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ABSTRACT

Liver cancer remains a leading cause of mortality worldwide, and precise diagnostic tools are essential for effective
treatment planning. Liver Tumors (LTs) vary significantly in size, shape, and location, and can present with
tissues of similar intensities, making automatically segmenting and classifying LTs from abdominal tomography
images crucial and challenging. This review examines recent advancements in Liver Segmentation (LS) and Tumor
Segmentation (TS) algorithms, highlighting their strengths and limitations regarding precision, automation, and
resilience. Performance metrics are utilized to assess key detection algorithms and analytical methods, emphasizing
their effectiveness and relevance in clinical contexts. The review also addresses ongoing challenges in liver tumor
segmentation and identification, such as managing high variability in patient data and ensuring robustness
across different imaging conditions. It suggests directions for future research, with insights into technological
advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods. This
paper contributes to a comprehensive understanding of current liver tumor detection techniques, provides a
roadmap for future innovations, and improves diagnostic and therapeutic outcomes for liver cancer by integrating
recent progress with remaining challenges.
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Abbreviations

AI Artificial Intelligence
CSSM Conditional-Statistical Shape Model
CT Computed Tomography
DT Decision Tree
ELM Extreme Learning Machine
FCN Fully Convolution Network
FE Feature Extraction
FMLS Fast-Marching Level-Set
FSVM Fuzzy Support Vectors Machine
GLCM Gray-level co-occurrence matrix
HFF Hierarchical feature fusion
LC Liver Cancer
LS Liver Segmentation
MI Medical Images
MLP Multi-Layer Perceptions
MRI Magnetics Resonance Imaging
NN Neural Networks
PET Positron emissions tomography

1 Introduction

The human body is composed of numerous cell types. In a controlled and orderly manner,
these cells grow and split to generate new cells. Therefore, the tumor can develop, and a mass of
additional tissue can be formed. It can be benign (that is not cancerous) or malignant (cancerous).
Abnormal cells are present in malignant tumors [1]. The body’s largest glandular organ is the liver
[2]. Liver Cancer (LC) is a lethal disease around the globe. The best treatment available is surgical
resection. However, the conditions applied i.e., tumor sizes should be met. Therefore, it is critical
to early diagnosis and accurate appraisal of tumors [3]. In the medical field, LT diagnosing has
a broad scope. It is challenging for researchers to segment LT as Computed Tomography (CT)
images [4]. Presently, Ultrasound Imaging (US), Magnetic Resonance Imaging (MRI), computer axial
tomography, and Positron Emissions Tomography (PET) images are some Medical Images (MI) that
are extensively utilized for detecting cancers [5]. Precise and robust lesion segmentation is the primary
concern in examining liver pathologies, radiotherapy, and surgery planning [6]. An impact is shown
by the progression of medical technology and artificial intelligence (AI) on the comprehension of
MI. Computer-Aided Diagnosis (CAD) is one of the fields of main research focus, wherein computer
technologies are utilized to detect and characterize malfunction of MI [7].

The research field of MI analysis was dominated by the automatic detection and segmentation of
tumors. It is also a vital pre-processing step in CAD [8]. The recent advancements in computer vision
spurred the resurgence and refinement of deep Neural Networks (NN). It can now surpass mankind’s
performance in object classification as natural images [8,9]. Next, classification techniques are applied
to segmented images to classify tissue into two types classified as normal and abnormal [10,11].
Additional investigation is performed on the abnormal tissue image to extract helpful information
from a segmented image with some noises [12]. Some comprehensive reviews were done on LS
[13,14]. The LT detection techniques are reviewed in this paper. As per the image features it works
on, a segmentation technique is categorized as centered on a methodical study of disparate LC
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detection methods and a systematic summary of the methods. Thus, the performance of every category
is summarized, and an optimum solution is found for a specific segmentation task [15,16]. The
fundamental architecture for LT detection is exhibited in Fig. 1.

Figure 1: Basic architecture of LT detection

The working pipeline utilized to detect LT is depicted in Fig. 1. There are several cancers in the
liver. Predicting whether the tumor is present or not and identifying diverse tumor stages are vital
steps in the treatment and cancer evaluation. Pre-processing is vital to diminish the available noise
and elevate the CT image’s edges to segment the liver and tumor effectively. Through several features,
such as texture, shape, and size, CT and LT images can be detected and categorized [17]. Tumors are
classified based on the chosen feature using diverse classifiers. In the evaluation, the performance of
several models for LT detection is discussed. This paper is organized as follows: Section 2 is devoted to
the literature review, and Section 3 describes the results from reviewed papers, irrespective of the input
dataset, methods, and illustrations. Section 4 is for discussion, and Section 5 exhibits the conclusions
and future work. Fig. 2 presents the generalized steps for data pre-processing of images [18,19].

A. Noise removal techniques

Noise is an unavoidable aspect of digital images, emerging during the acquisition, coding,
transmission, and processing phases. Removing noise from digital images is difficult without a solid
grasp of filtering techniques. This review offers a brief overview of various noise filtering methods,
where the selection of filters is guided by analyzing noise characteristics and segmentation from CT
volumes [20,21]. A thorough and quantitative assessment of noise and the most suitable filters is
presented in this discussion [22,23]. The generalized expression of the noise model is illustrated in
Eq. (1).

ENoisy (x, y) = A (x, y) + N (x, y) (1)

The position of the noise in the image is referred to as ENoisy(x,y). The original image is denoted
by A(x, y) and its noise pixel is r. The Gaussian noise can be represented by N(x, y)–N(0, S2). The
expression for the mean filter model is presented in Eq. (2). The Gaussian filter is outlined in Eq. (3).
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The mean squared error of the model can be expressed by Eq. (4) [24,25].

MFfiltered (x, y) = 1
|Wf |

∑
(j,k)∈Wf

Mfnoisy (x + i, y + j) (2)

G (x, y) = 1
2 ∗ 3.14s2

e− x2+y2

2s2 (3)

MSEV = 1
RS

R∑
x=1

S∑
y=1

[
I (x, y) − If (x, y)

]2
(4)

Figure 2: Different types image data pre-processing steps

B. Edge Enhancement Techniques

Edge enhancement is essential in image processing because the human visual system depends on
edges to understand image content. Edges in different directions can be specifically identified and
enhanced. These enhanced edges can be blended with the original image to preserve the context.
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Horizontal edges and lines, in particular, are often accentuated during this process [26,27].

Px =
⎡
⎣

−1 0 1
−1 0 1
−1 0 1

⎤
⎦

Py =
⎡
⎣

−1 −1 −1
0 0 0
1 1 1

⎤
⎦

(5)

|∇I (x, y)| =
√

P2
x + P2

y (6)

The Prewitt operator is another gradient-based edge detection method, akin to the Sobel operator
but using simpler coefficients. The horizontal and vertical kernels are shown in Eqs. (5) and (6).

C. Histogram equalization

Histogram equalization is an image processing technique to enhance contrast by redistributing
intensity levels. It aims to publish the most common intensity values, producing a more balanced image
and revealing details in regions with low contrast, as depicted in Eqs. (7) and (8).

CDF (I) =
I∑

j=0

h (j) (7)

Eq. (7) is the Cumulative Distribution Function (CDF) in the context of histogram equalization,
where CDF(I) is the cumulative sum of the histogram values up to intensity level and h(j) is the
histogram count for intensity from j [28].

T (I) = CDF (I) − CDF min
(M ∗ N) − CDF min

∗ (L − I) (8)

where T(I) is the transformed intensity for the pixel value, and CDF(I) is the cumulative distribution
function value at the intensity within the max and min range. The total number of pixels in the image
is (M∗N). The number of possible intensity levels (for an 8-bit image, Q = 256).

2 Literature Review

Based on the working pipeline, the state-of-the-art reports, modern research developments, present
trends, and recommendations for further enhancement in the automatic LT detection field are depicted
in this section. (i) Image pre-processing, (ii) TS, (iii) Feature Extraction (FE), and (iv) classification
utilizing standard datasets are the four noteworthy stages discussed in this paper [29,30]. Section 2.1
reviews the pre-processing and segmentation techniques. The methods are discussed in Section 2.2. The
Deep Learning (DL) and Machine Learning (ML) classification for LT detection are briefly explained
in Section 2.3. Also, the paper reviews the various research perspectives on the proposed topic of study,
Liver Tumor Segmentation [31,32].

2.1 Pre-Processing and Segmentation Methods
This section reviews the modern achievements in autonomous LS with pre-processing. Before the

data are forwarded to the segmentation stage, it typically undergoes pre-processing. Pre-processing is
employed to eradicate noise and preserve the edges. The pre-processing and segmentation techniques
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involved in LT detection are elaborated. Abdominal CT images are pre-processed to increase LS’s
speed and accuracy [33–35]. Centered upon an amalgamation of region growing and threshold
algorithms, a technique for LS was developed. All the schemes are determined in one among the three
categories incorporating Grey Level centered, Structure centered, and using Segmentation networks
[36–40].

2.1.1 Grey-Scale-Based Approach

Grey level-based pre-processing procedure with a hybridized semi-automatic technique for LS
centered upon level-set techniques utilizing manifold seed points [41]. The proposed hybridized
technique encompassed a modified Fast Marching Level Set (FMLS) and a Threshold Centered
Level Set (TCLS). A customized FMLS was employed to detect an optimum initial liver region as
of manifold seed points chosen by the user. A TLS was utilized to extract the actual liver centered
upon the initial liver region. The hybridized technique was favored for LS in pre-operative virtual liver
surgery planning. Nevertheless, the automatic techniques sacrificed the liver extraction’s accuracy as
their algorithm can distinguish the liver from the neighboring organs based on the resemblance of
image intensity betwixt the organs [42].

A similar work was done on hybridized watershed segmentation for LT diagnosis. The nose was
eliminated by a median filter [43]. The watershed segmentation ameliorated the region, indicating the
presence of the needed objects. A solitary intensity threshold was returned, separating pixels into ‘2’
classes: foreground and background. The Wavelet transform determined the threshold values. It was
simple and took very little time. An effectual system for detecting LC was deemed. The input was
considered in the image or video form, and the output was the same as the inputted image. However,
the method encompassed an over-segmentation issue.

Lakshmi et al. [44] introduced Kernelized Fuzzy C-Mean (KFCM) clustering with an adaptive LT
segmentation threshold. A succession of test images on MICCAI 2008 LT segmentation datasets was
taken to extract the tumor area. The tumor area was gauged. To reduce the effect of noise and enhance
clustering, the KFCM introduced a kernel function on FCM. The result exhibited positive outcomes
for the algorithm. Segmenting the LC area was effective, and it achieved a high peak signal-to-noise
ratio (PSNR), lower Mean Squared Error (MSE) values, and higher consistency for detecting smaller
changes in images. Nevertheless, the technique was not appropriate for noisy images.

The FCM approach for CT and LT segmentation was proposed, which analyzes altered intensity
values and higher frequencies eradicated utilizing histogram equalization and a median filter scheme
to increase the contrast of liver CT images [45]. The approach centered on neutrosophy handled
indeterminacy, better uncertainty, lessened over-segmentation, and better accuracy and performance
on uninformed and noisy images. The accuracy attained by the suggested approach was nearly 95%
better than LS. However, the system was tested with limited CT images.

The Geodesic Actives Contour algorithm was aimed at generating pre-processing of the LT images
[46,47]. After pre-processing, the tumor’s Region of Interest (ROI) was determined. The abnormal
region’s boundary in a single slice was signified. Next, a generative model processed the remaining
slices and was ameliorated by incorporating a restraint. A probabilistic scheme was employed to search
for the tumor boundary, and the solution was attained by Bayesian inference. The Kullback-Leiblers
divergence was employed to measure the outcomes’ consistency with the model’s restraint. However,
simple training datasets were employed.
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A novel algorithm recommended for identifying a unified level set model for integrating image
gradient, area competition, and prior information was intended for CT-LT segmentation [47]. Unsu-
pervised fuzzy clustering helped to assess LT’s probabilistic distribution [48,49]. It was employed to
ameliorate the object indication function, state the directional balloon force, and regulate region
competition. An inclusive and flexible platform was provided for balancing various forces, such as
the dynamic interface, the image in the examination, and other previous information. The unified
level set model was an effectual solution for LT segmentation on contrast-ameliorated CT images.
Nevertheless, the model encompassed restrictions for these images with lower contrast, weaker
boundaries, and field homogeneity.

2.1.2 Structure-Based Approach

Work analyzing structure-based approaches develops Principal Components Analysis for auto-
matic liver image pre-processing [48–50]. Based on the created atlas, the utmost probable liver area of
the test image was additionally determined via a probability map’s posterior classification approach,
resulting in rough segmentation. Shapes intensity before the level set produced the final LS. ‘25’ test
CT datasets as of the partner site were considered. Its outcomes were contrasted with two top-notch
LS methods. Nevertheless, a smaller dataset was utilized for training [51–53].

Image rendered with hierarchical local region-centered Sparse Shape Composition (SSC) for
LS on CT scans was found to be significant and promising [54,55]. In the initial training step, to
augment the flexibility of shape prior models and devotedly capture the comprehensive local shape
information, a multi-level local region-centered SSC model termed Multi Linear Regression (MLR)-
SSC was described. The liver shapes were disintegrated into manifold areas in a multi-level fashion. The
segmentation work was more effective and robust to local minima. The method rendered an inferior
initial shape, which brought about a larger segmentation error on the last outcomes.

Generic affine in-variance shape parameterized together with graph cuts intended for the segmen-
tation utilizes training sets with regions of atypical local shape that were determined as a preliminary
segmentation. The geodesics active contour locally corrected the organ segmentation on abnormal
images [56–58]. Utilizing shape and amelioration constraints, optimized graph cuts were employed for
segmenting the vasculature in addition to hepatic tumors. A significant reduction in the LS errors could
be seen. All tumors were detected, and the trouble was anticipated with a 0.9% error. The technique’s
robustness in examining livers as complex clinical cases to permit temporal monitoring of patients
having hepatic cancer was demonstrated. Nevertheless, a high false-positive rate was present [59–61].

2.1.3 Segmentation Based Approach

Image segmenting cascaded with Enhanced Deep Convolution Neural Network (EDCNN) aims
at effective LT segmentation. For cascade segmenting of the liver in addition to lesions on CT images
with restricted image quantity, deep EDCNN was built and trained. The liver image was segmented
using the EDCNN and rendered for the EDCNN training [62]. Next, the EDCNN segmented the
tumor areas on the liver ROI areas as envisaged utilizing the EDCNN. The false positives were
significantly reduced by partitioning the hepatic tumor on the liver ROI. A public dataset was taken
for testing. In addition, many metrics were utilized to quantitatively evaluate its performance. A DICE
score of 95.22% was produced aimed at the test set of CT images. However, the system was trained
with restricted datasets [63–65].

Li et al. [66] presented probability in addition to the local restraint level set model intended for
LT segmentation as of CT volumes. The target’s Density Distributions (DD) and the multi-modal DD
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of the backdrop can minimize the probability energy approximated manifold areas. The ramp related
to the edges for weak boundaries was preserved via the edge detector. The scheme to the Chans-
Vese and the geodesics level set models and the manual segmentation performed by specialists were
compared. Concerning segmenting the hepatictumors, the Chan-Vese model was not triumphant. The
model trounced the geodesic level set model. However, the system was trained with restricted image
features [67–69].

Another work with gradient ameliorated level-set centered segmentation is intended for LT as of
CT Images [70]. It was truncated to keep the CT image intensity values in a fixed range to enhance the
image contrast surrounding the liver and LT. These were done during the pre-processing step. Firstly,
the Convolutional Neural Network (CNN) segmented the liver in a coarse-to-fine manner intended
for removing non-liver tissues aimed at succeeding TS. For roughly localizing the liver [71,72], a 2D
slice-centered U-net was utilized. 3D patch-centered full CNN was employed to refine the LS and
roughly localize the LT. The better segmentation performance of the pipeline was identified over top-
notch methods has illustrated in Fig. 3. Nevertheless, the system encompassed a high computational
expense.

Figure 3: Basic segmentation process for LT detection

Lu et al. [73] formed a 3D CNN for automatic LS. In addition, a liver probability map was attained
to generate a preliminary segmentation. Next, the learned probability map was incorporated into the
graph cut energy function for additional segmentation alteration. The detiled image segmentation
process has been illustated in the Fig. 4. It does not need any user interaction aimed at initialization,
which was the main benefit. Therefore, non-experts could perform the method. In addition, it was an
early endeavor to engage DL algorithms for 3D-LS. Nevertheless, poor classification accuracy was
present.

Chi et al. [74] aimed at automatic liver vasculature segmentation on CT images centered on the
vessel context. Voxels were grouped hierarchically to liver vasculature. Initially, they were locally
grouped into vessel branches with the benefit of a vessel junction gauge. Next, utilizing manifold
feature point voting mechanisms, they were globally grouped into vasculature. ‘10’ clinical CT datasets
were estimated. The below 3 min are taken by segmenting 3rd-order vessel trees as CT images of the
portal venous phase on a PC with a 2.0 GHz dual-core processor. The average segmentation accuracy
was 98%. However, the system encompassed higher segmentation errors.
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Figure 4: Different types of image segmentation process

Figure 5: Various feature extraction techniques

A fully Convolutional Network (FCN) was developed to address the LS task and detect liver
metastases on CT examinations [75]. Although considering semantic segmentation, FCN was demon-
strated to be an enormously powerful tool. A relatively smaller dataset was taken where the FCN
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performance was explored and contrasted with patch-centered CNN and sparsity-centered classifica-
tion schemes. True positive rates of 0.86 and 0.6 false positives per case were achieved utilizing the
fully automatic algorithm, resulting in propitious and clinically pertinent outcomes. Nevertheless, the
system needed a huge dataset.

2.2 Feature Extraction Techniques
The various FE techniques (Fig. 5) and their achievements for LT detection by features like

texture, shape, and size are listed in Table 1.

Table 1: FE techniques for LT detection

References Purpose Features
extracted

Method Dataset used Advantage Disadvantage

[26] Ultrasonic
liver tissue
characteriza-
tion

Wavelet
sub-images

Hierarchical
Feature
Fusion
(HFF)

Ultrasonic
liver image
dataset

Effective in
choosing dis-
criminating
features

Limited
dynamic
range

[27] Present
segmentation

High-level
semantic
features

NucleiSegNet Karturba
Medical
College
(KMC) Liver
dataset

Concerning
accuracy, it
rendered
better
outcomes

False-positive
predictions

[28] Identifying
LT with
Fuzzy
Support
Vector
Machine
(FSVM)

Texture
features like
energy,
contrast etc

Grey Level
Co-
occurrence
Matrix
(GLCM)

B-Mode
Sonography

Highly
satisfactory
specificity

Hard to
comprehend
and interpret
the last model

[29] TS in CT
images using
a complex
algorithm.

Edges Kirsch filter Non-public
CT dataset

Ameliorated
detection of
the concave as
well as convex
points

Complexity
was increased
for more
segments

[30] Automatic LS
utilizing

Conditional
Features

Conditional
Statistical
Shape Model
(CSSM)

Abdominal
CT volumes

Classification
accuracy was
enhanced for
poor features

Distinguishing
healthy cases
and diseased
cases were
hard

[31] Engender a
model which
identify liver
lesions

Geometric
features like
asymmetry &
compactness

GLCM Ground
Truth lesion
database

Could well be
applied to all
liver lesion
types

Less precise
lesion
contouring

(Continued)
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Table 1 (continued)

References Purpose Features
extracted

Method Dataset used Advantage Disadvantage

[32] Diagnosing
LC using a
CAD system

3D-shape &
texture
feature, and
kinetic char-
acteristics

GLCM&
Elliptic model

CT images Higher
performance
with
accuracy,
sensitivity

Manual
selection was
needed by the
input of a
single-phase
image for
segmentation

[33] Segmentation
of liver
lesions using
adaptive local
window
technique

Global and
Local
statistics

GLCM CT & MRI
datasets

Higher
robustness to
the initial
contour’s
location

Handling
disparate liver
lesions was
hard

[34] Introduces LS
method

Local features
and liver
boundary

Sparse Priori
SSM
(SP-SSM)

Computer
Assisted
Intervention
(MICCAI)
2007

Complications
of the
deformation
model

A large
sample size
was needed

Studies [26–28] look into different elements of liver image analysis. Cheng et al. [26] analyzed
ultrasonic liver tissue using wavelet sub-images and HFF, which successfully selects discriminative
features but has a restricted dynamic range. Shyam et al. [27] focused on liver segmentation utilizing
high-level semantic features and NucleiSegNet, which achieves higher accuracy with the KMC Liver
dataset but encounters false-positive predictions. Guangming [28] employed FSVM and textural
characteristics such as energy and contrast to identify liver tissue using B-Mode Sonography and the
GLCM. It delivers excellent specificity but is challenging to understand. Studies [29–31] used a variety
of approaches for segmenting liver tissue and identifying lesions. Ramin et al. [29] employed a compli-
cated method for tissue segmentation in CT images, concentrating on edge detection using a Kirsch
filter on a non-public CT dataset. Although they enhanced the identification of concave and convex
locations, they added complexity. Sho et al. [30] used a statistical shape model for automated liver
segmentation utilizing conditional features on abdominal CT volumes, which improves classification
accuracy but struggles to discriminate between healthy and sick patients. Laszlo et al. [31] created a
model to identify liver lesions using geometric characteristics and GLCM using the Ground Truth
lesion database. This is appropriate for all hepatic lesions; however, the contouring is less exact.

Studies [32,33] use modern methods to diagnose liver conditions and segment lesions. Chin et al.
[32] identified liver diseases utilizing a CAD system with 3D form, texture features, kinetic properties,
GLCM, and an elliptic model on CT images. It has good accuracy and sensitivity but requires manual
segmentation. In a study [33], liver lesions were segmented using an adaptive local window approach
using global and local statistics on CT and MRI datasets, displaying resilience to baseline contour
position but struggling with diverse hepatic lesions. The MICCAI 2007 dataset is used in a study [34]
to develop a liver segmentation approach that uses local characteristics and the liver border with Sparse
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a priori Skin Sparing Mastectomy (SPSSM). Although it can efficiently accommodate deformation,
it necessitates a high sample size. These studies present a variety of techniques, emphasizing benefits
such as effective feature selection and high accuracy while addressing shortcomings such as complexity
and difficulties in discriminating between healthy and sick tissues.

2.3 Classification Techniques for Liver Tumor Detection
Classification is the final stage in an autonomous CAD system. The extracted set of feature

vector(s) as of the former stage is acquired as the input. The classification phase aims to implement
a learning-centered methodology regarding its inputted feature vector(s) for disease diagnosis. The
classification techniques for LT detection are briefly explained here.

2.3.1 ML-Based Methods

SVM was found to be highly influential for the automated liver as well as TS [35]. Utilizing training
sets, the regions of a characteristic local shape were ascertained as of a liver’s initial segmentation. The
liver segmentation in abnormal images was locally corrected by the geodesic active contour. Utilizing
shape and enhancement constraints, graph cuts segmented the hepatic tumors. Significant reduction
in the LS errors and also every tumor were detected. SVM and feature selection were utilized to reduce
the total false tumor detection. The tumor trouble was anticipated with a 0.9% error. Nevertheless, the
technique was computationally costly.

SVM aims at automated LT detection [36]. An automated CAD of LT as of CT images was
generated. Markov Random Fields (MRF) embedded level set technique segmented the liver. Robust-
ness was rendered to noise as well as fast segmentation. Shape analysis techniques found the shape
ambiguities of the liver (segmented), which utilized a training set intended for correction. The graph cut
technique detected hepatic tumors as of the corrected LS. FE was employed to classify them utilizing
an SVM. However, the system encompassed poor classification accuracy.

Das et al. [37] presented a fuzzy clustering with a DT classifier for LC detection. With adaptive
thresholding, the liver and other body parts were separated initially. Next, with spatial fuzzy clustering,
the cancer-affected lesions of the liver were segmented. As for segmented cancerous areas, the
informative features were extracted. It was classified into Hepato Cellular Carcinoma (HCC) and
MET utilizing MLP and C4.5 DT classifiers. An effectual approach intended to automatically
recognize LC was the SFCM-centered segmentation with a C4.5 DT classifier. Nevertheless, a lower
recognition rate was obtained.

Huang et al. [38] rendered an arbitrary feature subspace ensemble-centered Extreme Learning
Machine (ELM) intended for LT detection and segmentation. The ELM autoencoder was executed
as a pre-training step to increase testing accuracy. ELM was trained as a 1-class classifier with merely
healthy liver samples in automatic LT detection. The performance was contrasted with ‘2’-class ELM.
A semi-automatic approach was utilized to train the classifier to choose samples in 3D space in LT
segmentation. The technique was tested and evaluated using a cluster of patients’ CT data, and the
experiment showed propitious outcomes. Nevertheless, the segmentation process was tedious.

Kernel-centered ELM for LT detection together with segmentation trained as a 1-class classifier
with merely healthy liver samples in training [39]. It brought about a technique of tumor detection
centered upon novelty detection. It was contrasted with ‘2’-class ELM. The semi-automatic approach
was adopted using arbitrarily choosing samples in 3D space inside a restricted ROI intended for
classifier training to extract the tumor boundary. A cluster of patients’ CT data was considered. The
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experimentation showed better detection and encouraged segmentation outcomes. However, it limited
its applications to higher dimensional and larger data.

2.3.2 DL-Based Methods

DL models are utilized to diagnose the LT by disparate image acquisitions with the progression
of AI. Disparate works are done for lever segmentation and LT detection utilizing DL approaches.
The DL techniques for LT detection are listed in Table 2. The summary in Table 2 outlines several
techniques that provide insight into the range of accuracy reported in several methods discussed in
the study. Image pre-processing is crucial for a precise outcome of succeeding steps. Generally, noise
elimination, contrast enhancement, and edge enhancement are the ‘3’ kinds of pre-processing. As the
Wiener filter can polish the boundary and conserve the image’s interior information well, it was utilized
by the models to perform image pre-processing. The cumulative distribution function was utilized
by histogram equalization to normalize image intensity, thereby elevating image brightness. The pre-
processing schemes utilized in the above models executed comparatively well in network training for
automated LS.

Table 2: DL techniques for LT detection

References Techniques Dataset and images Accuracy (%) Limitations

[40] Fuzzy-differential
evolution approach

UCI liver disorder
dataset along with
CT images.

95 Detecting disparate
sorts of liver
metastasis tumors

[41] Three-dimensional
(3-D) CNN

Clinical dataset
along with CT
images

83 Not suitable for
critical clinical
problems

[42] Hybridized
Fully-CNN
(HFCNN)

CT images 97.22 More complex for
unbalanced datasets

[43] Transfer learning ImageNet 98.6 Process was
time-consuming

[44] FCNet Dataset from
JIPMER

96.26 The ReLU activation
function was not
valid for identifying
the discriminating
components

[45] CNN Publicly available
datasets and CT
images

95.5 Manual delineation
might be
time-consuming

[46] NN HEM dataset and
US images

90.3 Duration of the
network is unknown

(Continued)
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Table 2 (continued)

References Techniques Dataset and images Accuracy (%) Limitations

[47] Probabilistic
Neural Network
(PNN)

As of ‘40’ fatty liver
patients in addition
to ‘40’ cirrhotic
patients, CT
abdominal images
were gathered

95 Smaller datasets for
training

[48] Supervised fuzzy
pixel classification

Leuven data and
CT images

72 Texture features led
to high
computational
complexity

[49] MCFCN 3D-IRCADb in
addition to CT
images

74 Low accuracy for
low-contrast images

[50] PNN classifier DICOM images 96.7 Low sensitivity for
complex features

[51] Distance
Regularized Level
Set Evolution
(DRLSE)

Publicly available
3D data set and
CT images

83 Unable to identify
similarity between
segmented and
manual ROIs

[52] FCN 3DIRCAD and CT
images

93.1 Extremely
time-consuming

[53] ANOVA Publicly available
data set

87.0 Not suitable for
practical
applications

[54] 3D U-Net LiTS 94 Increase in
processing time for
complex features

[55] DCNN LiTS 80 Lesion segmentation
accuracy was low

[56] Expectation
maximization/max-
imization of the
posterior marginal

CT datasets 77 Detection bright
tumor is hard

[57] CNN MICCAI-Sliver07 80 Unexplained
behavior of the
network

[58] FCM Publicly available
CT images

98.3 Fixed-size ROI

[59] DRN LiTS 92.19 Limited competence
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The entire ‘3’ sorts of LS methods have their advantages. Generally, to handle the complex
segmentation issue, the GL-centered models are often utilized together. Using prior knowledge, the
structure-centered models handled the liver’s unclear boundary. This means that some issues that
the GL-based methods cannot handle can be dealt with through this model. Owing to the capacity
to resolve computer vision tasks, a primary focus for the research community in previous years is
deep convolutional NN [74–77]. Vital attributes for detecting tumor regions as of the image are
termed Features. A statistical approach and a structured approach are the two ways it is done.
Major researchers utilized a statistical approach. Co-occurrence matrix, Fractals, Gabor filters, and
wavelet transform were the several statistical techniques for gauging texture. GLCM, utilized by major
researchers, captures numerical feature values by utilizing spatial relationships among neighborhood
pixel features. Several autonomous approaches for brain tumor detection, namely NN and SVM,
have been popular in the prior decades. As DL can signify complicated structures, own-learning,
and process enormous MRI-centered image data efficiently, it has reached a central tract regarding
automation of Brain tumor detection. It can present the current trends and achievements in ML and
DL techniques as shown in Fig. 6. Due to their automated FE techniques, DL models have been
identified as being able to execute better and make the system more effective and intelligent [78].

Figure 6: Variety of dataset usage on diagnosing the LT

2.4 Analysis and Problems
Several models can encounter a few challenges in TS and detection even though they were

introduced with various benefits. These models are found to be rapid. However, they can miss their
effectiveness when the target’s GL varies. Many false positive regions requiring post-processing are
encompassed in their outcomes. Requiring an enormous quantity of training data to cover the whole
liver condition is difficult for those models. It is even more critical with the liver’s non-standard shape,
which makes it challenging to define the liver utilizing a unified model. TS grounded on DL has
become the standard of autonomous TS, and outstanding achievements have been made in the image
segmentation domain. In order to deliver great performance, a few challenges of DL are derived.
The deep learning classifier is grounded mainly on the available dataset’s magnitude and quality. The
success ratio of DL can be directly hampered mainly in the medical domains if restricted data or
information is present. The model’s performance was primarily affected by the slight alteration in the
values of hyperparameters. Accurate outcomes for real-time issues cannot be rendered by the default
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value of parameters. DL models need neuron training repeatedly for diverse issues as they cannot
adapt to another domain. For the scope of enhancements and alterations, infinite opportunities are
available. Noteworthy enhancements in the accuracy of analysis and prediction in diagnosing disease
by DL cannot be ignored.

3 Discussion

The disparate outcomes of the ML and DL techniques show the classifiers’ performance. Centered
on some performance metrics, such as sensitivity, accuracy, and specificity, together with NPV and
PPV, the performance of the techniques is gauged. The below figures are utilized to comprehend the
performance of the classifiers involved in LT detection. Datasets used by the different methods are
tabulated as follows in Table 3.

Table 3: Dataset used and their characteristics

References Name of the dataset

[60] For cysts, metastases, and hemangiomas, liver lesions were gathered from 100 Sheba
Medical Center by probing medical records

[61] CT liver slice images retrieved from 130 patients’ scans
[62] LT segmentation challenge PAIP2019-LS
[63] 1161 volume images as of 294 patients
[64] MRI images gathered from 2010 to 2017 throughout the institutional Picture

archiving and communication system (PACS) were framed to incorporate a
heterogeneous collection of MRI scanners and imaging studies

[65] The liver ultrasound images were gathered from 2014 to 2017
[66] Ultrasonic images of 115 patients offering 99 focal liver lesions
[67] TCGA Liver (TCGA-LIHC) dataset and KMC dataset
[68] PASCAL VOC 2012 segmentation benchmark
[69] LiTS-TS challenge archive
[70] 3D IRCAD database

The accuracy of DL classifiers is illustrated in Fig. 7. 85.7% accuracy was obtained by the
Deep Convolutional Generative Adversarial Network (DCGAN) [60]. CNN [62] and 3D U-net [63]
encompassed 99.94% and 73.6% accuracy. CNN [64] reaches 92%. Next, 96% accuracy is attained by
the Adaptive Neural Network (ANN) [66]. CBAM [67] and DCNN [68] encompassed 90.93% and
79.7% accuracy. CNN [70] rendered 75% accuracy. PNN [50] attained 96.7% accuracy.

The sensitivity of DL classifiers is exhibited in Fig. 8. DCGAN [60] renders 78.6% of sensitivity.
Graph convolution Embedded LSTM Long Short Term Memory (GCLSTM) [61], in addition to
CNN [64], achieved 77.06% and 92% of sensitivity was attained by the Artificial Neural Network
(ANN) [66] and 85.7% of sensitivity was rendered by the FCNet (Fully Complex) Network [44]. PNN
[67] and FCM [68] encompassed 97.3% and 91% of 98.64% sensitivity.

The specificity of DL classifiers is depicted in Fig. 9. DCGAN [60] reaches 88.4%, and CNN [64]
encompasses 98% of specificity. Next, 98.11% of specificity renders ANN [66]. CBAM [67] achieves
91% of specificity. FCNet [68] and NN [69] encompass 92.4% and 72%. Then, PNN [70] has 94%
specificity, and PNN [74] achieves 96% specificity. FCM attained 92% of specificity [78].
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Figure 7: Accuracy of different DL classifiers with PNN, DCGAN, CNN, CNN-R, 3D U Net, ANN,
CBAM, DCNN and CNN-N

Figure 8: Sensitivity of different DL classifiers with FCNet, PNN, FCM, DCGAN, GCLSTM, CNN,
ANN and CBAM

Fig. 10 analyses the NPV of the various DL classifiers.It indicates that NPV of 96% and 91.66%
are attained by the PNN and CBAM [67], which are higher than PNN [70], BEDM, and ANN. The
NPV of PNN, BEDM, and ANN are 91.4%, 83.51%, and 78.45%.

The PPV of different DL classifiers is analyzed in Fig. 11. The CBAM [67] has a higher PPV value.
BEMD attains 98.67%, and PNN achieves 94% of PPV. In addition, PNN and ANN have a PPV of
87.83% and 68.62%.

The accuracy of the ML classifiers is exhibited in Fig. 7. BEMD achieves 92.95% of accuracy.
After that, SVM attains 98.9%. SVM and SVM [36] have 87.6% and 77% accuracy. The SFCM-DT
reaches 95.02% accuracy. Lastly, ELM attained 74.75% accuracy (the same has illustrated in Fig. 12).
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Figure 9: Specificity of different DL classifiers with FCNet, PNN, FCM, DCGAN, GCLSTM, CNN,
ANN and CBAM

Figure 10: SNPV of DL classifiers with PNN, PNN-I, BEMD, ANN and CBAM

Figure 11: SPPV of DL classifiers with PNN, BEMD, ANN and CBAM
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Figure 12: Accuracy of different ML classifiers with SVM, SFCM-DT, ELM and BEMD

3.1 Research Attainments of Existing Approaches
Researchers have developed several systems to classify LT. The outcomes are compared using the

figures given above, and the classifier’s performance is analyzed. DL techniques, say [63–65], are supe-
rior to ML techniques [78–82]. Semi-automatic methods offer no advantages over recent automatic
methods. Automatic methods certainly attain some of the best outcomes for LT segmentation. From
the study, automatic segmentation offers notable advantages compared to a semi-automatic technique.
The classification accuracy is improved with DL techniques, and the training time is lessened. If
liver lesion segmentation is performed inside a liver envelope, it seems more accurate, especially for
automatic segmentation. Lastly, DL techniques seem to augment tumor detection and segmentation
accuracy.

3.2 Research Problems and Trends in Tumor Analysis
The study analyzed the research problem on liver tumors, including properties like brightness,

contrast characteristics, surrounding tissues, larger sample size, and others. The same characteristics
are widely used in experiments that take any of these characteristics. However, the research does not
consider multiple characteristics. Likewise, the most critical factor to focus on is irregular tumor shapes
that vary significantly at different cancer stages. These issues are highlighted earlier by several research
communities in Tables 1 and 2, respectively. All the approaches mainly focus on tumor segmentation
and identification, which strongly relies on the attributes of the study. Though several studies exist on
tumor analysis, no strongly dependent approach can more effectively identify liver tumors, leading to
effective tumor detection and classification. The research trends mainly focus on analyzing the model
using machine learning, leading to prominent results. Though the results were promising from the
existing approach, it faced some time constraints. The study presented an outline of these algorithms
and the key factors that lead to possible improvements in any parametric analysis.

4 Research Impact on Existing Systems, Proposed Solution, and Experimental Analysis
4.1 Research Impact on Liver Tumor Detection

The proposed study mainly focuses on research aspects of analyzing the pros and cons of existing
systems by looking into the depth of several algorithms and in wider, several broad categories, Tables 1
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and 2, which highlight the significance of methods on feature extraction and strategies adopted for
different works on liver tumor analysis and deep learning techniques in the proposed context of study.
Therefore, research impact on liver tumor analysis is deemed challenging, as inferred from several
studies highlighted in the survey (presented in Sections 1 and 2). Table 4 summarizes the key research
findings and narrows the future research prospects. In this view, the identified research gap is presented,
and the following section provides an improved solution to the gap and narrows the significance of
the proposed research illustration.

Table 4: Analysis and approaches, technique adopted, and inference

Reference Approach Technique adopted Inference

[9,15,82–86] Pre-processing Greyscale Time consuming, Image
normalization issues[16,87–90] Noise elimination

[22,25,91–94] Image enhancement
[24,44,95–99] Segmentation Deep learning Knowledge constraint
[25,52,100–104] Metric calculation Similarity mismatch
[26,105–107] Feature extraction Loss Appropriate

characterization
[31,53,108–112] Entropy Low level
[66,113–117] Classification Performance Algorithm complexity
[69,72,118–122] Textual feature Choosing right texture

4.2 Proposed Solution
Compared to the existing systems, an improved model is suggested, focusing on multi-variate

analysis and the dimensions of the existing systems. Fig. 13 presents the proposed model, analyzing
the drawbacks highlighted in Table 3. The classifier presents the image analysis and passes through
several layers for improved outcomes compared to fine-tuning the expected outcomes. The results
mainly aim to classify liver tumors [123–126]. However, the study can also be well applied to several
diseases, as shown in the image. In our model, the criteria for each category are based on specific
anatomical and pathological characteristics relevant to liver tumor analysis [127–129], such as (i)
Liver—The categorization focuses on the presence, size, and location of the tumor within the liver,
as well as any associated changes in liver texture or shape [130–134]. (ii) Bladder—This is primarily
included to differentiate between abdominal organs and to exclude areas irrelevant to liver analysis,
based on spatial positioning [135–137]. (iii) Lung—The inclusion of the lung is primarily to assess any
secondary findings or metastasis, as liver tumors can sometimes spread to nearby organs [138–140].
These categories were determined based on clinical relevance and typical patterns observed in liver
tumor cases [141–143].

4.3 Experimental Analysis
Collaborative Fusion Convolutional Neural Network (CFCNN) for tumor detection is developed

to address the implications of liver and lesion segmentation. The detection of lesions from the input
data is considered very small, especially the automatic segmentation, and if it is done manually, then
it can only be applied to 2D. Fig. 14 shows the original images, which are considered for testing
purposes. In order to produce the 1 to 1.2 scales of the samples, the size of the lesions can be modified.
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The measurements are sampled evenly, and the photos are resampled using neighboring methods as
shown in Fig. 15. Using the CFCNN method, various measurements and scales are generated while
considering available datasets.

Figure 13: Proposed system model for liver tumor analysis

Figure 14: Tumor segmentation samples

The study compares performance evaluations’ similarity with several metrics such as precision,
recall, accuracy, and F1-score. The proposed method is found to be more efficient for the existing
model. The similarity coefficient evaluation has illustrated through Table 5, and convergence has
shown in Fig. 16.
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Figure 15: Training vs. validation of study results

Table 5: Similarity coefficientcevaluation

Algorithm Accuracy Precision Recall F1-score

CNN 0.63 0.53 0.65 0.73
RNN 0.71 0.67 0.71 0.81
E-CNN 0.82 0.82 0.83 0.84
CF-CNN (Proposed) 0.91 0.93 0.89 0.87

Figure 16: AUC-ROC curve
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5 Conclusions and Future Work

This study emphasizes the crucial role of efficient pre-processing and segmentation in liver
tumor identification, highlighting recent advancements and innovative computational approaches. By
examining a probabilistic distribution strategy for liver tumor analysis, we shed light on the advantages
of various feature extraction and diagnostic techniques. Among these, the Gray Level Co-occurrence
Matrix (GLCM) stands out as one of the most effective feature extraction methods, widely used for
its ability to enhance processing speed, handle data inputs, and maximize diagnostic performance in
terms of accuracy and precision. As shown in Table 1, GLCM-based methods consistently deliver
reliable results across diverse datasets, underscoring their utility in tumor feature analysis. Table 2
presents a comparison of twenty diagnostic techniques, detailing the strengths and limitations of each
approach. Combinational methods incorporating transfer learning have shown particular promise,
often outperforming traditional approaches by leveraging pre-trained models to enhance accuracy
in complex, image-based diagnostics. However, despite these benefits, transfer learning is compu-
tationally intensive, which can limit its practicality in real-time or resource-constrained settings. A
comprehensive analysis of sensitivity, accuracy, specificity, and predictive values (NPV and PPV)
across ML and DL methods reveals that certain ML algorithms remain highly effective in liver
tumor diagnosis, especially when tailored to specific data needs. Section 3 summarizes two decades
of research, tracing the evolution of ML and DL algorithms and their impact on clinical diagnostic
capabilities. While DL approaches generally offer higher accuracy for processing large, complex
datasets, ML techniques provide reliable, lower-cost options suitable for smaller datasets and limited-
resource environments. In addition to offering a detailed review of current diagnostic methods, this
paper highlights key challenges, including the need for diverse, high-quality datasets, computational
efficiency, and strategies to prevent overfitting in smaller datasets. Addressing these limitations will
be essential for improving the clinical applicability and diagnostic accuracy of liver tumor detection.
In conclusion, this research reveals substantial potential for continued innovation in liver tumor
diagnostics.

Future research should focus on refining these techniques to reduce computational demands
without sacrificing diagnostic precision. Also studies should focus on developing computationally
efficient adaptive models, exploring hybrid approaches that combine the strengths of machine learning
and deep learning, and expanding the use of unlabeled datasets to drive advancements in unsupervised
learning. By harnessing these developments, the field can advance toward implementing faster, more
accurate, and resource-efficient liver tumor diagnostics in clinical settings, ultimately improving patient
outcomes. This study underscores the importance of effective pre-processing and segmentation in
liver tumor identification, highlighting recent advancements and creative computational techniques.
Through our examination of a probabilistic distribution strategy for liver tumor analysis illuminating
the benefits of various feature extraction and diagnostic methods.
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