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ABSTRACT

This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand, India,
using advanced ensemble models that combined Radial Basis Function Networks (RBFN) with three ensemble
learning techniques: DAGGING (DG), MULTIBOOST (MB), and ADABOOST (AB). This combination resulted
in three distinct ensemble models: DG-RBFN, MB-RBFN, and AB-RBFN. Additionally, a traditional weighted
method, Information Value (IV), and a benchmark machine learning (ML) model, Multilayer Perceptron Neural
Network (MLP), were employed for comparison and validation. The models were developed using ten landslide
conditioning factors, which included slope, aspect, elevation, curvature, land cover, geomorphology, overburden
depth, lithology, distance to rivers and distance to roads. These factors were instrumental in predicting the output
variable, which was the probability of landslide occurrence. Statistical analysis of the models’ performance indicated
that the DG-RBFN model, with an Area Under ROC Curve (AUC) of 0.931, outperformed the other models. The
AB-RBFN model achieved an AUC of 0.929, the MB-RBFN model had an AUC of 0.913, and the MLP model
recorded an AUC of 0.926. These results suggest that the advanced ensemble ML model DG-RBFN was more
accurate than traditional statistical model, single MLP model, and other ensemble models in preparing trustworthy
landslide susceptibility maps, thereby enhancing land use planning and decision-making.
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1 Introduction

Landslides are a significant natural hazard, causing substantial loss of life and property in
the affected areas. The United Nations Office for Disaster Risk Reduction (UNDRR) reports that
landslides are responsible for an average of 25,000 deaths per year globally [1]. The majority of
these deaths occur in developing countries, where infrastructure and emergency response systems
may be less developed. In addition to the loss of life, landslides also cause significant economic and
social disruption, leaving many people homeless and destroying livelihoods, leading to long-term
consequences. Data from the Centre for Research on the Epidemiology of Disasters (CRED) shows
that during 2000–2019, disaster types that includes landslides were responsible for 42,564 deaths,
approximately 3% of total deaths from natural hazards over this period [2].

Mapping areas susceptible to landslides is a primary step in managing and reducing landslide-
related damages through proper land use planning and decision making [3]. Landslide susceptibility
mapping identifies areas likely to experience landslide occurrences in the future. To obtain accurate
and reliable maps of landslide susceptibilities, Machine Learning (ML) based models are recognized as
better quantitative techniques than traditional weighted methods and expert opinion-based techniques
[4]. These models use algorithms and statistical techniques to analyze spatial relationship between
landslide-affecting factors and historical landslide occurrences in a certain area, allowing for the
prediction of landslide likelihood in new or unobserved areas. Many ML-based models, such as
Random Forest (RF) [5], Support Vector Machines (SVM) [6], Support Vector Regression (SVR) [7],
Artificial Neural Networks (ANN) [8], Decision Trees [9], Adaptive Neuro-Fuzzy Inference System
(ANFIS) [10], and Group Method of Data Handling (GMDH) [11] have been effectively applied
in various landslide-prone areas worldwide. These ML models have generally shown superior and
promising results in landslide susceptibility mapping.

Over the past years, advanced ML models have been developed and applied for landslide suscepti-
bility mapping, including various ensemble models [12]. Ensemble models combine multiple individual
models or classifiers to generate more reliable and accurate predictions of landslide susceptibility. In
literature, Di Napoli et al. [13] presented a novel approach which was the ensemble of generalized
boosting, ANN, and maximum entropy for mapping landslide susceptibility in the Monterosso
al Mare area, Italy, and stated that the novel ensemble approach received an improved reliability
compared with single models. Hong et al. [14] developed two novel ensemble ML namely LADT-
Bagging and FPA-Bagging which were combinations of Bagging and two single classifiers such as
LogitBoost alternating decision trees (LADT) and Forest by Penalizing Attributes (FPA), and stated
that the developed ensemble models are promising tools for modeling landslide susceptibility in the
Youfanggou district (China). Pham et al. [15] integrated Reduced Error Pruning Tree (REPT) with
the Bagging, Decorate, and Random Subspace ensemble learning techniques for predicting rainfall-
induced landslides in the Uttarkashi district of India. Lv et al. [16] assessed landslide susceptibility
mapping using four Heterogeneous Ensemble Learning (HEL) models with different ML models
such as Convolutional Neural Network (CNN), Deep Belief Network (DBN), and deep Residual
Network (ResNet) at the Three Gorges Reservoir area, China, and stated that the HEL-based
models showed better stability compared with single ML models as they can avoid the overfitting
problems. Bien et al. [17] developed and compared four ensemble models which were combinations
of three optimization techniques such as Bagging, Decorate, and Random Subspace and a single
classifier namely Fuzzy Unordered Rules Induction Algorithm (FURIA) for landslide susceptibility
mapping at Lai Chau Province (Vietnam), and stated that these four proposed models are better
than single models such as FURIA and SVM. Teke et al. [9] employed the J48 decision tree in
conjunction with AdaBoost, Bagging, and Rotation Forest methods to classify landslide susceptibility
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in China. Saha et al. [18] combined RF with Bagging, Rotation Forest, and Random Subspace
techniques. Tran et al. [19] utilized the Hyperpipes algorithm to develop five novel ensemble models
that integrate the Hyperpipes algorithm with various ensemble techniques, including AdaBoost,
Bagging, Dagging, Decorate, and Real AdaBoost for mapping the spatial variability of landslide
susceptibility in Ha Giang Province, Vietnam. Pham et al. [20] developed three ensemble predictive
models aimed at predicting landslide susceptibility in the Dien Bien Province, Vietnam, combining
Multiclass Alternating Decision Trees method with Dagging, MultiboostAB, and Random Subspace
ensemble learning techniques. Hong [21] merged the Best First Decision Tree with Bagging, Cascade
generalization, Decorate, MultiboostAB, and Random SubSpace for landslide susceptibility mapping.
Le Minh et al. [22] combined Dagging, Bagging, and Decorate ensemble techniques with a Radial Basis
Function Network (RBFN) to predict landslide susceptibility in the Cao Bang Province, Vietnam.
In general, the studies mentioned demonstrate the significant potential of ensemble ML models to
enhance the effectiveness of landslide susceptibility assessments, while also indicating room for further
improvement [23–26].

In this study, our primary goal is to enhance the performance of landslide susceptibility modeling
by developing innovative ensemble ML models. These models, known as DG-RBFN, MB-RBFN, and
AB-RBFN, combine RBFN with various ensemble techniques such as DAGGING, MULTIBOOST,
and ADABOOST. By utilizing these novel approaches, we aim to improve the accuracy and reliability
of landslide predictions. The key novelty of this study lies in developing and applying these ensemble
models for assessing landslide susceptibility in the Pithoragarh area of Uttarakhand, India. This is
the first time these ensemble models have been employed for this purpose. The models were validated
and compared using several standard metrics, including the area under the ROC curve. Additionally,
a traditional weighted method, the Information Value (IV) Model, and a benchmark ML model, the
Multilayer Perceptron Neural Network (MLP), were used for comparison and validation. Weka and
ArcGIS were utilized for modeling and mapping in this study.

2 Material and Methods
2.1 Description of the Study Area

The study area is located in the Pithoragarh district of Uttarakhand, India, which regularly
experiences landslides of varying scales. The study area is situated between latitudes 29°30′00′′N to
30°00′00′′N and longitudes 80°00′00′′E to 80°30′00′′E (Fig. 1). The Pithoragarh district is a hilly terrain
region with several high peaks reaching heights up to approximately 4200 m. In the northeast region,
slopes and cliffs are ranging from high to moderate altitudes. The southeast area consists of moderately
dissected rugged hills with a number of low terraces and high slopes at the foot of the mountains.
The northwest part features hills characterized by valley walls from high to average slopes along
the tributary Goriganga River. The southeast corner of the study area is laden with thick alluvium
brought by the Rauntis Gad River, mixed with hillslope processes and transported debris. There
are several tectonic structures, some active and some dormant, passing through or around the area,
including the Berinag thrust, Ramgarh thrust, Almora thrust, North Almora thrust (NAT), South
Almora Thrust (SAT), and numerous other faults. The main drainage system in the Goriganga River
basin is characterized by fluvial terraces, mostly along the right bank of the stream, while the left
bank features steep valley walls for a considerable stretch of the channel. From south to north, the
study area reveals the rocks of the Almora group and Garhwal groups. The Garhwal group rocks
comprise granitoids embedded with Chipkot and Askot group rocks. Shale, slate, phyllite (a variation
of shale), quartz, dolomite (a carbonate sedimentary rock), limestone, magnesite, calcareous stone, and
metavolcanics (rocks created by volcanic activity) are found in the Garhwal group. Pithoragarh district
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experiences a wide range of temperature variations due to altitudinal differences. Temperatures rise
from mid-March to mid-June. High-altitude areas above approximately 3500 m (11,500 feet) always
remain under permanent snow cover. In places like River Gorge Dharchula, Jhulaghat, Ghat, and
Sera, temperatures can reach up to 40°C (104°F). The mean annual rainfall in the downstream area is
360 cm (140 inches). The information on the study area is referenced from the report of the Indian
Geological Association (https://www.gsi.gov.in/webcenter/portal/ocbis/pagequicklinks/pageprojects)
(accessed on 29 September 2024).

Figure 1: Location of the study area and historical landslides

https://www.gsi.gov.in/webcenter/portal/ocbis/pagequicklinks/pageprojects
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2.2 Landslide Inventory
A landslide inventory was compiled based on an extensive analysis of Google Earth images [27],

supplemented by data extracted from reference reports published by the Geological Survey of India
(https://www.gsi.gov.in) (accessed on 29 September 2024). A total of 34 landslide events were identified
and mapped in the study area (Figs. 1 and 2). Each of these landslide events was initially represented as
a polygon, which outlines the affected area on a map. For the purposes of analysis, a conversion of these
polygons into a different format was necessary. Therefore, the 34 landslide polygons were transformed
into points, resulting in 261 individual points that are suitable for spatial analysis. This conversion
was essential, as spatial modeling of landslides relies on point and raster data for its calculations. By
transforming the polygons into points, the data became compatible with the software’s processing
requirements, enabling a more accurate analysis of landslide susceptibility [28]. The data from this
study was also utilized and presented in Ngo et al. [29].

Figure 2: Photographs showing landslide occurrence in the study area (Source: http://www.
portal.gsi.gov.in) (accessed on 29 September 2024)

The mass movement events included in this study are primarily of two types: rock landslides and
debris slides. From the total inventoried landslide database, 70% of the data, along with corresponding
values of landslide conditioning factors, was used for training the models, while 30% was reserved for
validation.

https://www.gsi.gov.in
http://www.portal.gsi.gov.in
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2.3 Landslide Conditioning Factors
Selecting the factors that contribute to landslides is a crucial step in assessing landslide suscep-

tibility. In this study, ten conditioning factors were chosen based on an analysis of past landslides,
the geo-environmental characteristics of the study area, data availability, and a review of similar
published works [7]. These factors include slope, aspect, curvature, elevation, land cover, lithology,
geomorphology, distance to rivers, distance to roads, and overburden depth. The correlation analysis
of the input variables is illustrated in Fig. 3. It is important to note that all conditioning factors
obtained from the Geological Survey of India (GSI) report were resampled to a 30 m resolution to
ensure homogeneity among them. A brief description of the conditioning factors included in the study
is provided in the following paragraphs.

Slope

Slope refers to the inclination or angle of a surface in relation to the horizontal plane. It measures
the steepness of landforms such as hills, mountains, or valleys and can be expressed in terms of degree
or gradient. The slope of a surface is determined by the relationship between its vertical height change
and its horizontal distance along the surface. Slope is a critical factor in geomorphology and the
analysis of geohazards, including landslides, erosion, and mass movements [30,31]. In this study, the
slope angle map was derived from the ALOS PALSAR 30 m Digital Elevation Model (DEM) obtained
from ALOS Data Collection [32,33]. The slope angle map was then reclassified into five classes using
the Natural Breaks method within a GIS environment, as follows: 0–17.83°, 17.83–28.21°, 28.21–
36.96°, 36.96–47.01°, and 47.01–88.68° (Fig. 3a).

Aspect

Aspect refers to the direction a slope faces on a geomorphic surface, typically categorized
as north-facing, south-facing, east-facing, or west-facing. This directional orientation significantly
impacts the amount and distribution of solar radiation, wind exposure, and temperature on the slope.
Consequently, these factors play a crucial role in influencing vegetation growth, soil properties, and
the processes of erosion and sediment transport. For instance, south-facing slopes may receive more
sunlight, promoting different vegetation types compared to north-facing slopes, which tend to be
cooler and moister [34]. In this study, a slope direction map was generated from the ALOS PALSAR
30 m DEM in a GIS environment. The aspect map was classified into nine categories as depicted
in Fig. 3b.

Curvature

Curvature refers to the extent to which a surface deviates from being flat; and is expressed as the
change in the slope of the surface over a given distance. In geomorphology, surface curvature is used
to describe the shape of landforms such as hills and valleys; and can be quantified using mathematical
techniques such as topographic profiles and digital elevation models. Surface curvature significantly
influences the flow of water and air across the terrain, thereby affecting processes such as erosion,
sediment deposition, and even landslide occurrences [35]. For instance, convex surfaces may promote
faster runoff, while concave surfaces can collect water, leading to increased erosion in certain areas. In
this study, the terrain surface shape map was derived from the DEM and classified into three categories:
concave, convex, and flat (Fig. 3c).
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Figure 3: (Continued)
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Figure 3: (Continued)
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Figure 3: The map of the conditioning factors used in this study (a) slope, (b) aspect, (c) curvature, (d)
elevation, (e) geomorphology, (f) land cover, (g) overburden depth, (h) distance to roads, (i) distance
to rivers, and (j) lithology

Elevation

Elevation (also termed as altitude) in geomorphology refers to the height of a location or feature
above a reference surface, typically sea level. Elevation can be used to describe the vertical position of
landforms such as mountains, valleys, and plateaus, and is an important factor in determining local
climate patterns, as well as the distribution of vegetation and other biotic factors [36,37]. Elevation
data is commonly obtained through satellite imagery, laser-based systems, and other remote sensing
techniques, which allow researchers to create detailed DEMs of the Earth’s surface [38,39]. To aid
in understanding the spatial distribution of elevation-related factors in the study area, the terrain
elevation map of the study area was generated from the DEM and classified into nine distinct elevation
ranges: 552–1000 m, 1000–1400 m, 1400–1800 m, 1800–2200 m, 2200–2600 m, 2600–3000 m, 3000–
3400 m, 3400–3800 m, and above 3800 m (Fig. 3d).

Geomorphology

Geomorphology plays a crucial role in landslide studies, as it helps explain the underlying causes
and triggering mechanisms of these events. By analyzing factors such as slope angle, surface curvature,
soil type, vegetation cover, and the presence of fractures or faults, geomorphology provides valuable
insights into the conditions that can lead to landslides [40,41]. Additionally, it considers the effects
of rainfall, earthquakes, and other triggers that may initiate a landslide. This information is essential
for developing hazard assessments and informing mitigation and management strategies to reduce
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landslide risk and protect human and environmental assets [42,43]. In this study, the geomorphological
map was obtained from the survey report of the Indian Geological Survey of India, which classifies
the study area into 12 distinct geomorphic classes (Fig. 3e).

Land Use and Land Cover (LULC)

LULC is another important factor in landslide susceptibility modeling. LULC data provides
information on vegetation cover, soil type, surface permeability, surface runoff, and topography
[44,45], all of which can impact slope stability and increase the risk of landslides. The LULC data for
the study area was collected from the survey report of the Indian Geological Survey of India (Fig. 3f).

Overburden depth

Overburden depth, or the thickness of the material covering the underlying rock or soil, also plays
a significant role in slope stability and landslide likelihood. The added weight and reduced strength of
the underlying material due to overburden can contribute to slope failure [46]. In this study, overburden
depth data was collected from the Geological Survey of India web portal and reclassified into five
classes as shown in Fig. 3g.

Distance to roads

The proximity of an area to roads can also influence slope stability and landslide risk. Roads,
which indicate the presence of transportation infrastructure and human activity, can lead to soil
erosion, changes in drainage patterns, and landscape alterations, all of which can contribute to slope
instability [47]. In this study, the road network was digitized from satellite images extracted from
Google Earth, and the distance to roads was classified into six classes as shown in Fig. 3h.

Distance to rivers

Distance to rivers is another important conditioning factor in landslide susceptibility modeling,
as it affects groundwater levels and drainage patterns, which can impact slope stability [48,49]. In this
study, the stream network extracted from the DEM was used to create the distance classes from the
streams, which were then reclassified into six classes (Fig. 3i).

Lithology

Lithology, or the materials forming slopes, directly affects landslide occurrence [50]. In this study,
slope-based material maps were built using data collected from the Geological Survey of India. The
types of materials forming slopes in the study area are presented in Ngo et al. [29] (Fig. 3j and Table 1).

Table 1: Lithological groups of the study area

Lithological group Description

1 Alluvium, Colluvium
2 Alluvium, In-situ Soil
3 Amphibolite and Mica Schist
4 Phyllite, Quartzite, Slate and Limestone
5 Carbonaceous Phyllite, Quartzite, Slate, and Limestone
6 Chlorite Schist and Massive Amphibolite
7 Colluvium
8 Glacial Deposit

(Continued)
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Table 1 (continued)

Lithological group Description

9 Gravel, Boulder embedded In Oxidized Sandy Matrix
10 Granite with Tourmaline and Quartz Vein
11 Morainic Material
12 Quatz-Mica-Chlorite-Hornblende Schist
13 Scree
14 Slate, Qtzite, Sandstone, Talc, Limestone, Dolomite, and Stromatolitic limestone
15 Stromatolitic Dolomitic Limestone and Phyllite and Talc
16 Transported Soil and Scree
17 Alluvium
18 Younger Loose Debris

2.4 Methods Used
2.4.1 Factor Evaluation Methods

Before utilizing the conditioning factors to assess landslide susceptibility, it is essential to evaluate
them for their correlation and significance. This evaluation can be effectively conducted using the
Pearson correlation method and the Information Gain Ratio method [12,51]. The primary objective
of this process is to identify and eliminate highly correlated and unimportant factors, which can
improve the overall performance and accuracy of the models. The Pearson correlation method helps
determine the strength and direction of the linear relationship between pairs of conditioning factors.
By analyzing these correlations, redundant factors that provide similar information and may lead to
model overfitting or reduced interpretability can be identified. On the other hand, the Information
Gain Ratio method assesses the importance of each conditioning factor in predicting landslide
susceptibility. This method quantifies how much information a particular factor contributes to the
prediction, allowing for the prioritization of factors that have the most significant impact on landslide
occurrence. Information Gain Ratio method is particularly effective in handling high-dimensional
datasets, where selecting a subset of relevant features can greatly simplify the model and improve
computational efficiency. By reducing the dimensionality of the feature space, Information Gain Ratio
method helps to alleviate the curse of dimensionality and mitigate the risk of overfitting. It allows
the model to focus on the most discriminative features, which enhances its predictive accuracy and
generalization ability. In this study, Information Gain Ratio method feature selection was select to
evaluate and select the important landslide conditioning factors for landslide susceptibility modeling
and mapping using ML models.

2.4.2 Information Value Model

Information Value (IV) method is a bivariate statistical technique used to calculate the relationship
between landslide conditioning factors and the occurrence of landslides, which is treated as a binary
target variable (landslide or no landslide) [52]. In this approach, information values are calculated for
each class of the conditioning factor maps based on the presence of landslides in a given map unit.
These information values help determine the role and contribution of each factor class to landslide
occurrence [53].
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To apply the IV method, all conditioning factors are first converted into raster format with the
same coordinate system and pixel size (typically 30 m × 30 m), and then reclassified into different
classes. The information value for a specific factor class is calculated using the logarithm of the ratio
of conditional probability to prior probability, as follows [54]:

IV = log
(

P(A)

P(B)

)
= log

(
Nslpix/Ncpix
Ntspix/Ntapix

)
(1)

where Nslpix is the number of landslide pixels in a certain layer, Ncpix is the number of pixels in a
certain layer, Ntspix is the total number of landslides in the study area, and Ntapix is a total pixel in
the entire study area.

The IV values calculated for each factor class represent the probability of landslide occurrence in
that class relative to the overall landslide probability in the study area. If the IV value for a factor class
is greater than 0.1, it indicates a positive correlation with landslide occurrence, meaning that class
has a higher probability of landslides. Conversely, negative IV values suggest a lower probability of
landslides for that factor class. By analyzing the IV values for different factor classes, researchers can
identify the most influential conditioning factors and their specific classes that contribute significantly
to landslide susceptibility. This information is crucial for developing accurate landslide susceptibility
maps and implementing targeted mitigation strategies in landslide-prone areas. The IV method has
been widely applied in various studies for landslide susceptibility mapping due to its ability to quantify
the relationship between landslide conditioning factors and landslide occurrence using statistical
principles. It provides a straightforward and effective way to assess the importance of different factors
and their classes in predicting landslide susceptibility.

2.4.3 Radial Basis Function Networks (RBFNs)

Radial Basis Function Networks (RBFNs) are a type of multilayer neural network that have
emerged as one of the most effective classification techniques in various applications [55]. An RBFN
typically consists of three layers: the input layer, the hidden layer, and the output layer. The input layer
serves as the first layer, receiving data inputs from the dataset. The output layer, which is the third
layer, is responsible for carrying out the prediction task based on the processed information from the
hidden layer. The hidden layer, positioned between the input and output layers, employs a non-linear
activation function known as the Radial Basis Function (RBF). Each unit in the hidden layer computes
an activation based on the distance between the input pattern and the RBF centers. The output layer
then calculates the activations of the hidden units through a linear combination, resulting in the final
prediction.

The outcome of the RBFN model for a given input pattern x in the classification process can be
expressed mathematically as follows [56]:

fi (x) =
∑m

k=1
wkiθ (‖ x − ak ‖) (2)

where m denotes the number of computing units, wki denotes the linking weights, ak denotes the RBF
centers or prototypes, and the function of � (.) is chosen as a Gaussian function. To establish the initial
hidden unit centers, a k-means clustering algorithm is applied to the training dataset in an unsupervised
manner. Additionally, the largest squared Euclidean distance between any pair of cluster centers is
utilized as the initial value for all variance parameters in the network. This approach ensures that the
RBFN is well-equipped to model complex relationships within the data, enhancing its classification
capabilities.
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2.4.4 Multilayer Perceptron Neural Network (MLP)

MLP is a powerful and widely utilized architecture in the field of machine learning (ML). As
a type of feedforward neural network, the MLP consists of multiple layers of interconnected nodes,
commonly referred to as perceptrons or artificial neurons. This architecture is specifically designed
to handle complex patterns and relationships within data, making it suitable for a variety of tasks,
including pattern recognition, regression, and classification. By leveraging its hidden layers and
activation functions, the MLP can learn and extract intricate features from input data, providing
flexible and adaptable modeling capabilities.

One of the key components of the MLP is its hidden layers, which are responsible for capturing
and representing nonlinear relationships in the data. These hidden layers, situated between the input
and output layers, allow the network to learn higher-level abstractions and feature hierarchies. By
combining multiple hidden layers with varying numbers of nodes and activation functions, the
MLP can model highly complex functions and decision boundaries. This flexibility allows the MLP
to effectively handle a wide range of data types and problem domains, specifically environmental
problems.

Training an MLP involves a crucial process known as backpropagation, which enables the network
to adjust its weights to minimize a predefined loss or error function. During backpropagation,
the error calculated at the output layer is propagated backward through the network, allowing for
the systematic updating of weights using gradient descent optimization algorithms. This iterative
optimization process is essential for the MLP to learn how to make accurate predictions by reducing
the discrepancy between its predicted outputs and the actual ground truth values. As the MLP
undergoes training, it becomes capable of generalizing well to previously unseen data, enhancing
its effectiveness as a powerful tool for a variety of machine learning tasks. In this study, the MLP
was chosen as a benchmark model for comparison against the proposed ensemble machine learning
models developed for landslide susceptibility modeling and mapping, providing a solid foundation for
evaluating their performance.

2.4.5 DAGGING (DG)

First proposed by Ting et al. [57], the Dagging techniques is a variation of the Bagging techniques
used in developing ensemble models. Like the traditional Bagging technique, DG creates several
iterations of the model, with each iteration being trained on a distinct random subset of the training
data. The key difference between DG and traditional Bagging is that in DG, each training subset is
created by selecting a random set of samples without replacement. This means that there is no overlap
between the samples used to train the different models. This approach results in a collection of models
that are trained on entirely distinct sets of data, thereby enhancing the diversity among the models.

The individual models’ predictions are then integrated, typically via methods such as simple
averaging or majority voting, to produce the final prediction. The DG ensemble method is commonly
used with decision tree models; but can be applied to any type of model. DG ensemble method has
been shown to produce better results compared to traditional Bagging in some cases, particularly
when dealing with imbalanced datasets. The method can help improve the stability and accuracy of
the predictions, making it a useful tool in ML applications. The method has been widely utilized in
environmental modeling [58], where it produces a diverse range of unique templates instead of relying
on bootstrap samples to create base classifiers. Recently, it has gained recognition as a promising
machine learning technique for classification tasks. Its ability to improve model performance through
increased diversity and reduced overfitting makes it an attractive option for practitioners seeking
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robust predictive solutions. In this study, DG was employed to develop an ensemble machine learning
model known as DG-RBFN, which enhances the base classifier, RBFN, for the purpose of landslide
susceptibility modeling and mapping.

2.4.6 MULTIBOOST (MB)

MB is an ensemble learning techniques designed for multi-class classification problems. This
method is grounded in the principles of boosting, which aims to enhance the performance of weak
learners by combining them into a robust classifier. The process involves iteratively training a series
of weak classifiers on various subsets of the training data, allowing each classifier to focus on the
instances that were misclassified by its predecessors. This way, the weak classifiers are forced to
improve their performance on the difficult examples. In the training process, MB assigns weights
to each weak classifier based on their individual performance. The weights determine the influence
of each classifier on the final prediction. Weaker classifiers that perform poorly are assigned lower
weights, while stronger classifiers are given higher weights. In general, MB is a powerful algorithm for
multi-class classification that leverages the concept of boosting to enhance the performance of weak
classifiers and create a strong ensemble classifier. In this study, MB was used to develop an ensemble
model namely MB-RBFN to improve the single classifier namely RBFN for landslide susceptibility
modeling and mapping.

2.4.7 ADABOOST (AB)

Adaptive Boosting (AB), called AdaBoost, is a powerful ensemble learning technique primarily
developed for binary classification tasks. This boosting technique combines multiple weak classifiers
to construct a strong, robust classifier capable of achieving high accuracy. The fundamental concept
behind AB is to iteratively train a series of weak classifiers on various subsets of the training data,
enhancing their collective performance. During the training process, AB assigns a weight to each
training example, determining its influence on the training of subsequent weak classifiers. Initially,
all examples are given equal weights. After each iteration, the algorithm increases the weights of
misclassified examples, while decreasing the weights of those that are correctly classified. This adaptive
weighting mechanism enables the algorithm to concentrate on challenging instances that are more
difficult to classify accurately, thereby improving the overall model performance. When making
predictions on new instances, AB combines the outputs of all weak classifiers using a weighted voting
scheme. Each weak classifier contributes to the final prediction based on its assigned weight, leading to
a weighted majority vote that determines the outcome. Overall, AB is an effective boosting algorithm
that enhances the capabilities of weak classifiers by focusing on difficult examples and adjusting their
weights to optimize performance. In this study, AB was employed to develop an ensemble machine
learning model known as AB-RBFN, which enhances the base classifier, RBFN, for the purpose of
landslide susceptibility modeling and mapping.

2.4.8 Validation Methods

The Area Under the Receiver Operating Characteristic Curve (AUC) is a widely recognized
validation technique for assessing landslide susceptibility models [59,60]. In this study, the AUC was
employed to evaluate the performance of the constructed models quantitatively, particularly after
reporting sensitivity and 100% specificity values [61]. An AUC value of 1 indicates a perfect model,
while a value of 0.5 suggests a model with no predictive power, essentially equivalent to random
guessing [9,62]. In this study, AUC values of the models during both training and validation phases
were computed at a 95% confidence interval, as recommended in the literature [7].
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In addition to the AUC-ROC curve, several statistical validation metrics were utilized to compre-
hensively evaluate the landslide susceptibility models. These metrics included Kappa (k), Specificity
(SPF), Sensitivity (SST), Negative Predictive Value (NPV), Positive Predictive Value (PPV), Root
Mean Square Error (RMSE), and Accuracy (ACC) [63]. The Kappa statistic, which ranges from 0 to 1,
assesses the reliability of the models in predicting landslides. As the k-value approaches 1, the accuracy
of the landslide predictions increases. Specificity and NPV were used to evaluate the models’ precision
in identifying non-landslide pixels, while sensitivity and PPV were focused on correctly predicting
landslide pixels. RMSE served as an indicator of model error, providing insights into the differences
between predicted and observed values. Accuracy was employed to assess the overall correctness of the
models. Detailed descriptions and computations of these indices can be found in the relevant literature
[64–66]. By employing these comprehensive validation techniques, the study aimed to ensure robust
and reliable landslide susceptibility assessments, ultimately contributing to better risk management
strategies.

2.5 Model Development
Fig. 4 illustrates the flowchart detailing the essential steps undertaken in this study to develop

landslide prediction models. Initially, a geospatial landslide database was compiled to generate datasets
for landslide modeling. This inventory includes landslide data collected from historical records and
identified through Google Earth images. A set of landslide conditioning factors was also incorporated
into the analysis. The dataset was divided into two parts: 70% for training and 30% for validation [67].

Figure 4: Methodological framework for landslide susceptibility mapping in this study
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Using the training dataset, various models, including MLP, AB-RBFN, MB-RBFN, and DG-
RBFN, were trained and constructed. The single MLP and the ensemble AB-RBFN, MB-RBFN,
and DG-RBFN models were developed based on the hyperparameters outlined in Table 2. Each
hyperparameter value was fine-tuned through a trial-and-error procedure [68].

Table 2: Hyperparameters used for developing the models

No. Parameter Model

MLP AB-RBFN MB-RBFN DG-RBFN

1 Batch size 100 100 100 100
2 Debug FALSE FALSE FALSE FALSE
3 Do not check capabilities FALSE FALSE FALSE FALSE
4 No. decimal places 2 2 2 2
5 Loss function Square error – – –
6 No. function 2 10 10 –
7 Pool size 1 – – –
8 Ridge 0.01 – – –
9 Tolerance 1.00E−06 – – –
10 Use CGD FALSE – – –
11 Classifier – RBFN RBFN RBFN
12 No. iterations – 10 10 –
13 No. folds – – – 10
14 Use resampling – FALSE FALSE –
15 No. subcmtys – – 3 –
16 Seed 1 1 1 1
17 Verbose – – – FALSE
18 Weight threshold – 100 100 –

Subsequently, these models were validated and compared against the single MLP model using
established validation methods. Finally, landslide susceptibility maps were generated utilizing the
outputs from the various models.

3 Results and Discussion
3.1 Factor Evaluation

The results of the correlation and feature selection analyses are presented in Fig. 5 and Table 3.
It can be seen that all selected conditioning factors are lowly correlated as the correlation values
between factors are smaller than 0.5 (Fig. 5). Additionally, Table 3 demonstrates that each factor
contributes to the predictive capability of the models, leading to the decision to include all of them
in the landslide susceptibility modeling for this study. The factor evaluation results further highlight
the significance of each factor in the modeling process. Among the selected factors, elevation shows
the highest contribution to the model, with an average measure (AM) of 0.4204. This is followed by
distance to roads (AM = 0.3864), geomorphology (AM = 0.3393), lithology (AM = 0.3123), land
cover (AM = 0.2935), aspect (AM = 0.4204), distance to rivers (AM = 0.1929), overburden depth
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(AM = 0.1101), slope (AM = 0.0492), and curvature (AM = 0.023). These findings align with results
from other published studies [69], reinforcing the importance of these conditioning factors in assessing
landslide susceptibility. The comprehensive analysis underscores the relevance of these variables in
understanding and predicting landslide occurrences, thereby providing valuable insights for effective
risk management and mitigation strategies.

Figure 5: Correlation matrix of the landslide conditioning factors used in this study

Table 3: Factor ranking using Information Gain Ratio method

Rank Factor Average merit (AM)

1 Elevation 0.4204
2 Distance to roads 0.3864
3 Geomorphology 0.3393
4 Lithology 0.3123
5 Land cover 0.2935
6 Aspect 0.1929
7 Distance to rivers 0.1147
8 Overburden depth 0.1101
9 Slope 0.0492
10 Curvature 0.023

To analyze the spatial relationship between landslide conditioning factors and past and present
landslide occurrences, the Information Value (IV) method was applied. This method calculates the
IV for all classes of each factor map, indicating the probability of a past or present landslide in each
class and throughout the entire area (Table 4). The IV values provide insights into the influence and
contribution of each factor class to landslide occurrence. Positive IV values suggest greater influence
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or the presence of a factor with significant contribution to landslide occurrence, while negative values
indicate less influence or the presence of a factor with less significant contribution.

Table 4: Information value analysis of factors causing landslides

Factor Class Number of
total cells

Number of
landslides

Percentage
of pixels

Percentage
of landslides

IV

Slope 0–17.831476 78,092 9 11.485 3.448 −0.523
17.831476–
28.20698

151,464 48 22.275 18.391 −0.083

28.20698–
36.955399

214,040 71 31.478 27.203 −0.063

36.955399–
47.008942

177,197 86 26.060 32.950 0.102

47.008942–
88.675705

59,172 47 8.702 18.008 0.316

Aspect Flat 8 0 0.001 0.000 0.000
North 73,688 1 10.837 0.383 −1.452
Northeast 82,949 1 12.199 0.383 −1.503
East 77,994 13 11.470 4.981 −0.362
Southeast 91,582 76 13.469 29.119 0.335
South 99,895 75 14.691 28.736 0.291
Southwest 112,712 74 16.576 28.352 0.233
West 77,390 21 11.381 8.046 −0.151
Northwest 63,747 0 9.375 0.000 0.000

Curvature Concave
(<−0.05)

327,448 148 48.157 56.705 0.075

Flat
(−0.05–0.05)

24,118 5 3.547 1.916 −0.263

Convex (>0.05) 328,399 108 48.296 41.379 −0.063
Elevation 551–1000 67,334 183 73.523 240.789 0.515

1000–1400 129,487 56 141.389 73.684 −0.283
1400–1800 142,551 22 155.654 28.947 −0.731
1800–2200 103,742 0 113.278 0.000 0.000
2200–2600 70,883 0 77.398 0.000 0.000
2600–3000 50,912 0 55.592 0.000 0.000
3000–3400 44,923 0 49.052 0.000 0.000
3400–3800 35,722 0 39.005 0.000 0.000
3800–4448 34,411 0 37.574 0.000 0.000

Geomorphology Alluvial flood
plain

10,738 21 1.579 8.046 0.712

Colluvial cone 12,370 16 1.819 6.130 0.528
Denudational
hillslope

11,320 0 1.665 0.000 0.000

(Continued)
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Table 4 (continued)

Factor Class Number of
total cells

Number of
landslides

Percentage
of pixels

Percentage
of landslides

IV

Escarpment 33,160 26 4.877 9.962 0.310
Highly dissected
hills

169,413 0 24.915 0.000 0.000

Intermontane
plateau

8791 8 1.293 3.065 0.375

Lowly dissected
hills

125,692 108 18.485 41.379 0.350

Moderately
dissected slope

257,601 35 37.884 13.410 −0.451

Ridge 2262 0 0.333 0.000 0.000
Area near rivers 7894 46 1.161 17.625 1.181
Terrace 20,119 0 2.959 0.000 0.000
Transportational
mid-slope

20,605 1 3.030 0.383 −0.898

LULC Barren rocky
slope

64,898 0 9.544 0.000 0.000

Cultivated land 230 0 0.034 0.000 0.000
Moderately
vegetated

101,713 10 14.959 3.831 −0.592

River 6754 17 0.993 6.513 0.817
Settlement 1262 0 0.186 0.000 0.000
Sparsely
vegetated

79,732 146 11.726 55.939 0.679

Thickly
vegetated

392,670 41 57.749 15.709 −0.565

Wasteland 32,706 47 4.810 18.008 0.573
Overburden
depth

0 m 94,613 30 13.914 11.494 −0.079

0–1 m 271,934 59 39.992 22.605 −0.243
1–2 m 186,081 103 27.366 39.464 0.163
2–5 m 106,521 9 15.666 3.448 −0.653
>5 m 20,816 60 3.061 22.989 0.880

Distance to
roads

0–100 m 30,626 134 4.504 51.341 1.061

100–200 m 26,040 71 3.830 27.203 0.856
200–300 m 23,462 7 3.450 2.682 −0.105
300–400 m 21,727 1 3.195 0.383 −0.917
400–500 m 20,576 0 3.026 0.000 0.000
>500 m 557,534 48 81.995 18.391 −0.645

(Continued)
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Table 4 (continued)

Factor Class Number of
total cells

Number of
landslides

Percentage
of pixels

Percentage
of landslides

IV

Distance to
rivers

0–100 m 25,667 44 3.775 16.858 0.654

100–200 m 25,331 63 3.725 24.138 0.816
200–300 m 25,346 15 3.728 5.747 0.192
300–400 m 25,247 19 3.713 7.280 0.297
400–500 m 25,111 5 3.693 1.916 −0.281
>500 m 553,263 115 81.366 44.061 −0.262

Lithology Group 1 10,524 15 1.548 5.747 0.574
Group 2 4889 0 0.719 0.000 0.000
Group 3 2229 0 0.328 0.000 0.000
Group 4 934 0 0.137 0.000 0.000
Group 5 46,595 1 6.853 0.383 −1.248
Group 6 431 0 0.063 0.000 0.000
Group 7 56,013 5 8.238 1.916 −0.629
Group 8 18,060 0 2.656 0.000 0.000
Group 9 145,233 6 21.359 2.299 −0.964
Group 10 4563 0 0.671 0.000 0.000
Group 11 12,901 0 1.897 0.000 0.000
Group 12 239 0 0.035 0.000 0.000
Group 13 222,105 138 32.664 52.874 0.214
Group 14 23,382 0 3.439 0.000 0.000
Group 15 15,561 59 2.289 22.605 0.999
Group 16 100,193 1 14.735 0.383 −1.581
Group 17 10,168 36 1.495 13.793 0.969
Group 18 5945 0 0.874 0.000 0.000

The analysis reveals that areas near rivers in geomorphology, overburden depth greater than 5 m,
and a distance of 1–2 m from roads contribute the most to landslide occurrences. This is followed
by alluvial flood plains in geomorphology. Other key contributors include group 17 (alluvium) in
lithology, slopes ranging from 47–88°, concave regions with a curvature less than 0.05, elevations
between 551–1000 m, and southeast-facing aspects. These findings align with the understanding that
factors such as proximity to water bodies, thick overburden, road construction, and certain slope
characteristics can significantly increase the risk of landslides.

In the modeling process, the IV values of each class for each factor (Table 4) were used to normalize
the data employed for training the machine learning models. This normalization ensures that the
models give appropriate weight to the different factor classes based on their relative contribution to
landslide occurrence, ultimately improving the accuracy and reliability of the landslide susceptibility
assessments.
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3.2 Model Validation and Comparison
Validation results are shown in Table 5, Figs. 6, and 8a. It can be seen that the MLP model has the

highest value of PPV (95%), followed by the AB-RBFN (89.23%), the MB-RBFN (88.85%), and the
DG-RBFN (88.46%), respectively; the MLP also received the highest value of NPV (92.34%), followed
by the DG-RBFN (91.95%), the MB-RBFN (88.89%), and the AB-RBFN (82.76%), respectively; the
MLP received the highest value of SST (92.51%), followed by the DG-RBFN (91.63%), the MB-
RBFN (88.85%), and the AB-RBFN (83.75%), respectively; the MLP received the highest value of
SPF (94.88%), followed by the DG-RBFN and the MB-RBFN (88.89%), and the AB-RBFN (88.52%),
respectively; the MLP had the highest value of ACC (93.67%), followed by DG-RBFN (90.21%), the
MB-RBFN (88.87%), and the AB-RBFN (85.99%), respectively; the MLP had the highest value of k
(0.87), followed by DG-RBFN (0.8), the MB-RBFN (0.78), and the AB-RBFN (0.72), respectively.
For the RMSE, it can be seen from Fig. 6 and Table 5 that the MLP received the lowest value (0.24),
followed by the DG-RBFN (0.27), the MB-RBFN (0.32), and the AB-RBFN (0.33), respectively.
Using the ROC curve analysis, it can be seen from Fig. 8a that the DG-RBFN received the highest
value of AUC (0.969), followed by the MLP (0.963), the MB-RBFN (0.953), and the AB-RBFN
(0.936), respectively.

Table 5: Validation of the models using standard indicators

No. Parameter Training dataset Validation dataset

MLP AB-
RBFN

MB-
RBFN

DG-
RBFN

MLP AB-
RBFN

MB-
RBFN

DG-
RBFN

1 TP 247 232 231 230 131 120 122 127
2 TN 241 216 232 240 105 116 116 111
3 FP 13 28 29 30 6 17 15 10
4 FN 20 45 29 21 32 21 21 26
5 PPV (%) 95 89.23 88.85 88.46 95.62 87.59 89.05 92.7
6 NPV (%) 92.34 82.76 88.89 91.95 76.64 84.67 84.67 81.02
7 SST (%) 92.51 83.75 88.85 91.63 80.37 85.11 85.31 83.01
8 SPF (%) 94.88 88.52 88.89 88.89 94.59 87.22 88.55 91.74
9 ACC

(%)
93.67 85.99 88.87 90.21 86.13 86.13 86.86 86.86

10 Kappa 0.87 0.72 0.78 0.8 0.72 0.72 0.74 0.74
11 RMSE 0.24 0.33 0.32 0.27 0.34 0.45 0.36 0.32
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Figure 6: (Continued)
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Figure 6: Error distribution of the models using training dataset
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Figure 7: (Continued)
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Figure 7: Error distribution of the models using validation dataset

Validation of the predictive capability of the models on the validation dataset was carried out as
shown in Table 5, Figs. 7, and 8b. It can be seen that the MLP model has the highest value of PPV
(95.62%), followed by the DG-RBFN (92.7%), the MB-RBFN (89.05%), and the AB-RBFN (87.59%),
respectively; the MB-RBFN and the AB-RBFN also received the highest value of NPV (84.67%),
followed by the DG-RBFN (81.02%), and the MLP (76.64%), respectively; the MB-RBFN received
the highest value of SST (85.31%), followed by the AB-RBFN (85.11%), the DG-RBFN (83.01%), and
the MLP (80.37%), respectively; the MLP received the highest value of SPF (94.59%), followed by the
DG-RBFN (91.74%), the MB-RBFN (88.55%), and the AB-RBFN (87.22%), respectively; the DG-
RBFN and the MB-RBFN had the highest values of ACC (86.86%) compared with the AB-RBFN
and the MLP (86.13%); the DG-RBFN and the MB-RBFN had the highest value of k (0.74) compared
with the AB-RBFN and the MLP (0.72). For the RMSE, it can be seen from Fig. 6 and Table 5 that
the DG-RBFN received the lowest value (0.32), followed by the MLP (0.34), the MB-RBFN (0.36),
and the AB-RBFN (0.45), respectively. The ROC curve analysis, as illustrated in Fig. 8b, indicates
that the DG-RBFN model achieved the highest area under the curve (AUC) value of 0.931. This was
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closely followed by the AB-RBFN model with an AUC of 0.929, the MLP model at 0.926, and the
MB-RBFN model with an AUC of 0.913.

Figure 8: AUC values of the models during the (a) training phase and (b) validation phase presented
at a 95% confidence interval of the classification

Based on the above analysis of the validation results of the models, it can be stated that all models
used in this study are good for prediction of landslide susceptibility, but the DG-RBFN is better
than other models (MLP, AB-RBFN, and MB-RBFN). It is reasonable as the DG-RBFN received
the supports from the DG optimization for improving the performance of the landslide modeling.
More specifically, the advantages of the DG include [70–72]: (i) Improved prediction accuracy: it
often outperforms individual classifiers by reducing overfitting and improving generalization. The
combination of diverse classifiers can capture a broader range of patterns and increase overall
prediction accuracy, (ii) Reducing overfitting: By using multiple classifiers that are trained on different
subsets of the data, it can reduce the likelihood of overfitting. Each classifier focuses on different
aspects of the data, and their combination helps to smooth out the noise and capture the underlying
patterns, (iii) Enhanced robustness: it can improve the robustness of the predictions. By combining
multiple classifiers, the ensemble becomes more resilient to outliers, noise, or errors in individual
classifiers. The ensemble’s decision is based on a consensus among its members, reducing the impact
of individual errors, (iv) Handling class imbalance: it can be particularly effective when dealing
with imbalanced datasets. By using different subsets of data for training each classifier, it provides
an opportunity to balance the representation of minority classes and improve their classification
performance. In addition, it’s important to note that the effectiveness of DG ensembles depends on
the diversity and quality of the individual classifiers. In this study, the RBFN is proved as a great
classifier for combining with the DG in the ensemble model (DG-RBFN) for prediction of landslide
susceptibility. Compared with other optimization techniques like AB and MB, the DG is superior
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in reducing correlation between classifiers in the ensemble framework. As a result, it can improve
and enhance the performance of the ensemble model [71]. In addition, the performance of the novel
hybrid model DG-RBFN is better than single RBFN, Logistic Regression (LR), Linear Discriminant
Analysis (LDA) and Alternating Decision Tree (ADT), Naïve Bayes (NB) [73] when applied in the
similar areas.

3.3 Susceptibility Map Construction
The process of generating landslide susceptibility maps involved training the machine learning

models using a training dataset, followed by calculating Landslide Susceptibility Indices (LSI) for
all pixels within the study area using the trained models. To facilitate interpretation, the geometrical
intervals (GI) classification method was employed to categorize the LSI values into five distinct classes
(Fig. 9).

Figure 9: (Continued)



CMES, 2025, vol.142, no.1 493

Figure 9: Landslide susceptibility maps produced using the (a) DG-RBFN, (b) AB-RBFN, (c) MB-
RBFN, and (d) MLP models

Validating the accuracy of the susceptibility maps generated by the models was accomplished by
computing the frequency ratio (FR) of landslide pixels within each susceptibility class (Fig. 10). The
results of the analysis revealed that the very high susceptibility class in all the susceptibility maps
generated by the models exhibits the highest FR values compared to the other classes (very low, low,
moderate, high). This finding suggests that the majority of historical landslides are located within
the very high susceptibility class of the maps, indicating the reliability of the models for practical
applications. Furthermore, the FR value for the very high susceptibility class of the map generated by
the DG-RBFN model (12.041) is notably higher than those of the other models (MLP, AB-RBFN,
MB-RBFN). This observation leads to the conclusion that the map produced by the DG-RBFN model
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is superior to the maps generated by the other models in terms of accurately predicting landslide
susceptibility.

Figure 10: Analysis of FR on the susceptibility maps using the models

3.4 Implications, Limitations, and Recommendations
The novel ensemble models developed in this study, particularly the DG-RBFN, have demon-

strated exceptional performance in predicting landslide susceptibility in the Pithoragarh region of
Uttarakhand, India. However, the true versatility and potential impact of these models lie in their
ability to be adapted and applied to other regions with varying geological conditions. By incorporating
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different sets of landslide conditioning factors relevant to the target area, these models can be easily
trained and validated to produce accurate susceptibility maps for diverse landscapes. One of the key
advantages of the DG-RBFN model is its ability to handle complex, non-linear relationships between
landslide occurrence and conditioning factors. This makes it particularly suitable for regions with
heterogeneous geological settings, where the factors influencing landslides may vary significantly. For
instance, in areas with a predominance of sedimentary rocks, factors such as bedding plane orientation
and rock strength may play a crucial role, while in volcanic regions, factors like fracture density and
weathering intensity may be more important [74]. The DG-RBFN’s flexibility allows it to capture
these nuances and produce reliable susceptibility assessments.

However, it is important to note that while the proposed models have shown promising results,
they are not without limitations. As “black box” models, they do not provide direct insights into
the underlying mechanisms driving landslides. To address this, future research should focus on
integrating the DG-RBFN with techniques like SHAP (Shapley Additive Explanations) to enhance
the interpretability of the models and gain a better understanding of the relative importance of each
conditioning factor in different geological settings. Moreover, the performance of these models is
heavily dependent on the quality and quantity of the input data. The limited availability of data may
have led to issues such as overfitting, which can be mitigated by using larger datasets or employing
techniques like cross-validation [11]. Future work should prioritize collecting comprehensive datasets,
including detailed surface and subsurface geological information, long-term meteorological records,
and high-resolution remote sensing data, to improve the reliability and robustness of the models.
Despite these limitations, the DG-RBFN and other ensemble models developed in this study hold
immense potential for revolutionizing landslide susceptibility assessment worldwide. By adapting these
models to local conditions and incorporating cutting-edge techniques for data collection and analysis,
researchers and practitioners can contribute to more effective disaster risk reduction strategies,
ultimately saving lives and minimizing economic losses.

4 Conclusion

We have developed and validated the performance of novel ensemble models, namely DG-RBFN,
MB-RBFN, and AB-RBFN, alongside the single MLP ML model. These models were applied to a
dataset (261 historical landslide occurrences and ten conditioning factors) sourced from a landslide-
prone region in Pithoragarh, Uttarakhand, India. Utilizing standard evaluation metrics, we analyzed
the models’ training and performances. Our findings indicated that all models demonstrated strong
predictive capabilities for landslide susceptibility. Notably, the DG-RBFN model excelled, achieving
an AUC of 0.931, surpassing the performance of the other models. Consequently, we conclude that the
DG-RBFN model is a robust and effective tool for assessing landslide susceptibility, with the potential
for application in other vulnerable regions globally.

The landslide susceptibility map produced by the DG-RBFN ensemble model serves as a vital
resource for a diverse range of stakeholders, including planners, engineers, policymakers, and the
general public. By identifying regions that are particularly vulnerable to landslides, this map can
significantly inform decision-making processes related to land use planning, infrastructure devel-
opment, disaster mitigation strategies, and emergency response planning. Understanding the areas
most at risk can help authorities implement proactive measures to minimize hazards. For instance,
they can establish zoning regulations to restrict construction in high-risk zones, construct retaining
walls to stabilize slopes and engage in other engineering practices designed to mitigate potential
landslide impacts. While the ensemble models developed in this study have been effectively trained
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and validated, it is crucial to acknowledge their inherent limitations as black box models. This
means that their decision-making processes are not easily interpretable, particularly when it comes to
evaluating landslide susceptibility. To enhance our understanding of these models, it is recommended
that the SHAP technique be employed. This approach can provide insights into the contributions of
various features to the model’s predictions, thereby improving transparency and trust in the results.
Moreover, the performance of models can be influenced by uncertainties stemming from the complex
nature of geological and geo-environmental processes that contribute to landslides. To mitigate
these uncertainties, comprehensive surface and subsurface geological investigations are essential.
Additionally, the availability of reliable time series meteorological data and extensive remote sensing
data, including DEMs and satellite imagery, can enhance model accuracy. Additionally, combining
multiple models and relying on confidence intervals can further enhance model robustness. Many of
these strategies have been implemented in this study; however, it would be advantageous to select a
study area with a larger dataset for ensemble modeling. Doing so would reduce the risk of overfitting
and diminish the necessity for compensatory techniques, ultimately leading to more reliable and
generalizable results in landslide susceptibility assessments.
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