)) (6)

where �DR is the Mean Squared Error (MSE)-based loss function of the embedding matching function.
The logic behind executing this optimization function is: by performing feature embedding matching
optimization, f̂Bt(x̂t) can be made to approximate fBt(xt). The attacker can then derive the hidden
feature information from xt, successfully achieving the goal of stealing private information.

3.2.2 Attacks to Tabular Data

Privacy inference attacks on tabular data are equally serious, as some studies have shown that
racial prediction models can be misused to predict gender [49], posing a serious threat to privacy. The
core idea of this kind of attack on tabular data is to capture the correlation between feature embeddings
and the corresponding target attribute values and we can call it the feature inference attacks [32]. It
can be defined as a multi-class classifier, with each unique attribute category having a class label.
Specifically, during the training phase, the attacker first records the feature embeddings of the target
data, and during the inference phase, the attacker introduces an auxiliary dataset xaux and continuously
queries the original true bottom model fBt to obtain its attribute embeddings. Subsequently, let the Sp =
(S1, S2, . . . , Sp) denotes the corresponding p features. The attacker uses different attribute embedding
values C and the corresponding target attribute values to train a classifier fCp to infer the attributes of
any training data [30]. The task can be represented as:

arg min
ωCp

�Cp(fCp(fBt(x
aux); ωCp), Sp) (7)

where �Cp is the cross-entropy loss and ωCp is the parameter of classifier. After getting the fCp , attackers
can infer the features of the target data in the training set.

3.3 Defense Goals, Knowledge and Capability
In this section, we will introduce the defense goals, knowledge, and capabilities of our defense

method in railway information systems.

Defense goals: The goal of this paper is to design a defense mechanism against privacy inference
attacks. In specific terms, the client has added an appropriate regularization term to its embedding,
making its sensitivity to the original data as minimal as possible. This defense method should satisfy
the two following goals:

• Effectiveness: To defend against privacy leaks, the embedding of local data at the bottom model
should be designed to minimize the inclusion of original sensitive information in the embedding
results as much as possible.

• Fidelity: To avoid affecting the main task performance, the regularization coefficient should be
appropriately selected based on performance feedback.

Defense knowledge and capability: For the clients, they want to prevent their local sensitive
information from being leaked. Clients can control their own features and the embedding from their
bottom model. Before uploading, add a regularization term to minimize the amount of original data
in the embedding as much as possible.
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4 SensFL

In this section, we introduce the privacy inference attacks that are currently being faced and the
necessity to defend against them. Based on this, we propose a sensitivity regularization protection
strategy SensFL, and present detailed computational methods to illustrate how to implement the
defense way.

4.1 Motivation
As introduced in Section 3, attackers conduct privacy inference attacks using the feature embed-

ding vectors uploaded by clients to the local bottom model. This is because these embedding vectors
are mappings of the local original data and contain a wealth of information. Privacy inference attacks
have become a serious threat, where attackers analyze publicly or semi-publicly available datasets
to deduce undisclosed sensitive information within the datasets. Defending against privacy inference
attacks is crucial, as it relates not only to the protection of individual privacy but also to the security
and trustworthiness of data. Although there are many methods currently available to address privacy
inference attacks, achieving a balance between privacy protection and model performance remains
challenging. Our goal is to discover an efficient defense method that does not affect the accuracy of
the main task.

The defense method introduced in this paper is designed to reduce the amount of original data
information contained in the embedded vectors, and a low sensitivity will significantly increase the
difficulty for attackers to reconstruct the data, thereby preventing the original data from being attacked
and ensuring the regular progress of VFL training. As shown in Fig. 2, the normal VFL process
involves optimizing the bottom and top models by comparing the predicted labels from the top model
with the true labels. However, attackers might exploit the embedding vectors of the bottom model to
steal sensitive information. Therefore, we have added a regularization term when updating the bottom
model using the embedding vectors and the original data, in order to enhance privacy.

Figure 2: Overview of the defense method
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Algorithm 1: Algorithm of SensFL
Require: Model parameters of top model θtop and bottom models θ1, θ2, · · · , θN, local data of clients
x1, x2, · · · , xN, learning rate η, ground truth label y.
Server:

Initialize θtop and θ1, θ2, · · · , θN

for each training round do
for n = 1 to N do

en ← fBn(xn)

end for
etop ← FT(e1, e2, · · · , eN; θtop)

L ← LossFunction(etop, y)

gtop ← ∂L

∂θtop

θtop ← θtop − η · gtop

for n = 1 to N do
Jn = || ∂en

∂xn

||2

gn ← gn · ∂en

∂θn

+ ∂(ε ∗ Jn)

∂θn
θn ← θn − η · gn

end for
end for

4.2 Overview of SensFL
In privacy inference attacks, the mutual information between the original data and the embedded

information is often exploited. Inspired by this, we propose SensFL, whose core idea is to reduce
the sensitivity between sensitive information and embeddings as much as possible without affecting
the main task. Specifically, this method effectively reduces the sensitivity of feature embeddings to the
original data by introducing the L2 norm of the Jacobian matrix during the optimization process. Not
only does this approach enhance the privacy security of the model, but experiments have also shown
that it can ensure that the model’s performance on the main task is not significantly affected. The
defense method is shown in Fig. 2 and the algorithm is illustrated in Algorithm 1.

To achieve the effectiveness and fidelity goals set in Section 3.3, SensFL considers the follow-
ing scenarios: there are N clients have their own input x = {x1, x2, · · · , xN} and bottom model
{fB1

, fB2
, · · · , fBN

}, the bottom model is parameterized by θ . Each clinet respectively have the local
embeddings en and it can be represented as en = fBn(xn). The information about x in e should be
as minimal as possible, so the loss function should be:

� = �main + ε · J (8)

where the �main is the loss of the main task, and the J is the L2 norm of the Jacobian matrix for
each feature embedding concerning the original data. J can be seen as the sensitivity of the feature
embedding vectors for the original data. ε is the coefficient of J, primarily used to control the
magnitude of the added regularization term. For each client n, the Jn for xn and en can be calculated
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as the Eq. (9).

Jn =
∣∣∣∣
∣∣∣∣
∂en

∂xn

∣∣∣∣
∣∣∣∣

2

(9)

To better evaluate SensFL and gain a deeper understanding of its practical applicability in real-
world scenarios, we have considered its computational complexity. The core of SensFL calculates the
Jacobian matrix for feature embedding e ∈ RK with data x ∈ RP, so the complexity is O(K × P), K
and P are the dimensions of e and x.

In summary, our defense method involves calculating the derivative of the sensitivity Jn, which is
issued by the clients to the local bottom model parameters during backpropagation, and adding it to
the regular backpropagation updates to incorporate regularization into the model. By computing the
sensitivity gradient, clients can continuously update their local models and minimize the sensitivity,
thereby finding the minimum defense cost.

5 Empirical Evaluation
5.1 Experimental Setup

Datasets: We used four datasets in our experiment: UTKFace, CelebA, Credit, and Bank
Marketing. UTKFace and CelebA feature 32 × 32 pixel RGB images, Credit and Bank Marketing
is tabular datasets.

Models: For the image datasets UTKFace and CelebA, we constructed the target bottom models
based on the residual network structure. Residual networks are widely recognized for their ability
to mitigate the vanishing gradient problem in deep networks. We designed three models of varying
complexities, each with 1, 2, and 3 residual blocks, to explore the impact of model complexity on
privacy protection and primary task performance. The embedding vectors outputted by these bottom
models were fed into a four-layer fully connected neural network (FCNN) as the top model. For the
tabular datasets Credit and Bank Marketing, we defined the top model as a nonlinear, fully connected
network, while the bottom model was constructed with fully connected layers of four different depths.
We selected four different network depths to build the bottom models to assess the impact of network
depth on feature extraction capabilities. For simplicity and clarity in our presentation, we refer to these
three distinct deep target models as M1, M2, and M3. For the image datasets, we set the embedding
dimensions to 1000, and for the tabular datasets, to 200. These dimensions were chosen based on
their effectiveness demonstrated in previous related research, as well as considering the computational
efficiency of the models. During training, we employed mini-batches of size 128 and utilized the
cross-entropy loss function to optimize the model’s classification performance. We chose the Adam
optimizer as our optimization protocol with a learning rate of 1e−4, due to its efficiency and robustness
shown across a variety of tasks. In terms of the selection of the regularization coefficient, we based
our decisions on empirical experimental results. For the image datasets, we set ε ∈ 0.1, as experiments
revealed that this coefficient effectively balances privacy protection with model performance. For the
tabular datasets, we set ε ∈ 0.01, taking into account the intrinsic characteristics of tabular data and
the higher demand for privacy protection.

In our VFL setup, we consider two clients interacting with one server. It is worth noting that our
method focuses on reducing the sensitivity between the embeddings and the original data. Each benign
client only needs to be concerned with its own sensitivity, so this defense method is independent of the
number of clients. However, to assess the impact of different clients on the experimental results, we
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conducted validation experiments with three clients for the image dataset. In the experiments across
the three clients, we set ε ∈ 1 and the noise scale to 0.01.

Metrics: For the main task of the VFL experiment, we adopt the standard classification metric
accuracy (ACC) as the metric. For the DR attack and the corresponding defense methods, we use
different metrics to evaluate the result. When the datasets are images, we adopt the Mean Square
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM)
as evaluation metrics. For tabular datasets, we use Accuracy (ACC), F1 Score, Precision, and Recall
as evaluation metrics. This is because metrics such as MSE, PSNR, and SSIM focus on quantifying
image quality, reflecting the visual effect and structural similarity from different perspectives, which is
crucial for image reconstruction and detecting the effectiveness of defense methods. For tabular data,
metrics like ACC, F1 Score, Precision, and Recall are used for assessing the quality of reconstructed
tubular attributes. The inference of table attributes can be regarded as a classification task, hence we
select standard classification metrics. This is consistent with ML-Doctor [49].

Baseline Methods: We use Differentially-Private Stochastic Gradient Descent (DP-SGD) as our
baseline defense method to compare with our approach.

As for the DP, It is a robust statistical method designed to provide privacy protection when
querying statistical databases [50]. The core concept of DP is to ensure that for any two adjacent
datasets D and D′ (which differ by only one record), the output distributions M(D) and M(D′) of
any algorithm M run on the datasets are statistically indistinguishable. An algorithm M satisfies ϕ-
differential privacy if for all output sets S:

Pr[M(D) ∈ Q] ≤ eϕ · Pr[M(D′) ∈ Q] (10)

ϕ is the privacy parameter which quantifies the level of privacy protection, this inequality ensures
that the probability of the algorithm output being in a particular set Q does not change significantly
when switching between the neighboring datasets D and D′.

DP-SGD is one of the most representative DP mechanisms for protecting ML models. Generally
speaking, DP-SGD adds Gaussian noise to the gradient g during the training process of the target ML
model.

g̃ = g + N
(
0, 
2

gσ
2I

)
(11)

N
(
0, 
2

gσ
2I

)
denotes a multi-dimensional random variable sampled from the normal distribution

with mean 0 and standard deviation 
gσ . The 
g is the sensitivity of g, and it can not be computed
directly because there is no prior knowledge to determine the influence of a single training sample on
the gradient g. In DP-SGD, it trims g to g/max{1, ||g||2/C} to limit the 2-norm of the gradient to C.
When ||g||2 ≤ C, retain g; otherwise, scale down proportionally to the norm of C.

We also identified some newer defensive methods [51,52], but they still have some limitations.
For example, some study [51] used RÃ©nyi differential privacy to provide a tighter privacy analysis
for the composite Gaussian mechanism, but the price of improving efficiency is the loss of utility.
However, our study focuses on discussing the fidelity and effectiveness of defense strategies. Therefore,
our method has an advantage while ensuring utility. In some other studies [52], the focus is on the field
of text dataset, which does not apply to the scenarios we are discussing.
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5.2 The Effectiveness of SensFL
To assess our defense method, we evaluate it using all the datasets and models mentioned above

and compare it with the standard defense strategy DPSGD. We present the experimental results for
the image dataset and tabular dataset in Tables 1 and 2. In these tables, we denote the results without
using any defense methods as ‘clean’ and set the DPSGD defense’s noise scale to 0.1 and 0.01, denoting
‘n−0.1’ and ‘n−0.01’. In Table 2, S1 and S2 represent the two data attributes we selected for the
experiment.

Table 1: Performance comparison for privacy inference attacks under clean, DPSGD and our method
of UTKFace and CelebA

Dataset Defense M1 M2 M3

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

UTKFace Clean 3.18e−3 29.81 0.94 4.18e−3 28.43 0.94 1.21e−2 24.05 0.87
n−0.1 4.87e−3 28.11 0.88 3.42e−3 30.45 0.93 1.33e−2 24.18 0.81
n−0.01 4.58e−3 28.32 0.90 4.05e−3 29.73 0.93 1.34e−2 24.42 0.85
Our 4.37e−2 16.19 0.34 4.93e−2 15.37 0.31 5.26e−2 14.88 0.29

CelebA Clean 3.51e−3 29.28 0.94 3.89e−3 27.31 0.92 2.18e−2 21.58 0.79
n−0.1 4.97e−3 28.81 0.91 4.84e−3 28.26 0.90 2.77e−3 31.19 0.94
n−0.01 3.18e−3 30.74 0.94 1.24e−2 24.71 0.81 1.03e−2 24.42 0.81
Our 6.37e−2 15.31 0.14 7.03e−2 14.42 0.15 5.16e−2 15.31 0.15

Table 2: Performance comparison of privacy inference attacks on different features under the clean,
DBSGD, and our method in credit and bank marketing

(a) Credit
Feature Defense M1 M2 M3

ACC F1 Precision Recall ACC F1 Precision Recall ACC F1 Precision Recall
S1 Clean 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.96 0.97

n−0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00
n−0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00
Our 0.73 0.72 0.72 0.71 0.68 0.68 0.67 0.68 0.82 0.81 0.81 0.81

S2 Clean 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.95 0.90 1.00 1.00
n−0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n−0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Our 0.62 0.52 0.69 0.51 0.58 0.47 0.55 0.47 0.84 0.47 0.46 0.46

(Continued)
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Table 2 (continued)

(b) Bank marketing
Feature Defense M1 M2 M3

ACC F1 Precision Recall ACC F1 Precision Recall ACC F1 Precision Recall
S1 Clean 0.99 0.99 0.99 0.99 0.98 0.96 0.98 0.94 0.95 0.90 0.96 0.85

n−0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
n−0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Our 0.87 0.67 0.72 0.71 0.85 0.46 0.67 0.68 0.84 0.47 0.81 0.81

S2 Clean 0.97 0.76 0.83 0.75 0.96 0.69 0.82 0.71 0.78 0.54 0.53 0.55
n−0.1 0.98 0.81 0.84 0.79 0.98 0.81 0.84 0.78 0.98 0.81 0.84 0.79
n−0.01 0.98 0.80 0.84331 0.785 0.97 0.81 0.83 0.79 0.97 0.80 0.83 0.78
Our 0.57 0.36 0.69 0.51 0.52 0.30 0.55 0.47 0.35 0.14 0.46 0.46

5.3 The Fidelity of SensFL
Observing the results in Tables 1 and 2, we can draw the following conclusions. First, in the absence

of effective defense methods, the more complex the bottom models, the better their defensive capability
against DR attack. For example, in CelebA, the SSIM of the complex model (M3) is 0.79, which is
lower than that of the simple model (M1) at 0.94. For the Credit dataset, the F1 of attribute S2 in M3
is 0.90, but it is 1 in M1. This result indicates that simpler models possess a more direct functional
mapping from private features to the generated feature embeddings, which implies that attackers can
more easily reconstruct the data by matching feature embeddings.

Second, the experiment demonstrates that using DPSGD to defend against DR attacks in VFL
is ineffective. The reason for this phenomenon is that adding noise to the gradients does not change
the relationship between the local private data and its embedding vectors, their connection remains
unbroken and fixed. Therefore, attackers can still exploit the embedding vectors for DR attacks.
But Sometimes experiments may reveal an interesting phenomenon, where the effect of DR attacks
improves after the application of DPSGD. This could be due to the introduction of DPSGD increasing
the deviation between the clusters, promoting the classifier to be more generalizable.

Third, our defense method possesses strong cross-model and cross-data defense capabilities. For
instance, after employing our defense method, even in the simplest model M1, the SSIM of the results
reconstructed from a DR attack on the UTKFace dataset is only 0.34, and in the more complex
model M3, it is only 0.29, significantly lower than the situation without added defense measures.
In the tabular dataset Credit and M1, the F1 metric for the attribute S2 has dropped to 0.52, and
in M3, it has decreased to 0.46. We believe that this defensive capability is due to the regularization
term we added, which restricts the embedding vectors from containing features of the original data,
significantly increasing the difficulty for attackers to perform reverse engineering.

To test the fidelity of our defense methods on the primary task, we conducted experiments using
all the datasets and models mentioned above. We adopted the same experimental setup as in the test
for effectiveness, marking the model without defense as ‘Clean’ and the models with noise ratios of 0.1
and 0.01 in DPSGD as ‘n−0.1’ and ‘n−0.01’, respectively.
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As the results in the Fig. 3 show, our defense method hardly affects the ACC of the primary
task. For example, after applying SensFL, the drop of the main task’s ACC is controlled within 0.05.
An interesting phenomenon is that when applied to the Credit dataset, the ACC increased slightly.
Upon analysis, the reason for this phenomenon may be that the addition of regularization is quite
common in the training of machine learning models. It is not only an effective method to prevent
model overfitting but also a suitable regularization term that can limit the complexity of the model,
thereby improving the model’s generalization on different datasets. In contrast, although DPSGD
provides privacy protection, it leads to a decrease in the ACC of the main task. For instance, when
training on the CelebA dataset with model M1, the ACC without any defense is around 0.85. However,
after applying the DPSGD defense method with coefficients of 0.1 and 0.01, the ACC dropped to
approximately 0.50 and 0.70, respectively.

Figure 3: The main task ACC of VFL model with/without defense mechanisms

This may be because the noise introduced interferes with the model’s learning process, preventing
it from accurately capturing the information in the data.

5.4 The Impact of Different Embedding Dimensions
Embedding dimensions can affect the information encapsulated in the data, which in turn can

impact the effectiveness of defenses. To explore this impact, we conducted tests on the aforementioned
datasets and models. In UTKFace and CelebA, we set the embedding dimensions to 500, 800, and
1000 while using MSE, PSNR, and SSIM as evaluation metrics. In Credit and Bank Marketing, the
embedding dimensions were set to 100, 150, and 200, and evaluations were conducted using ACC, F1,
Precision and Recall. Through observation of the results shown in Figs. 4 and 5, we have drawn the
following conclusions. First, simply modifying the dimensions does not effectively mitigate the DR
attack and can only have a minor impact on the model. This may be because changing the embedding
dimensions affects the complexity of the underlying model, which not only may not mitigate the attack
but could even inadvertently exacerbate the attack when the complexity is reduced. Second, whether
in the image or tabular datasets, our defense method has demonstrated strong defensive capabilities
against DR attacks, and this defensive capability is not strongly related to the embedding dimensions.
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Figure 4: Attack performance under different dimensions of VFL embedding with/without defense in
image dataset

Figure 5: (Continued)
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Figure 5: Attack performance under different dimensions of VFL embedding with/without defense in
tabular dataset

5.5 The Impact of Different Numbers of Clients
If the number of clients increases, the data characteristics available to each client will correspond-

ingly decrease. This may lead to attributes concentrating around the same patterns, thereby affecting
the relationship between the original data and this feature, which in turn may impact both the primary
and attack tasks. To conduct a general assessment, we compared the performance of the primary and
attack tasks when there were two and three clients. Our evaluation results are presented in Table 3,
showing the changes in ACC for the main task and the privacy inference attack evaluation metric
when the number of clients is 2 and 3.

Table 3: Performance comparison of the main task ACC and privacy inference attack under different
numbers of clients

Dataset Client numbers Main task Attack performence

ACC PSNR MSE SSIM

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

UTKFace 2 0.80 0.79 0.76 16.19 15.37 14.88 4.37e−2 4.93e−2 5.26e−2 0.34 0.31 0.29
3 0.77 0.78 0.78 17.74 17.32 17.03 4.33e−2 4.31e−2 3.89e−2 0.45 0.42 0.52

CelebA 2 0.85 0.86 0.88 15.31 14.42 15.31 6.37e−2 7.03e−2 5.16e−2 0.14 0.15 0.15
3 0.88 0.89 0.87 15.29 13.44 16.52 7.70e−2 9.62e−2 5.91e−2 0.24 0.17 0.33

As shown in the Table 3, the accuracy of the main task remains almost unchanged when the
number of clients increases. This is because although each client gets fewer features, the total number
of features remains the same, so the impact on the primary task accuracy is minimal. For example, in
the case of 3 clients, when the dataset is Celeba, the main task ACC for M1, M2, and M3 are 0.88,
0.89, and 0.87, respectively, which are negligible compared to the case with 2 clients.

At the same time, as we expected, the effectiveness of the defense has slightly decreased. This is
because when the features of the clients become fewer, the relationship between the original data and
the embedding becomes weaker, so the defense effect is slightly worse, but the defense is still successful.
For example, in the case of 3 clients, when the dataset is UTKFace, the SSIM values for M1 and M2
are 0.45 and 0.42, respectively, indicating that we have successfully conducted the defense.
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6 Conclusion

In this work, we propose a privacy-enhancing method based on sensitivity regularization, which
can defend against privacy inference attacks in the VFL model. The main principle is to reduce
the connection between the embedding vectors and the input data while retaining the necessary
information about the target labels. We tested our method on four datasets and three models,
confirming that it can achieve defensive effects without affecting the accuracy of the main task.
These results demonstrate its potential to protect sensitive information in the field of Intelligent
Railway Transportation Systems, providing support for the advancement of related privacy protection
technologies.

Notably, SensFL is not without limitations. The fundamental mechanism of SensFL hinges on
the computation of the Jacobian matrix during training to regulate sensitivity. Although this is crucial
for mitigating information leakage, it introduces moderate computational overhead, particularly for
high-dimensional datasets or large-scale models.
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