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ABSTRACT

This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise
operator in the sense of classical and Atangana Baleanu (AB) derivatives having arbitrary order. The HIV infection
model has a susceptible class, a recovered class, along with a case of infection divided into three sub-different levels
or categories and the recovered class. The total time interval is converted into two, which are further investigated for
ordinary and fractional order operators of the AB derivative, respectively. The proposed model is tested separately
for unique solutions and existence on bi intervals. The numerical solution of the proposed model is treated by the
piece-wise numerical iterative scheme of Newtons Polynomial. The proposed method is established for piece-wise
derivatives under natural order and non-singular Mittag-Leffler Law. The cross-over or bending characteristics
in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for
controlling the said disease. This study uses the neural network (NN) technique to obtain a better set of weights
with low residual errors, and the epochs number is considered 1000. The obtained figures represent the approximate
solution and absolute error which are tested with NN to train the data accurately.
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1 Introduction

Viruses of HIV lie and transmit both in classical and modern world contents having various
rates of infection. Among the sources of spreading of the said diseases from one man to another are
through sexual meetings, used needles re-usages, drug usage, inherited through the mother, and by un-
tested blood donations or transfusions. For stabilizing HIV infection transmission, there are various
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approaches including need-based HIV testing, usage of condoms during sex, circumcisions, usage of
vaginal microbicides and antire-troviral (ARV) drug. To date, no cure or vaccination for HIV has been
successfully discovered [1].

HIV infection is among the badly killing diseases, causing thousands of deaths all over the globe.
Nearly thirty-eight million humans all over the world suffered from HIV in the year of 2019. After that,
the virus has spread to each country of the globe. According to the statistics of the Health Ministry
about 21,500 men were suffering from HIV in the African country of Morocco [1]. Among them,
6000 (22%) were ignorant of their infection. In 2019 about 850 novel HIV testing in Morocco, 33%
were aged 15–25. This analysis also gives 300 deaths data. In more detail, 67% of novel cases occur
in highly risky chain populations. About 70.7% of women are tested positively due to their husbands.
Statistical data implies a low percentage of HIV infection in the country of Morocco in common lie
population, (0.08%), 1.7% are tested females working in different fields, 5.9% on mean are the homo-
sexuals, 7.1% on mean are those taking drugs by injections. Some territories of the country numbered
about 65% of all infections, namely Sous-Massa (26%), Marrakech-Safi (20%) and Casablanca-Settat
(20%) [1].

In dealing with such infection, one of the significant tools is mathematical modeling whose benefits
are to provide an esteemed prediction and feedback of any infection transmission whose viruses are
contagious and invisible. Mathematical models of HIV are constructed by the scientific approval, given
by analyzers, physicians and pharmacists along with the limit of spreading of the virus. So different
HIV systems have been investigated by many authors [2–5]. Researchers have examined various models
by applying different methodologies and explored the behaviors of each class and comparisons to
real data [6–9]. Fractional calculus can be a useful technique in HIV disease modeling to capture the
complex dynamics of the illness, particularly in areas where standard models are inadequate. It does,
however, also provide new difficulties about the interpretation and complexity of mathematics [10–13].
Silva et al. [12] have considered an epidemiological system of HIV/AIDS transmissions including Pre-
exposed Prophylaxis. In the same fashion, Li et al. [5] made a susceptible exposure in the Latent stage
infection (SEI) level to draw the evolution of HIV. One of the Vivo deterministic problems has been
discussed by Ngina et al. [7]. Shirazian et al. [11] have considered a mathematical method applied to
express mathematically the procedure for medical tests and seeing the infection of HIV/AIDS.

The scholars have proposed a continuous system of five agents SI1I2QR for discussion of the
interaction among the populations having HIV/AIDS. Here S, I1, I2, Q, R are the cases of susceptible
peoples, Infectious peoples stage 1, infectious peoples stage 2, Infectious peoples who are hospitalized
and recoverable individuals, respectively [1]. The said model is given below:

dS(t)
dt

= � − uS − (β1I1 + β2I2)S

dI1(t)
dt

= β1I1S + δ2I2 − (δ1 + γ1 + u + σ1)I1

dI2(t)
dt

= β2I2S + δ4Q + δ1I1 − (γ2 + δ2 + δ3 + u + σ2)I2

dQ(t)
dt

= δ3I2 − (γ3 + δ4 + u + σ3)Q

dR(t)
dt

= σ1I1 + σ2I2 + σ3Q − uR

S(0) = S0, I1(0) = I10
, I2(0) = I20

, Q(0) = Q0, R(0) = R0 ≥ 0.

(1)
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The used parameters are defined in Table 1 [1] along with numerical values.

Table 1: Characteristics of the parameters as per model 1

Parameter Description Numerical value

� Recruitment or birth rate in the susceptible class 70
u Natural death rate for all cases 0.0001
β1 Infection stage-1 rate from susceptible cases 0.0000405
β2 Infection stage-2 rate from susceptible cases 0.00004835
δ1 Rate of infection from stage-1 to stage-2 infection 0.009227
δ2 Rate of infection from stage-2 to stage-1 infection 0.0080037
δ3 Rate of infection from stage-1 to hospitalized infection 0.0028595
δ4 Rate of infection from hospitalized to stage-2 infection 0.00185955
γ1 Rate of death for stage-1 infection 0.01
γ2 Rate of death for stage-2 infection 0.02
γ3 Rate of death for hospitalized cases 0 0.02
σ1 Rate of infection of stage-1 infection 0.1
σ2 Rate of infection of stage-2 infection 0
σ3 Rate of infection of hospitalized cases 0

Many sorts of derivatives have been developed in multiple attempts to understand cross-over
dynamics and overcome discontinuities. These comprise fractal-fractional derivatives, derivatives
of fractional order whose kernels show singularity and non-singularity, and other special cases of
derivatives [14–17]. These methods, which offer sophisticated instruments for capturing the intricacies
present in such dynamic processes, have all been designed to address particular facets of the behavior of
the system [18–22]. These various derivative formulations enable a more sophisticated analysis of cross-
over dynamics, allowing for the exploration of system transitions between multiple states or phases.
Derivatives make it possible to model complicated, real-world processes more accurately and adaptably
by taking into account both continuity and discontinuity [23–26]. This is particularly important in the
domain of disease modeling, where a precise understanding of the dynamics of transitions, such as
the HIV’s transition from latency to active infection, can result in more accurate forecasts and more
potent interventions [27,28]. For analysis of the randomness or probabilistic in the scheme of stochastic
equations having more real findings but up to now the cross-over dynamical behavior has not been
investigated. Such behaviors are found in most infection models, like the heat flow, fluid dynamics,
and many of the complex geometrical problems [22,29,30]. In fractional derivatives, the exponential
and Mittag-Leffler mapping are not used to compute the time of crossover dynamics. Hence to treat
such models, one of the novel schemes of piece-wise derivatives and antiderivatives has been formulated
in [31]. A comprehensive framework incorporating global and classical piecewise derivatives was built
by the concept’s authors. These derivatives were developed to model complicated systems, namely the
dynamics of HIV infection. Keeping in view the said aspects, we will also discuss the said problem for
at least one solution, uniqueness of solution, numerical solution, and stability analysis in the sense
of classical and Atangana-Baleanu (AB) piecewise derivative. Further, such kind of operators are
different and better than the other fractional operators. It removes the discontinuity on the whole
interval by converting it into a sub-interval, it describes the crossover dynamics, AB operator has the
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non-singular kernel which removes the singularity of the given domain, it quickly gains the stability of
any dynamical system on small fractional order, is more generalized than classical and other fractional
operators. Moreover, the neural network (NN) approach is utilized and find different data sets for the
considered model and the comparison of fractional and NN as well. The Eq. (1) is expressed in piece-
wise derivative in the sense of classical and non-singular kernel operator as under.
POAB
0 Dψ

0 (S)(t) = � − uS − (β1I1 + β2I2)S
POAB
0 Dψ

0 (I1)(t) = β1I1S + δ2I2 − (δ1 + γ1 + u + σ1)I1

POAB
0 Dψ

0 (I2)(t) = β2I2S + δ4Q + δ1I1 − (γ2 + δ2 + δ3 + u + σ2)I2

POAB
0 Dψ

0 (Q)(t) = δ3I2 − (γ3 + δ4 + u + σ3)Q
POAB
0 Dψ

0 (R)(t) = σ1I1 + σ2I2 + σ3Q − uR,

t ∈ [0, T ], 0 ≤ t ≤ t1, t1 ≤ t ≤ t2,

(2)

where POAB is for piece-wise ordinary and AB derivative in two sub-intervals of [0, T ]. In more
simplest form we can write Eq. (2) under

POAB
0 Dψ

t (S(t)) =
⎧⎨
⎩

O
0 Dt(S(t)) = d

dt
F1(S, t), 0 < t ≤ t1,

AB
0 Dψ

t (S(t)) =AB F1(S, t) t1 < t ≤ t2,

POAB
0 Dψ

t (I1(t)) =
⎧⎨
⎩

O
0 Dt(I1(t)) = d

dt
F2(I1, t), 0 < t ≤ t1,

AB
0 Dψ

t (I1(t)) =AB F2(I1, t), t1 < t ≤ t2,

POAB
0 Dψ

t (I2(t)) =
⎧⎨
⎩

O
0 Dt(I2(t)) = d

dt
F3(I2, t), 0 < t ≤ t1,

AB
0 Dψ

t (I2(t)) =AB F3(I2, t), t1 < t ≤ t2,

POAB
0 Dψ

t (Q(t)) =
{

O
0 Dt(Q(t)) = d

dt
F4(Q, t), 0 < t ≤ t1,

AB
0 Dψ

t (Q(t)) =AB F4(Q, t), t1 < t ≤ t2,

POAB
0 Dψ

t (R(t)) =
⎧⎨
⎩

O
0 Dt(R(t)) = d

dt
F5(R, t), 0 < t ≤ t1,

AB
0 Dψ

t (R(t)) =AB F5(R, t), t1 < t ≤ t2,
(3)

where O
0 Dt and AB

0 Dψ

t are ordinary and AB fractional derivative respectively and Fi from i = 1, 2, 3, 4, 5
is for left side of Eq. (2).

1.1 Basis Properties of the Model
For any epidemiological problem, most of the authors assume that the total size of population

N(t) is constant, in the rest of the paper, i.e.,

S + I1 + I2 + Q + R = N(t)t ≥ 0

The transfer diagram may also be seen in [1].
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Lemma 1.1. The set

� = {S, I1, I2, Q, R} > 0 ∈ R5 and S + I1 + I2 + Q + R <
�

u
is bounded in positive feasible region.

Proof. Adding all the five agents of Eq. (2) as follows:

S + I1 + I2 + Q + R = N(t)t ≥ 0,

or
POAB
0 Dψ

t (N(t)) = � − u(S + I1 + I2 + Q + R) − γ1I1 − γ2I2 − γ3Q ≤ � − uN(t)
POAB
0 Dψ

t (N(t)) + uN(t) ≤ �.

On application of piece-wise integration we get

O
0 ItN(t) ≤

⎧⎪⎪⎨
⎪⎪⎩

N(0)e−ut + �

u
(1 − e−ut), 0 < t ≤ t1,

N(t1) + 1 − ψ

ABψ
N(t) + ψ

ABψ	ψ

∫ t

t1
(t − τ)ψ−1N(τ )d(τ ) t1 < t ≤ t2.

In the first interval if t1 is large then N(t) ≤ �

u
∀t ≥ 0 and in the second interval if t2 → ∞, then

N(t) ≤ �

u
, ∀t1 ≥ 0. Hence for both cases the system is bounded in the feasible region. �

Lemma 1.2. If the initial values of all the agent of the (2) is non-negative, i.e., S(0) ≥ 0, I1(0) ≥
0, I2(0) ≥ 0, Q(t) ≥ 0, R(0) ≥ 0 then the solution of problem (2) for each quantity will be positive for
t1 > 0 and t2 > 0.

Proof. The proof can be seen in [1]. �

The free equilibrium point for the model (2) is E0 = (S0, I10
, I20

, Q0, R0) = (
�

u
, 0, 0, 0, 0).

The Basic reproduction number for (2) [1] is

R0 = ζ

2
((β1P2 + β2P1) +√

(β1P2 − β2P1) + 4β1β2γ1γ2),

where P1 = δ1 + γ1 + u + σ1,P2 = δ2 + δ3 + γ2 + u + σ2 and ζ = 1
P1P2 − γ1γ2

. Further if R0 < 1 on

equilibrium point then problem (2) is locally asymptotically stable and unstable if R0 > 1.

R0 < 1 means that any infected population may transfer the disease to less than one new infected
individual, which implies that HIV infection does not spread in the population.

R0 > 1 means that any infected population may transfer the disease to more than one new infected
individual, which implies that HIV infection spreads in the population.

2 Basic Results

Now, in the next part of the article, we provide a few background definitions of the Caputo
operator of derivative and integration along with the piecewise derivative concept.
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Definition 2.1. The AB derivative of a function �(t) under the condition �(t) ∈ H1(0, τ) is defined
as follows:

AB
0 Dt

ψ
(�(t)) = AB(ψ)

1 − ψ

∫ t

0

d
dτ

�(τ)Eψ

[ −ψ

1 − ψ

(
t − τ

)ψ]
dτ . (4)

While the integral can be written as

AB
0 It

ψ
�(t) = 1 − ψ

AB(ψ)
�(t) + ψ

AB(ψ)	(ψ)

∫ t

0

(t − τ)ψ−1�(τ)dτ . (5)

Definition 2.2. Choosing ω(t) be differentiable and g(t) is increasing function then classical piece-
wise derivative [31] can be given as

O
0 Dt�(t) =

⎧⎪⎨
⎪⎩

�(t), 0 < t ≤ t1,

� ′(t)
g′(t)

t1 < t ≤ t2 = T ,

and the integration is

O
0 It�(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0

�(τ)dτ , 0 < t ≤ t1,∫ t

t1

�(τ)g′(τ )d(τ ) t1 < t ≤ t2,

here O
0 It�(t) and O

0 Dt�(t) are for ordinary derivative and integration for 0 < t ≤ t1 and global derivative
integration for t1 < t ≤ t2.

Definition 2.3. Let �(t) be differentiable then ordinary and fractional piece-wise derivative [31] is
defined as

O
0 Dψ

t �(t) =
{

� ′(t), 0 < t ≤ t1,
AB
0 Dψ

t �(t) t1 < t ≤ t2,

while the integration can be

O
0 It�(t) =

⎧⎪⎪⎨
⎪⎪⎩

∫ t

0

�(τ)dτ , 0 < t ≤ t1,

1 − ψ

ABψ
�(t) + ψ

ABψ	ψ

∫ t

t1

(t − τ)ψ−1�(τ)d(τ ) t1 < t ≤ t2,

here O
0 Dψ

t �(t) and O
0 It�(t) are for ordinary derivative and integration for 0 < t ≤ t1 and AB fractional

derivative integration for t1 < t ≤ T − 2.
Lemma 2.1. The solution of piece-wise derivable equation

OAB
0 Dψ

t �(t) = F(t, �(t)), 0 < r ≤ 1

is

�(t) =

⎧⎪⎪⎨
⎪⎪⎩

�0 +
∫ t

0

�(τ)dτ , 0 < t ≤ t1

�(t1) + 1 − ψ

ABψ
�(t) + ψ

ABψ	ψ

∫ t

t1

(t − τ)ψ−1�(τ)d(τ ), t1 < t ≤ t2.
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3 Existence and Uniqueness

This section will evaluate whether the piece-wise derivable problem under consideration has a
unique solution and whether it exists or not. Based on the information provided in Lemma 2.1, we
write the system (2) for this, and we further describe it as follows:
POAB
0 Dψ

t �(t) = F(t, �), 0 < ψ ≤ 1

is

�(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0 +
∫ t

0

F(s, �(s))ds, 0 < t ≤ t1

�(t1) + 1 − ψ

ABψ
�(t) + ψ

ABψ	ψ

∫ t

t1

(t − s)ψ−1�(s)ds, t1 < t ≤ t2,
(6)

where

�(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(t)
I1(t)
I2(t)
Q(t)
R(t)

, �0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S0

I10

I20

Q0

R0

, �t1
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(t1)

I1(t1)

I2(t1)

Q(t1)

R(t1)

, F(t, �(t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 =
⎧⎨
⎩

d
dt
F1(S, t)

ABF1(S, t)

F2 =
⎧⎨
⎩

d
dt
F2(I1, t)

ABF2(I1, t)

F3 =
⎧⎨
⎩

d
dt
F3(I2, t)

ABF3(I2, t)

F4 =
⎧⎨
⎩

d
dt
F4(Q, t)

ABF4(Q, t)

F5 =
⎧⎨
⎩

d
dt
F5(R, t)

ABF5(R, t)

(7)

Consider ∞ > t2 ≥ t > t1 > 0 with closed norm space as G1 = C[0, T ] having norm

‖�‖ = max
t∈[0,T ]

|�(t)|.

For the required result, we take the growth condition on the non-linear operator as

(A1) ∃ L� > 0; ∀ G, �̄ ∈ E we have

|F(t, �) − F(t, �̄)| ≤ LF|� − �̄|,
(A2) ∃ CF > 0 & MF > 0,;

|F(t, �(t))| ≤ CF|�| + MF.

Theorem 3.1. Let F be a piece-wise continuous mapping on sub-interval 0 < t ≤ t1 and t1 <

t ≤ t2 on [0, T ], also satisfying (A2), then piece-wise derivative (3) has at least one solution on each
sub-interval.
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Proof. Let us assume a closed subset in both sub-intervals of 0, T as E of B by using the Schauder
fixed point theorem

E = {� ∈ B : |�‖ ≤ R1,2, R > 0},
Next, let us suppose an operator T : E → E and applying (6) as

T(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�0 +
∫ t

0

F(τ , �(τ))dτ , 0 < t ≤ t1

�(t1) + 1
	(ψ)

∫ t1

0

F(τ , �(τ))(t − τ)ψ−1dτ , t1 < t ≤ t2

�(t1) + 1 − ψ

AB(ψ)
F(t, �(t)) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)ψ−1F(τ�(τ))d(τ ), t1 < t ≤ t2.

(8)

On some � ∈ E, we follows as

|T(�)(t)| ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|�0| +
∫ t1

0

|F(τ , �(τ))|dτ ,

|�(t1)| + | 1 − ψ

AB(ψ)
F(t, �(t)) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)ψ−1|F(τ�(τ))d(τ ),

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|�0| +
∫ t1

0

[CF|�| + MG]dτ ,

|�(t1)| + 1 − ψ

AB(ψ)
[CF|�| + MF + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)ψ−1[CF|�| + MF]dτ ,

≤

⎧⎪⎨
⎪⎩

|�0| + t1[CF|�| + MF] = R1, 0 < t ≤ t1,

|�t1
| + 1 − ψ

AB(ψ)
[CF|�| + MF] + ψ(T − T)ψ

AB(ψ)	ψ + 1
[CF|�| + MF]dτ = R2, t1 < t ≤ t2,

≤
{

R1, 0 < t ≤ t1,

R2, t1 < t ≤ t2.

The final equation suggests that T(E) ⊂ E since � ∈ E. It follows that T is closed and complete.
Moving forward, we will assume perfect continuity. Specifically, we will use tm < tn ∈ [0, t1] as the first
interval of the classical derivative notion.

|T(�)(tn) − T(�)(tm)| =
∣∣∣∣
∫ tn

0

F(τ , �(τ))dτ −
∫ tm

0

F(τ , �(τ))dτ

∣∣∣∣
≤
∫ tn

0

|F(τ , �(τ))|dτ −
∫ tm

0

|F(τ , �(τ))|dτ

≤
[ ∫ tn

0

(CF|�| + MF) −
∫ tm

0

(CF|�| + MF)

≤ (CF� + MF)[tn − tm]. (9)
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Next from (9), we obtain tm → tn, then

|T(�)(tn) − T(�)(tm)| → 0, as tm → tn.

Thus, in the interval [0, t1], T is equi-continuous. Next, we take the other AB sense interval ti, tj ∈
[t1, T ] as

|T (�)(tj) − T (�)(ti)| =
∣∣∣∣ 1 − ψ

AB(ψ)
F(t, �(t)) + ψ

AB(ψ)	(ψ)

∫ tj

t1

(tj − τ)ψ−1F(τ , �(τ))dτ ,

− 1 − ψ

AB(ψ)
F(t, �(t)) + (ψ)

AB(ψ)	(ψ)

∫ ti

t1

(ti − τ)ψ−1F(τ , �(τ))dτ

∣∣∣∣
≤ ψ

AB(ψ)	(ψ)

∫ ti

t1

[(ti − τ)ψ−1 − (tj − τ)ψ−1]|F(τ , �(τ))|dτ

+ ψ

AB(ψ)	(ψ)

∫ tj

ti

(tj − τ)ψ−1|F(τ , �(τ))|dτ

≤ ψ

AB(ψ)	(ψ)

[ ∫ ti

t1

[(ti − τ)ψ−1 − (tj − ψ)ψ−1]dτ

+
∫ tj

ti

(tj − τ)ψ−1dτ

]
(CF|�| + MF)

≤ ψ(CH� + MH)

AB(τ )	(ψ + 1)
[tψ

j − tψ

i + 2(tj − ti)
ψ ]. (10)

Further from (10) we get tm → tn, then

|T(�)(tn) − T(�)(tm)| → 0, as tm → tn.

Therefore, in the interval [t1, t2], T is equi-continuous. It follows that T is an equi-continuous
mapping. The Arzelá-Ascoli Theorem shows that operator T is limited, uniform, and continuous.
There is at least one solution to the piecewise derivable problem (3) on each subinterval, according to
Schauder’s fixed point theorem. �

Theorem 3.2. If T is a contraction operator, then the suggested piece-wise model has a unique root
with condition (A1).

Proof. As previously, given a piece-wise continuous mapping T : E → E, let � and �̄ ∈ E on
[0, t1] be understood as

‖T(�) − T(�̄)‖ = max
t∈[0,t1]

∣∣∣∣
∫ t1

0

F(τ , �(τ))dτ −
∫ t1

0

F(τ , �̄(τ ))dτ

∣∣∣∣
≤ t1LF‖� − �̄‖. (11)

From (11), we have

‖T(�) − T(�̄)‖ ≤ t1LF‖� − �̄‖. (12)

It follows that T is contraction. In summary, the problem under consideration has a unique
solution inside the specified subinterval according to the outcome of the Banach contraction theorem.



618 CMES, 2025, vol.142, no.1

Additionally, in the context of the AB derivative, for the second sub-interval t ∈ [t1, t2] as

‖T(�) − T(�̄)‖ ≤ 1 − ψ

AB(ψ)
LF‖� − �̄‖ + ψ(T − Tψ

)

AB(ψ)	(ψ + 1)
LF‖� − �̄‖. (13)

or

‖T(�) − T(�̄)‖ ≤ LF

[
1 − ψ

AB(ψ)
+ ψ(T − T)ψ

AB(ψ)	(ψ + 1)

]
‖� − �̄‖. (14)

The presented problem, therefore, has a unique solution in the second sub-interval according
to the Banach contraction theorem since T is contraction. Consequently, each sub-interval of the
piecewise derivable model has a unique solution according to Eqs. (12) and (14). �

Ulam Hyers Stability
To obtain the Ulam-Hyers stability for the proposed model, we need to prove that a small

perturbed term in the starting condition or the parameters of the system implies small perturbations
in the solution of the system. It can be achieved by deriving that the operator T is Lipschitz continuous
w.r.t the starting conditions or any of the parameters of the system.

Definition 3.1. The proposed model (2) is called Ulam-Hyers stable, if for all N > 0, then the
following inequality holds true.∣∣POABCDψ

t �(t) − F(t, �(t))
∣∣ < N, t ∈ T . (15)

Let we have a unique solution � ∈ Y that is constantA > 0,∣∣∣∣� − �
∣∣∣∣

Y
≤ AN, for all, t ∈ T . (16)

Next, if we chose an increasing operator U : [0, ∞) → R+, the inequality above can be written as
under:∣∣∣∣� − �

∣∣∣∣
Z

≤ AU(N), for each, t ∈ T .

If U(0) = 0, then the final solution is general Ulam-Hyers (G-H-U) stable.

Remark 1. Assume that an operator U ∈ C(T ) is independent of � ∈ W and holds U(0) = 0,
then

|U(t)| ≤ N, t ∈ T
POABCDψ

t �(t) = F (t, �(t)) + U(t), t ∈ T .

Lemma 3.1. Let the mapping
POABC
0 Dψt�(t) = F(t, �(t)), 0 < ψ ≤ 1. (17)

The solution of (17) is

�(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0 +
∫ t

0

F(z, �(z))dz, 0 < t ≤ t1

�(t1) + 1 − ψ

AB(ψ)
F(t, �(t)) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − z)ψ−1F(z, �(z))dz, t1 < t ≤ T ,
(18)
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∣∣∣∣F(�) − F(�)
∣∣∣∣ ≤

⎧⎪⎨
⎪⎩

�0 + t1[CF|�| + MF]N, t ∈ (0, t1][
(1 − ψ)	(ψ) + (tψ

2 )

AB(ψ)	(ψ)

]
N = �N, t ∈ [t1, t).

(19)

Theorem 3.3. Lemma (3.1) implies that if
LFtψ

	(ψ)
< 1, then the solution to model (3) is Hyers-Ulam

stable as well as G-H-U stable.

Proof. If � ∈ W is a solution of (3) and � ∈ W is also a unique solution of (3), then we have

Case: 1 for t ∈ (0, t], we have∣∣∣∣� − �
∣∣∣∣ = sup

t∈(0,t]

∣∣∣∣� −
(

�◦ +
∫ t1

0

F (z, �(z)) dz
)∣∣∣∣

≤ sup
t∈(0,t)

|� − �◦| + t1[CF|�| + MF]N
(20)

On more calculation∣∣∣∣� − �
∣∣∣∣ ≤ (t1[CF|�| + MF])N (21)

Case: 2∣∣∣∣� − �
∣∣∣∣ ≤ sup

t∈[t1,t)

∣∣∣∣� −
[
�(t1) + 1 − ψ

AB(ψ)
[F (t, �(t)) , ]

+ ψ

AB(ψ)	(ψ)

[∫ t

t1

(t − z)ψ−1F
(
z, �(z)

)
dz
]]∣∣∣∣

+ sup
t∈[t1,t)

1 − ψ

AB(ψ)

∣∣F (t, �(t)) − F
(
t, �(t),

)∣∣
+ sup

t∈[t1,t)

ψ

AB(ψ)	(ψ)

∫ t

t1

(t − z)ψ−1
∣∣F (z, �(z)) − F

(
z, �(z)

)∣∣ dz.

Using � =
[
(1 − ψ)	(ψ) + tψ

2

AB(ψ)	(ψ)

]
and further calculation we have

∣∣∣∣� − �
∣∣∣∣

W
≤ � (22)

N + �LF

∣∣∣∣� − �
∣∣∣∣

W
(23)

We have

∣∣∣∣� − �
∣∣∣∣

W
≤

⎛
⎜⎜⎝ �

1 − �

LF

⎞
⎟⎟⎠β

∣∣∣∣� − �
∣∣∣∣

W
.



620 CMES, 2025, vol.142, no.1

We use

A = max

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

t1

	(ψ + 1)

1 − LFt1

	(ψ + 1)

⎞
⎟⎟⎠ ,

�

1 − �LF

1 − MF

⎫⎪⎪⎬
⎪⎪⎭

Now, by Eqs. (21) and (22), we have∣∣∣∣� − �
∣∣∣∣

W
≤ AN, at every t ∈ [t1, t).

Thus, we finally say that the solution of (3) is Hyers-Ulam stable. Furthermore, if we write N with
U(N) in (24), we get∣∣∣∣� − �

∣∣∣∣
W

≤ AU(N), at each t ∈ [t1, t).

So, we can say that the solution to the consider model (3) is G-H-U stable based on the fact that
U(0) = 0.

4 Numerical Procedure

In this part, we will now construct a numerical approach for the chosen piece-wise derivable model
(2). For each of the two [0, T ] sub-intervals, we will develop a numerical scheme in both ordinary and
AB derivative forms. The piece-wise model’s numerical scheme will resemble the integer order scheme
seen in [31]. Applying Eq. (2) for both ordinary and AB format using the piece-wise integral as follows:

S(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S0 +
∫ t1

0

F1(τ )dτ , 0 < t ≤ t1,

S(t1) + 1 − ψ

AB(ψ)
ABF1(t) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)τ−1ABF1(τ )dτ , t1 < t ≤ t2,

I1(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I10
+
∫ t1

0

F2(τ )dτ , 0 < t ≤ t1,

I1(t1) + 1 − ψ

AB(ψ)
ABF2(t) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)τ−1ABF2(τ )dτ , t1 < t ≤ t2,

I2(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I20
+
∫ t1

0

F3(τ )dτ , 0 < t ≤ t1,

I2(t1) + 1 − ψ

AB(ψ)
ABF3(t) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)τ−1ABF3(τ )dτ , t1 < t ≤ t2,

Q(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q0 +
∫ t1

0

F4(τ )dτ , 0 < t ≤ t1,

Q(t1) + 1 − ψ

AB(ψ)
ABF4(t) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)τ−1ABF4(τ )dτ , t1 < t ≤ t2,
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R(t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R0 +
∫ t1

0

F5(τ )dτ , 0 < t ≤ t1,

R(t1) + 1 − ψ

AB(ψ)
ABF5(t) + ψ

AB(ψ)	(ψ)

∫ t

t1

(t − τ)τ−1ABF5(τ )dτ , t1 < t ≤ t2.
(24)

Subsequently, we will demonstrate the methodology for model (24)’s first equation, and the
remaining agents will follow the same process.

On t = tn+1

S(tn+1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S0 +
∫ t1

0

F1(S, I1, I2, Q, R, τ)dτ , 0 < t ≤ t1,

S(t1) + 1 − ψ

AB(ψ)
ABF1(S, I1, I2, Q, R, tn) + ψ

AB(ψ)	(ψ)

∫ tn+1

t1

(t − τ)ψ−1ABF1(τ )dτ , t1 < t ≤ t2.

(25)

By expressing Eq. (25) in the Newton interpolation formula given in [31] as follows:

S(tn+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∑
q=2

[
5
12

F1(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)ψt

−4
3
F1(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)ψt + F1(Sq, Iq

1, Iq
2, Qq, Rq, tq)

]
,

S(t1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ψ

AB(ψ)
ABF1(Sq, Iq

1, Iq
2, Qq, Rq, tq) + ψ

AB(ψ)

(δt)ψ−1

	(ψ + 1)

n∑
k=i+3

[AB
F1(Sq−2, Iq−2

1 , Iq−2
2 , Qq−2, Rq−2, tq−2)

]
�

+ ψ

AB(ψ)

(δt)ψ−1

	(ψ + 2)

n∑
k=i+3

[AB
F1(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF1(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]∑
+ ψ

AB(ψ)

ψ(δt)ψ−1

	(ψ + 3)

n∑
k=i+3

[AB
F1(Sq, Iq

1, Iq
2, Qq, Rq, tq) − 2ABF1(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF1(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]
�.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)
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For the other three quantities, the Newton interpolation approach can be expressed as follows:

I1(tn+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

II0 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∑
q=2

[
5
12

F2(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)ψt

−4
3
F2(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)ψt + F2(Sq, Iq

1, Iq
2, Qq, Rq, tq)

]
,

I1(t1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ψ

AB(ψ)
ABF2(Sq, Iq

1, Iq
2, Qq, Rq, tq) + ψ

AB(ψ)

(δt)ψ−1

	(ψ + 1)

n∑
k=i+3

[AB
F2(Sq−2, Iq−2

1 , Iq−2
2 , Qq−2, Rq−2, tq−2)

]
�

+ ψ

AB(ψ)

(δt)ψ−1

	(ψ + 2)

n∑
k=i+3

[AB
F2(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF2(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]∑
+ ψ

AB(ψ)

ψ(δt)ψ−1

	(ψ + 3)

n∑
k=i+3

[AB
F2(Sq, Iq

1, Iq
2, Qq, Rq, tq) − 2ABF2(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF2(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]
�.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(27)

I2(tn+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I20 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∑
q=2

[
5
12

F3(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)ψt

−4
3
F3(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)ψt + F3(Sq, Iq

1, Iq
2, Qq, Rq, tq)

]
,

I2(t1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ψ

AB(ψ)
ABF3(Sq, Iq

1, Iq
2, Qq, Rq, tq) + ψ

AB(ψ)

(δt)ψ−1

	(ψ + 1)

n∑
k=i+3

[AB
F2(Sq−2, Iq−2

1 , Iq−2
2 , Qq−2, Rq−2, tq−2)

]
�

+ ψ

AB(ψ)

(δt)ψ−1

	(ψ + 2)

n∑
k=i+3

[AB
F3(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF3(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]∑
+ ψ

AB(ψ)

ψ(δt)ψ−1

	(ψ + 3)

n∑
k=i+3

[AB
F3(Sq, Iq

1, Iq
2, Qq, Rq, tq) − 2ABF3(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF3(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]
�.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)
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Q(tn+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q0 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∑
q=2

[
5
12

F4(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)ψt

−4
3
F4(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)ψt + F4(Sq, Iq

1, Iq
2, Qq, Rq, tq)

]
,

Q(t1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ψ

AB(ψ)
ABF4(Sq, Iq

1, Iq
2, Qq, Rq, tq) + ψ

AB(ψ)

(δt)ψ−1

	(ψ + 1)

n∑
k=i+3

[AB
F4(Sq−2, Iq−2

1 , Iq−2
2 , Qq−2, Rq−2, tq−2)

]
�

+ ψ

AB(ψ)

(δt)ψ−1

	(ψ + 2)

n∑
k=i+3

[AB
F4(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF4(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]∑
+ ψ

AB(ψ)

ψ(δt)ψ−1

	(ψ + 3)

n∑
k=i+3

[AB
F4(Sq, Iq

1, Iq
2, Qq, Rq, tq) − 2ABF4(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF4(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]
�.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

R(tn+1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0 +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∑
q=2

[
5
12

F5(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)ψt

−4
3
F5(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)ψt + F5(Sq, Iq

1, Iq
2, Qq, Rq, tq)

]
,

R(t1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ψ

AB(ψ)
ABF5(Sq, Iq

1, Iq
2, Qq, Rq, tq) + ψ

AB(ψ)

(δt)ψ−1

	(ψ + 1)

n∑
k=i+3

[AB
F5(Sq−2, Iq−2

1 , Iq−2
2 , Qq−2, Rq−2, tq−2)

]
�

+ ψ

AB(ψ)

(δt)ψ−1

	(ψ + 2)

n∑
k=i+3

[AB
F5(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF5(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]∑
+ ψ

AB(ψ)

ψ(δt)ψ−1

	(ψ + 3)

n∑
k=i+3

[AB
F5(Sq, Iq

1, Iq
2, Qq, Rq, tq) − 2ABF5(Sq−1, Iq−1

1 , Iq−1
2 , Qk−1, Rq−2, tq−1)

+ABF5(Sq−2, Iq−2
1 , Iq−2

2 , Qq−2, Rq−2, tq−2)

]
�.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

� =

⎡
⎢⎢⎣

(1 + n − q)ψ

(
2(n − q)2 + (3ψ + 10)(n − q) + 2ψ 2 + 9ψ + 12

)

−(n − q)

(
2(n − q)2 + (5ψ + 10)(−q + n) + 6ψ 2 + 18ψ + 12

)
⎤
⎥⎥⎦ ,

∑
=

⎡
⎢⎢⎣

(1 + n − q)ψ

(
3 + 2ψ − q + n

)

−(n − q)

(
n − q + 3ψ + 3

)
⎤
⎥⎥⎦ ,

� = [
(1 + n − q)ψ − (n − q)ψ

]
.
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5 Numerical Simulation

Our numerical simulation in Figs. 1 to 5, which uses the classical and global piece-wise AB
derivative notion, is provided for the validation of the numerical method in this part. After splitting
the interval into two sub-intervals, we verify that the first interval has an integer order derivative and
compare it to Table 1’s available data for testing the second interval on various fractional orders in the
sense of AB.

Figs. 1–5 represent five agent populations in which the susceptible case decreases and then
becomes stable as the other compartment increases on sub-intervals with bending from integer to
fractional order. From [0, t1], the single curve line represents the integer order classical behavior for
the first interval. Conversely, the global order derivative behavior on [t1, t2] is displayed by the four
distinct curves for the second interval. In Fig. 2 the first stage infection of HIV slowly grows up in
the first intervals and reaches its peak value it again declines moving towards stability in the second
interval as the hospitalized and recovered people increase. Fig. 3 shows the dynamics of second-stage
infection which behaves like 2 but with more time taken.

We address the piecewise Atangana-Baleanu-Caputo method with the NN approach for the
previously mentioned model in this part. In this approach, we choose three types of hidden layers,
including 10, 100, and 10 neurons for every layer to proceed the method onwards. Here, we applied the
NN technique to obtain the performance of weight with low residual errors, and the epochs number is
considered 1000. The obtained figures represented the approximate solution along with absolute error
which we tested with NN to train the data accurately.

All data represented in Fig. 1a for class S and we obtained the output by using NN. Regression is 1
in this figure, and mean square (MS) and root mean square (RMS) errors are 0.20037 and 0.44762. To
mention the method’s accuracy, the histogram shows a mean error of 0.026565 and a variance error of
0.44758. The train data in Fig. 1b for the same class produced the same output. Regression is one from
Fig. 1b, while the MS and RMS errors are 0.20358 and 0.4512. As mentioned above, plot the mean
error of 0.00049474 and the variance error of 0.45227 in the histogram. The test data we presented is
in Fig. 1c, and the output is obtained with NN. The regression coefficient is approximately 1, while the
mean and root mean square errors are 0.22981 and 0.47938, respectively. The histogram plot shows
the mean error of 0.77348 and the variance error of 0.47845, and one can see the method’s accuracy.
The validation data are plotted in Fig. 1d, and the results we obtained through NN show regression is
approximately 1 while MS and RMS errors are 0.15587 and 0.3948, respectively. The histogram plot
presents the mean error of 0.098023 and the variance error of 0.38676 to present the performance of
the given approach. The dynamical behavior of S is shown as modified piecewise fractional along with
NN in terms of Fig. 1e. The plot for absolute errors is represented as Fig. 1f.

All data represented in Fig. 2a for class I1 and we obtained the output with NN. This figure shows
a regression coefficient of approximately 1. The MS and RMS errors are 1.7929 and 1.339, respectively.
According to the histogram, the method has a mean error of −0.11592 and a variance error of 1.3362.
The train data are in Fig. 2b and the results are obtained through NN. Fig shows the regression 1, MS,
and RMS errors are 0.00027376 and 0.016546, respectively. Plot the mean error of −1.7943e − 06 and
the variance error of 0.016585 on the histogram. The test data we presented is in Fig. 2c, and the results
were obtained with the help of the NN approach. As a result, the regression is 1, while the MS and
RMS errors are 11.9898 and 3.4626, respectively. This histogram plot shows a mean error of −0.76958
and a variance error of 3.4142, demonstrating the method’s accuracy. Validation data are plotted in
Fig. 2d, and results are analyzed through NN, the regression is 1. 0.001366 is the MS, and 0.036959
is the RMS errors. To demonstrate the accuracy of the given technique, the histogram plot presents a
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mean error of −0.0057984 and a variance error of 0.0369614. A modified piecewise fractional model
and an NN are shown for the first class as a function of Fig. 2e. Fig. 2f represents the plot for absolute
errors.
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Figure 1: Piece-wise dynamical view of S(t) for factional order ψ in the first interval [0, t1] and second
interval [t1, T ] with NN (a) all points, (b) train points, (c) test points (d) validation (e) comparison plot
(f) absolute error
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Figure 2: Piece-wise dynamical view of I1(t) for factional order ψ in the first interval [0, t1] and second
interval [t1, T ] with NN (a) all points, (b) train points, (c) test points (d) validation (e) comparison plot
(f) absolute error
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Figure 3: Piece-wise dynamical view of I2(t) for factional order ψ in the first interval [0, t1] and second
interval [t1, T ] with NN (a) all points, (b) train points, (c) test points (d) validation (e) comparison plot
(f) absolute error



628 CMES, 2025, vol.142, no.1

0 100 200 300
0

20

40

60

80
All Data (1)

Outputs
Targets

0 20 40 60 80
0

20

40

60

80
R = 1

0 100 200 300
-0.15

-0.1

-0.05

0

0.05

0.1
MSE = 8.4808e-05, RMSE = 0.0092091

Error

 = 0.00011066,  = 0.0092238

-0.1 -0.05 0 0.05
0

100

200

300

(a)

0 50 100 150 200
0

20

40

60

80
Train Data (1)

Outputs
Targets

0 20 40 60 80
0

20

40

60

80
R = 1

0 50 100 150 200

-6

-4

-2

0

2

4
10

-3
MSE = 1.5143e-06, RMSE = 0.0012306

Error

 = -4.0093e-05,  = 0.0012328

-6 -4 -2 0 2 4
10-3

0

10

20

30

(b)

0 10 20 30 40
0

20

40

60

80
Test Data (1)

Outputs
Targets

0 20 40 60 80
0

20

40

60

80
R = 1

0 10 20 30 40
-0.1

-0.05

0

MSE = 0.00030516, RMSE = 0.017469

Error

 = -0.0021155,  = 0.017536

-0.1 -0.05 0 0.05 0.1
0

5

10

15

20

(c)

0 10 20 30 40
20

40

60

80
Validation Data (1)

Outputs
Targets

20 40 60 80
20

40

60

80
R = 1

0 10 20 30 40

0

0.02

0.04

0.06

0.08

0.1
MSE = 0.00025501, RMSE = 0.015969

Error

 = 0.0030437,  = 0.015853

-0.05 0 0.05
0

5

10

15

20

25

(d)

0 50 100 150 200 250 300
t

0

10

20

30

40

50

60

70

80

Q
(t

)

0.30
0.25
0.20
0.15

(e)

0 50 100 150 200 250 300
t

10-6

10-5

10-4

10-3

10-2

10-1

100

A
b

so
lu

te
 e

rr
o

rs
 Q

(t
)

0.30
0.25
0.20
0.15

(f)

Figure 4: Piece-wise dynamical view of Q(t) for factional order ψ in the first interval [0, t1] and second
interval [t1, T ] with NN (a) all points, (b) train points, (c) test points (d) validation (e) comparison plot
(f) absolute error
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Figure 5: Piece-wise dynamical view of R(t) for factional order ψ in the first interval [0, t1] and second
interval [t1, T ] with NN (a) all points, (b) train points, (c) test points (d) validation (e) comparison plot
(f) absolute error
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All data are used NN to obtain the class I2 Fig. 3a output. This figure has an approximate regres-
sion coefficient of 1. The mean and root mean square errors are 0.46427 and 0.68138, respectively. The
histogram shows a mean error of −0.053295 and a variance error of 0.68042. Fig. 3b shows the same
output for train data with the same method for the same class. Based on the regression coefficient,
the mean and root mean square errors are 0.0015816 and 0.012576, respectively, graph −8.1136e − 05
and the variance error of 0.012606 on the histogram. Similarly, the next figure shows the test data we
presented. NN is used to obtain the output of Fig. 3c. Therefore, the regression coefficient of 2.8405,
and the root mean square error of 1.6854. However, the mean error is 2.8405, while the root mean
square error is 1.6854. According to this histogram plot, the method has a variance error of 1.6864
and a mean error of −0.24413. Validation data are plotted in Fig. 3d. The regression coefficient we
obtained from NN is approximately one based on the output we obtained. There is a mean of 0.26425
and a root mean square error of 0.51406. Using the histogram plot, the mean and variance errors are
−0.11198 and 0.50738, respectively, demonstrating the performance of the method. For the first class
as a function of Fig. 3e, we show a modified piecewise fractional model and an NN Fig. 3f. A plot of
absolute errors can be seen in Fig. 3f.

All data are represented in Fig. 4a. NN was used to obtain the output for class Q. Approximately
1 is the regression coefficient in this figure. Having calculated the mean and root mean square errors,
we have found that the errors are 8.4808e − 05 and 0.0092091. To illustrate the method’s accuracy, the
histogram indicates a mean error of 0.00011066 and a variance error of 0.0092238. The train data in
Fig. 4 based on the same method, Fig. 4b also produced the same results for the same class. There is
one regression coefficient in Fig. 4, while the mean and root mean square errors are 013.5143e − 06
and 0.0012306, respectively. Plot the mean error of −4.0093e − 05 and the variance error of 0.0012328
in the histogram. The test data we presented is in Fig. 4c, and results are obtained through NN. In this,
regression is 1, while the mean and root mean square errors are 0.00030516 and 0.017459, respectively.
One can see the method’s accuracy from the histogram plot, which shows a mean error of −0.0021155
and a variance error of 0.017536. The validation data are plotted in Fig. 4d. We obtained a regression
coefficient of approximately 1 using NN. 0.00025501 and 0.015969 are the mean and root mean square
errors, respectively. To demonstrate the accuracy of the technique, a histogram plot depicts the mean
error of 0.0030437 and the variance error of 0.015853. Based on Fig. 4e, the dynamics of the first class
are shown as modified piecewise fractional in conjunction with NN. As shown in the figure below,
absolute errors are represented in Fig. 4f.

Fig. 5a represents all data. For class R, NN was used to obtain the output. Approximately 1 is the
regression coefficient in this figure. Using the mean and root mean square errors, we found the errors
to be 7.0803 and 2.6609. This histogram illustrates the method’s accuracy by showing a mean error
of 0.1939 and a variance error of 2.6582. The train data in Fig. 5b and a similar method were used to
produce the same results for the same class. According to Fig. 5b, one regression coefficient translates
into a mean of 0.0018519 and a root mean square error of 0.043034, respectively. Plot the mean error
of 4.0284e − 05 and the variance error of 0.043136 in the histogram. The test data we presented is in
Fig. 5c, using NN, we obtain the output. This regression has an approximate 1 regression coefficient,
a 45.2967 mean, and a 6.7303 root mean square error. The histogram plot demonstrates the method’s
accuracy, with a mean error of 1.0653 and a variance error of 6.7205. The validation data are plotted
in Fig. 5d. The regression coefficient obtained was approximately 1. In other words, 2.0538 is the
mean error, and 1.4331 is the root mean square error. This histogram plot displays the mean error and
variance error of 0.23149 and 1.4303, respectively, as a demonstration of the accuracy of the technique.
A modified piecewise fractional in conjunction with a NN is shown in Fig. 5e. Here, absolute errors
are shown as Fig. 5f.
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6 Conclusion

The study analyzes a novel scheme of piece-wise derivable HIV infection with two two-stage
infection models under the integer order derivative and AB operator, respectively. The considered
system is treated on two sub-intervals by splitting the whole interval to establish the piece-wise
dynamical system. The first interval is analyzed under integer order, while the second interval is
processed under the global operator of AB derivative on different fractional orders. The uniqueness
and existence in the form of theoretical results of both the intervals for the proposed model are proved
using the analysis of fixed point theory. The numerical solution scheme for the model is also developed
using Newton’s polynomial method for both sub-interval in integer order derivative and AB operator
of fractional order ψ . The graphical view of all five agents has been shown for five different data
on different arbitrary orders of the time interval. The bending effects are also shown on t1 describing
crossover properties of the piece-wise derivative dynamics. The study analyzes a novel scheme of piece-
wise derivable HIV infection with two two-stage infection models under the integer order derivative
and AB operator, respectively. The considered system is treated on two sub-intervals by splitting the
whole interval to establish the piece-wise dynamical system. The first interval is analyzed under integer
order, while the second interval is processed under the global operator of AB derivative on different
fractional orders. The uniqueness and existence in the form of theoretical results of both the intervals
for the proposed model are proved using the analysis of fixed point theory.
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