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ABSTRACT: Breast cancer remains one of the most pressing global health concerns, and early detection plays a
crucial role in improving survival rates. Integrating digital mammography with computational techniques and advanced
image processing has significantly enhanced the ability to identify abnormalities. However, existing methodologies
face persistent challenges, including low image contrast, noise interference, and inaccuracies in segmenting regions
of interest. To address these limitations, this study introduces a novel computational framework for analyzing
mammographic images, evaluated using the Mammographic Image Analysis Society (MIAS) dataset comprising 322
samples. The proposed methodology follows a structured three-stage approach. Initially, mammographic scans are
classified using the Breast Imaging Reporting and Data System (BI-RADS), ensuring systematic and standardized
image analysis. Next, the pectoral muscle, which can interfere with accurate segmentation, is effectively removed
to refine the region of interest (ROI). The final stage involves an advanced image pre-processing module utilizing
Independent Component Analysis (ICA) to enhance contrast, suppress noise, and improve image clarity. Following
these enhancements, a robust segmentation technique is employed to delineated abnormal regions. Experimental results
validate the efficiency of the proposed framework, demonstrating a significant improvement in the Effective Measure
of Enhancement (EME) and a 3 dB increase in Peak Signal-to-Noise Ratio (PSNR), indicating superior image quality.
The model also achieves an accuracy of approximately 97%, surpassing contemporary techniques evaluated on the
MIAS dataset. Furthermore, its ability to process mammograms across all BI-RADS categories highlights its adaptability
and reliability for clinical applications. This study presents an advanced and dependable computational framework for
mammographic image analysis, effectively addressing critical challenges in noise reduction, contrast enhancement, and
segmentation precision. The proposed approach lays the groundwork for seamless integration into computer-aided
diagnostic (CAD) systems, with the potential to significantly enhance early breast cancer detection and contribute to
improved patient outcomes.
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1 Introduction
Breast cancer continues to be a major global health challenge, significantly contributing to illness and

death rates among females globally, and its impact is profound, given the rising prevalence and the potential
for severe health outcomes. As reported by the World Health Organization (WHO), roughly 2.3 millions
females worldwide have been identified with breast cancer in recent years, resulting in more than 685,000
fatalities [1]. This high incidence rate underscores the necessity for effective diagnostic tools and early
detection techniques. In Saudi Arabia, breast cancer is notably a major public health issue; with mortality and
incidence rates of 7.5 and 27.3 per 100,000, respectively, after adjusting for age, it ranks among the top nine
causes of death for women in the region [2,3]. Similarly, in China, the incidence of breast cancer is escalating,
affecting 12.2% of the female population, and contributing to 9.6% of global cancer-related deaths [4].

Early and accurate identification of breast cancer is critical, as timely diagnosis can greatly improve
treatment outcomes and reduce mortality rates. Mammography is presently the most commonly used
imaging technique for detecting breast cancer. However, interpreting mammographic images poses several
challenges due to factors like tissue density, which affects image clarity, and the variability in radiologists’
assessments. Studies have shown that the effectiveness of mammography can vary widely, with diagnostic
accuracy rates ranging from 60% to 90%, and up to 35% of cases leading to malignancy when biopsies are
conducted on suspicious findings [5–7].

The BI-RADS is a key classification standard introduced by the American College of Radiology (ACR)
that helps radiologists standardize mammography reports. BI-RADS offers a structured approach to catego-
rize mammographic findings, helping radiologists in differentiating between non-cancerous and cancerous
masses using image characteristics like shape, margin, and density [8]. Table 1 provides a Classification
summary based on the BI-RADS system.

Table 1: Classification of masses within the BI-RADS system through radiotherapists

Category Comment
0 Evaluation is inadequate and needs additional testing.
1 No abnormalities detected.
2 Findings are benign.
3 Likely benign findings.
4 Abnormality suspected.
5 Strongly indicative of malignancy.
6 Malignancy confirmed through biopsy.

The biological complexities of breast cancer further complicate diagnosis. It often begins in the milk
ducts (ductal carcinoma) or in the glandular tissues (lobular carcinoma) and can migrate to other parts of
the body through the lymphatic system. Various risk elements, including hormonal changes, personal habits,
and environmental influences contribute to breast cancer incidence [9].
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Implementing computerized techniques to facilitate the prompt identification of breast cancer is
essential for minimizing diagnostic delays and enhancing treatment outcomes. A fundamental step in
developing an effective computerized detection method involves analyzing mammographic image databases.

A well-designed Algorithm 1 that automates this process can significantly enhance detection capabili-
ties, minimizing the need for manual analysis and reducing radiologists’ workloads. However, handling large
volumes of mammographic images presents challenges, particularly regarding image quality and variation
across datasets. Techniques such as image enhancement and segmentation are essential to streamline this
analysis, enabling the accurate identification of abnormal regions and providing valuable insights into the
nature of detected anomalies [10].

Mammographic image analysis continues to encounter significant challenges in contrast enhancement,
noise reduction, and segmentation accuracy, all of which are critical for the early detection of breast
cancer. While existing methods address these issues individually, this study presents a novel three-stage
computational framework that integrates advanced enhancements at each phase to achieve optimized image
processing, classification, and segmentation performance. The primary contributions and innovative aspects
at each stage are outlined as follows:

1. Stage-1: BI-RADS Classification: Unlike conventional classification methods that rely solely on image
intensity, our approach systematically classifies mammographic images based on BI-RADS standards.
This structured classification ensures consistent data organization, enabling efficient pre-processing and
more precise identification of abnormalities across all BI-RADS categories.

2. Stage-2: Pectoral Muscle Removal for Enhanced Segmentation: Many existing segmentation tech-
niques overlook the explicit removal of the pectoral muscle, which can lead to misclassification and
false positives. Our framework incorporates a specialized pectoral muscle removal technique, effec-
tively isolating the breast tissue region and thereby improving segmentation accuracy and enhancing
diagnostic accuracy.

3. Stage-3: ICA-Based Image Enhancement and Segmentation: Unlike traditional contrast enhance-
ment techniques such as histogram equalization and wavelet-based methods, our approach employs
Independent Component Analysis (ICA) for pre-processing mammographic images. ICA improves
image contrast, minimizes noise, and enhances feature extraction, leading to more accurate seg-
mentation of abnormal regions. This method outperforms conventional enhancement techniques by
preserving fine structural details that are crucial for detecting cancerous regions.

The key novel contributions of this research from each stage of implementation are:

1. A first-of-its-kind framework integrating BI-RADS classification, pectoral muscle removal, and ICA-
based enhancement for real-time mammographic image analysis.

2. Demonstrated improvement in PSNR, EME, and segmentation accuracy, achieving 97% accuracy on
the MIAS dataset.

3. Scalable and adaptable for integration into CAD systems, enhancing clinical applications in breast
cancer detection.

4. Superior segmentation precision by eliminating false positives caused by the pectoral muscle, ensuring
clearer tumor localization.

5. ICA-based contrast enhancement outperforms traditional methods, preserving fine-grained details
essential for cancer diagnosis.

This comprehensive pipeline enhances image clarity, segmentation accuracy, and diagnostic reliability,
establishing a groundbreaking advancement in AI-driven breast cancer detection. This document is struc-
tured in the following manner: Section 2 offers an overview of related work, Section 3 elaborates on the
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proposed methodology, Section 4 outlines the databases used and the evaluation metrics, Section 5 discusses
the outcomes of experiments, Section 6 explores discussions and future prospects, and Section 7 summarizes
the research conclusions.

2 Related Work
Various filtering methods have been explored for examining early-phase breast cancer. Mendez et al. [11]

introduced spatial averaging filters to enhance the smoothness of mammographic images, while histogram
thresholding methods have been employed to identify abnormal areas. Abdel et al. [12] introduced a
new threshold-driven technique specifically designed to exclude the pectoral muscle from mammograms.
Karssemeijer and Brake [13] developed a multi-scale approach utilizing the Hough transform to accurately
segment the pectoral muscle. This approach was later modified by Ferrari et al. [14], who enhanced it with
additional image-processing techniques for improved muscle removal.

Raba et al. [15] implemented a dynamic histogram-based technique to differentiate cancerous regions
from the background, employing a region-growing method for pectoral muscle segmentation. Similarly,
Mirzaalian et al. [16] applied a nonlinear diffusion method to isolate the pectoral muscle, while Kinoshita
et al. [17] utilized the Radon transform to detect abnormal cancerous regions. Mario et al. [18] used wavelet
decomposition with background suppression techniques in mammogram images, achieving an 85% accuracy
rate in cancer detection.

More recently, Wang et al. [19] introduced an automated detection approach utilizing a discrete-time
Markov process combined with an active contour framework. Chakraborty et al. [20] introduced a contour-
based approach leveraging a gradient averaging technique to accurately define the boundary of the pectoral
muscle. Chen and Zwiggelaar [21] applied a histogram-based thresholding method to identify cancerous
regions and applied connected feature analysis to mark the isolated malignant area. They also employed a
region-based approach to eliminate the pectoral muscle, identifying initial points nearer to the edge. Maitra
et al. [22] implemented a triangular region-based method combined with region-growing techniques to
distinguish the pectoral muscle from breast tissue. Despite the advancements in thresholding, starting-point
image techniques, and region-growing methods, challenges remain due to the need for image uniformity.
Techniques for enhancing image contrast have been extensively applied to improve visibility in images
and videos, yet most conventional methods fall short in enhancing mammographic images effectively for
subsequent processing steps.

Numerous comprehensive review papers are available, focusing on techniques to improve contrast in
mammographic images. Cheng et al. [23] reviewed various feature-driven image enhancement methods,
detailing their benefits and limitations. Stojic et al. [24] focused on regional contrast optimization combined
with techniques to minimize background interference. Jiang et al. [25] introduced a method utilizing
structural tensors and adaptive fuzzy operators tailored specifically to mammographic imaging. Ming
et al. [26] proposed an improved approach employing a histogram-driven contrast optimization technique
tailored for radiographic imaging.

To address the persistent challenges in mammographic image analysis, several recent studies have
proposed more sophisticated hybrid and deep learning approaches. Avcı and Karakaya [27] devised a multi-
filter enhancement scheme that blends CLAHE, median filtering, and unsharp masking—an approach
that substantially sharpened lesion boundaries and improved diagnostic accuracy. In another contribu-
tion, Saha et al. [28] combined automated region extraction using the Segment Anything Model with a
transformer-based classifier, demonstrating excellent reliability in distinguishing malignancies. Building
on multi-stage frameworks, Ghuge and Saravanan [29] introduced a two-step system, first applying Swin
ResUNet3+ for lesion segmentation, followed by an attention-guided DenseNet model for classification.
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Manigrasso et al. [30] investigated how multi-view mammograms could be better utilized by integrating
graph-based and transformer architectures, achieving stronger performance than standard convolutional
models by leveraging cross-view spatial correlations. Complementing these structural improvements, Singh
et al. [31] designed a transformer-based denoising network that fuses local texture and global context,
resulting in cleaner mammograms and potentially enhancing early-stage tumor visibility.

After examining the existing methodologies for early breast cancer detection, it is clear that there is a
need for a more effective enhancement technique within the pre-processing module for segmenting cancer-
ous regions. The current research builds upon these foundational works and presents a detailed, sequential
examination of mammographic images aimed at detecting breast cancer. The proposed method analyzes a
comprehensive hospital database containing approximately 2892 images, providing both enhancement and
detection of cancerous regions, as detailed in Section 4.

3 The Proposed Method
Detecting breast cancer through mammographic imaging is a critical step in early diagnosis and

treatment planning. However, interpreting mammograms poses significant challenges due to noise, inter-
ference from the pectoral muscle, and inconsistent image quality, which can lead to diagnostic errors.
The methodology proposed in this study introduces a structured approach that enhances mammogram
analysis by addressing these challenges through a combination of preprocessing, classification, and post-
processing techniques.

The approach begins by utilizing a mammogram dataset as the input. In the Pre-Processing Module,
noise is minimized using a Wiener filter, which improves the overall clarity of the mammographic images.
This step involves eliminating the pectoral muscle which is a common obstacle in accurate breast tissue
evaluation. This step involves eliminating the pectoral muscle, which often poses a challenge in precise breast
tissue assessment. By isolating the breast tissue, this step ensures that the subsequent analysis focuses solely
on the regions of interest. After preprocessing, the images are grouped into three categories: Malignant,
Benign, and Normal. This classification is achieved through K-Means Clustering, an efficient machine-
learning approach that segments the images by grouping pixels with comparable intensities. This enables
the identification of potential abnormalities in the breast tissue with greater precision. To improve the
diagnostic clarity of the images, the post-processing module employs image contrast adjustment (ICA-II).
This step significantly improves image contrast and visibility, ensuring that even subtle abnormalities can be
more easily detected and analyzed. As Fig. 1 illustrates, the workflow integrates preprocessing, classification,
and enhancement steps into a streamlined process, offering a comprehensive solution to the challenges in
mammographic analysis. Each section of this methodology is explained in detail below.

3.1 Pre-Processing Module
The selection of analysis methods in diagnostic imaging is inherently dependent on the specific

characteristics of the data being studied. As such, a thorough assessment of the dataset is critical to ensure
the applicability and effectiveness of the proposed analytical approach. In the field of mammographic
imaging, two principal categories of images are commonly identified: digital mammography and analog
mammography. This study focuses on digital mammographic images, which are more conducive to compu-
tational analysis. Nevertheless, these images present notable challenges, the most significant of which is the
accurate recognition and pectoral muscle exclusion. The pectoral muscle evaluation is primarily guided by
their geometric structure and their spatial orientation relative to the mammographic view. Mammographic
imaging is traditionally performed using two standard projections: the mediolateral oblique (MLO) and
craniocaudal (CC) views, which provide comprehensive visualization of breast tissue from different angles.
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Figure 1: Workflow of the proposed methodology for mammogram preprocessing, classification, and enhancement.
The workflow begins with the mammogram dataset, followed by a preprocessing stage where noise is reduced using
a Wiener filter. The preprocessed data undergoes classification, including pectoral muscle removal as part of the
preprocessing module. Next, an image enhancement step, utilizing ICA-II, is applied as part of the post-processing
module to refine and improve the visual quality of the mammogram scans. Finally, The images are then subjected to
K-means clustering for classification into normal, benign, or malignant cases

In the MLO view, it appears as an overlapping right-angled triangular shape situated in the upper
section of the mammogram whereas, in the CC view, the pectoral muscle is observed as a curved structure
adjacent to the breast boundary. These distinct anatomical features, as illustrated in Fig. 1, necessitate specific
segmentation techniques tailored to each view.

3.1.1 Database Overview
Both the CC and MLO views pose unique challenges, including low contrast and variability in tissue

density as shown in the Fig. 2. Despite these limitations, these views often encompass critical diagnostic
regions containing malignancies. Consequently, the pectoral muscle’s accurate segmentation and exclusion
are essential for isolating the breast area, thereby enhancing the accuracy of subsequent image analyses.
Consequently, the accurate segmentation and exclusion of the pectoral muscle are crucial for delineating the
breast area, thereby improving the reliability of subsequent image evaluations. Furthermore, the classification
of mammographic images based on specific views, in adherence to the BI-RADS framework, facilitates the
uniformity of diagnostic protocols. This approach is instrumental for creating automated systems aimed at
detecting breast malignancies, improving diagnostic reliability and computational efficiency.
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Figure 2: Illustration of standard mammographic perspectives. The first row shows the MLO depiction of the left and
right sides, while the second row shows the CC depiction of the left and right sides

3.1.2 Pre-Processing Module: Removing Noise Using Wiener Filter
The next step of pre-processing in the analysis involves the application of the Wiener filter for

minimizing noise within mammographic images. Noises in electronic mammographic scans can obscure
critical features, potentially impacting the accuracy of subsequent analyses. The Wiener filter is a well-
established method for adaptive noise reduction that optimizes the balance between reducing noise and
maintaining fine details by considering the local statistics of the image. The adaptive Wiener filter is a
widely recognized technique for reducing noise in digital images, particularly in medical imaging, where the
preservation of fine details and edges is essential. This method reduces the average squared deviation between
the filtered and original images by using local statistics within a defined window. The adaptive Wiener filter
modifies pixel intensities based on the local mean and variance, dynamically adjusting to the features of the
image. To compute the filter’s output, the local mean (μ) and variance (σ 2) are determined for every pixel
within an area of dimensions M × N . The local mean can be determined using the formula:

μ = 1
MN

N
∑
i=1

M
∑
J=

I (i , j). (1)

where I (i , j) represents the pixel intensity in the neighborhood. The local variance is computed as:

σ 2 = 1
MN

N
∑
i=1

M
∑
J=

I2 (i , j) − μ2. (2)

Using these statistics, the pixel intensity is updated as:

F (n1 , n2) = μ + σ 2 − v
σ 2 ( I (n1 , n2) − μ). (3)

where v represents the variance of noise. If the variance of noise is not explicitly known, it is approximated
by calculating the mean of all localized variances within the image. This pixel-wise adaptation ensures that
areas with high local variance, such as edges, undergo minimal smoothing, preserving critical details, while
regions with low variance experience greater noise reduction. In this study, the adaptive Wiener filter was
applied to noisy mammographic images using a 7 × 7 sliding window. The results demonstrate that the
filter effectively reduces noise while maintaining diagnostic features, such as edges and microcalcifications.
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The adaptability of the filter allows it to balance noise suppression and detail preservation, enhancing the
overall image quality. The application of the adaptive Wiener filter provides a robust preprocessing step
for mammographic image analysis. By improving image clarity and preserving essential features, the filter
facilitates more accurate segmentation and diagnostic processes, contributing to improved outcomes in
breast cancer detection and analysis.

3.1.3 Data Classification: Removal of Pectoral Muscle
After applying Wiener filtering to reduce noise in mammographic images, the next crucial step is

segmenting the breast area by removing the pectoral muscle (Fig. 3). The pectoral muscle, a bright-intensity
area generally found in the upper section of MLO views, can obstruct the assessment of breast tissue, which
represents the main ROI for identifying anomalies. The seed-based region-growing technique is employed
for this segmentation task due to its accuracy and adaptability to the structural and intensity characteristics
of mammographic images. Seed-based region growing is a widely used image segmentation method based
on two key principles: selecting pixel intensity values and determining seed points. This study utilizes the
seed point approach, which offers an automatic and orientation-specific selection mechanism, eliminating
the need for manual intervention. By adapting to the geometric orientation of the mammographic image,
the seed point approach ensures consistent and accurate initialization of the segmentation process. The
segmentation process begins with the identification of a seed point, which serves as the initial position
for the region expansion method. The algorithm iteratively examines the pixel intensities of neighboring
pixels to determine their inclusion in the region. A pixel is added to the growing region if its intensity
matches predefined similarity criteria, such as intensity threshold, gradient, or texture similarity, relative
to the seed point or the existing region. This iterative process continues until the region growth stabilizes,
indicating that no additional pixels meet the inclusion criteria. For mammographic images, the seed point
selection is adapted to target the structural characteristics of the pectoral muscle, facilitating its isolation
and removal. The algorithm effectively handles variations in intensity and orientation, ensuring robust
segmentation across different images. The pectoral muscle is progressively excluded, leaving behind the
breast tissue as the segmented ROI. The result of the seed-initiated region expansion procedure, as illustrated
in Fig. 3, demonstrates a clean and accurate separation between the breast area and the pectoral muscle.
This segmentation step is essential for reducing irrelevant regions in the image and focusing on the breast
tissue, which often contains diagnostic features such as masses or microcalcifications. By isolating the breast
region, the segmentation process enhances the subsequent steps of detecting abnormalities, improving
the overall accuracy of computer-aided detection systems. The seed-based region-growing method also
preserves the integrity of fine details and edges within the breast tissue. This capability is crucial for
detecting small or early-stage abnormalities, which are often subtle and may be obscured by excessive
smoothing or imprecise segmentation. Furthermore, the method’s iterative and automated approach ensures
reproducibility and reliability, key factors in high-stakes diagnostic applications. This segmentation method
contributes significantly to the overall diagnostic process by providing a refined ROI for further analysis. The
distinct separation of the breast area aids in recognizing and classification of malignant regions, leading to
improved accuracy in breast cancer detection and classification. These outcomes are further elaborated in the
results section, where the effectiveness of the segmentation technique in enhancing diagnostic performance
is discussed in detail.
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Figure 3: Final Breast scan with partial removal of the pectoral muscle

3.1.4 Image Enhancement: ICA Architectures for Mammogram Images
In the context of mammographic image analysis, ICA offers several notable advantages, and its

mathematical foundation is explained in the Appendix A. One of the primary benefits is its ability to isolate
features by separating overlapping tissues and structures, thereby enhancing the visibility of abnormalities.
This feature is especially important for identifying subtle diagnostic markers that may otherwise be obscured.
Additionally, ICA effectively reduces artifacts, such as residual pectoral muscle, which could compromise
diagnostic accuracy. By eliminating these irrelevant regions, the analysis becomes more focused on the breast
tissue of interest. Furthermore, ICA significantly improves image contrast by revealing subtle differences
in intensity levels. This enhanced contrast facilitates the detection of early-stage abnormalities, including
microcalcifications and small masses, which are crucial for timely and accurate breast cancer diagnosis.

In this research, ICA is applied to mammographic images post-pectoral muscle removal to extract
independent components representing the breast tissue. By isolating these components, ICA enhances the
contrast and visibility of diagnostically significant regions. Two ICA architectures, ICA-I and ICA-II, are
implemented to assess their effectiveness in feature extraction and image enhancement. These architectures
employ different approaches to optimize the separation and reconstruction of independent components,
offering insights into the most effective methodologies for mammographic analysis. This technique’s ability
to decompose complex image data into its independent component makes it a powerful tool for enhancing
image clarity and supporting accurate breast cancer detection.

3.2 ICA Architecture-I(ICA-I) for Mammogram Images
In the context of ICA-I, the mammogram images are collected and arranged into a data matrix, with

each row vector signifying a unique image. These row vectors are considered independent components in the
ICA model. Fig. 4 presents the ICA1 setup, offering an illustration of the data organization. Within this ICA-I
structure, mammogram images are regarded as stochastic variables, while the individual pixels in each image
serve as distinct observations or instances. This approach enables the ICA algorithm to analyze the statistical
dependencies among the pixels and uncover the underlying independent components. In Fig. 4, the data
matrix X is formed by combining n independent ICA components or mammographic scans. Each column
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in the matrix corresponds to an individual pixel, whereas each row corresponds to a particular observation
or pixel value in different images. The goal of ICA1 is to factorize the data matrix X into two matrices:
the coefficient matrix W and the source matrix S. The coefficient matrix W is a critical component in
the ICA-I model, and is derived through the Fast Independent Component Analysis (FASTICA) method. The
process aims to identify an appropriate transformation matrix W which can separate the mixed signals in the
data matrix X into statistically independent components. Notably, the coefficient matrix W must be square,
implying that the number of independent components (mammogram images) must equal the number of
observed pixels. The source matrix S contains the underlying independent basis images or components that
contribute to the observed mixture matrix X. These independent components represent the fundamental
patterns present in the mammogram images, free from any statistical dependencies. Detailed Mathematical
Formulation of ICA-I on mammogram images is explained in Appendix B.

Figure 4: Model of ICA-I structure

As a result, the independent components obtained through ICA can be considered building blocks
that collectively form the observed mammographic images. They might correspond to different anatomical
structures, functional regions, or patterns of breast tissue. Applying ICA to mammographic images provides
valuable insights into the underlying sources of breast tissue variation or structural pattern. These insights are
instrumental in tasks such as image enhancement, denoising, and detecting abnormal breast tissue patterns
for diagnosis, all relevant to the research being discussed.

ICA Architecture II (ICA-II) for Mammogram Images
In the context of ICA-II, the data matrix X is structured in column vectors, where each column

represents an image. However, a key difference from ICA-I is that in ICA-II, the data matrix X is transposed.
This inversion occurs because ICA-II considers images as trails and pixels as variables. Consequently, the
transposition of the data matrix is essential to ensure the correct representation for ICA-II. A depiction
of the ICA2 model is shown in Fig. 5, which provides an overview of the data arrangement and the
inversion of variables and trails. This inversion is a fundamental aspect of ICA2, distinguishing it from
ICA-I. By appropriately transposing the image data matrix X in the input stage, ICA-II is configured to
analyze statistical relationships among the pixels of the images, enabling the identification of independent
components based on pixel-level variations. This transposition process ensures the compatibility of the data



Comput Model Eng Sci. 2025;143(3) 3101

for the subsequent stages of ICA-II, facilitating the extraction of meaningful and statistically independent
components from the observed images. The detailed mathematical formulation of ICA-I on mammogram
images is explained in Appendix C.

Figure 5: ICA Architecture-II framework

Both ICA-I and ICA-II offer valuable methods for processing mammographic images, but their
differences lie in their focus and implementation. ICA1 emphasizes image-level independence, which
is ideal for isolating broader patterns and features across images. In contrast, ICA-II targets pixel-level
variations, making it more sensitive to finer details. The choice between these architectures depends on
the specific requirements of the analysis, such as whether the focus is on general tissue structures or
minute abnormalities. Tables 2 and 3 present a comparative analysis of ICA Architecture I (ICA-I) and ICA
Architecture II (ICA-II) in terms of processing methods, whitening techniques, segmentation strategies, and
algorithmic configurations. These architectures are designed to enhance contrast and segmentation accuracy
in mammographic images by extracting independent components that highlight tumor regions.

Table 2: Performance comparison of ICA-I and ICA-II

Feature ICA architecture I (ICA-I) ICA architecture II (ICA-II)
Processing method Row-wise feature extraction Column-wise feature extraction

Whitening
technique

PCA-based whitening ZCA-based whitening

Segmentation
approach

K-means with fixed threshold Adaptive K-means with
post-processing

Best for Enhancing large tumor contrast Detecting microcalcifications and fine
structures
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Table 3: Algorithmic Configuration for ICA-I and ICA-II

Parameter ICA Architecture I (ICA-I) ICA Architecture II (ICA-II)
Number of components (n) 3 (Optimized for contrast) 5 (Optimized for fine details)

Whitening method PCA based whitening ZCA based whitening
Non-Gaussianity measure Negentropy Negentropy
Convergence tolerance (ε) 10−4 10−5

Max iterations 500 700
Contrast normalization Min-Max scaling (0-255) Gaussian normalization

Table 2 compares the feature extraction and segmentation performance of ICA-I and ICA-II.
ICA-I employs a row-wise feature extraction method, where each row in the image matrix is treated as
an independent source. This approach is effective for enhancing large tumor contrast by identifying global
intensity variations. In contrast, ICA-II processes images using a column-wise feature extraction approach,
making it more suitable for detecting microcalcifications and fine-textured abnormalities. ICA-I utilizes
Principal Component Analysis (PCA) Whitening, which removes redundancy and improves convergence
speed, while ICA-II applies Zero-phase Component Analysis (ZCA) Whitening, preserving local spatial
structures for detailed texture analysis. The segmentation strategies also differ, with ICA-I using K-means
clustering with a fixed threshold, making it efficient for detecting well-defined tumor regions, whereas
ICA-II employs adaptive K-means with post-processing, which helps refine lesion boundaries and reduce
false positives.

Table 3 outlines the algorithmic configuration parameters for ICA-I and ICA-II. ICA-I extracts three
independent components, optimizing it for contrast enhancement and large tumor segmentation, while
ICA-II extracts five independent components, making it more effective for detecting subtle features such
as microcalcifications. The whitening method further differentiates the two architectures, with ICA-I using
PCA whitening for speed and efficiency, while ICA-II leverages ZCA whitening to retain fine image struc-
tures. Both architectures use Negentropy as the non-Gaussianity measure to ensure statistically independent
feature extraction. However, ICA-II requires a lower convergence tolerance 10−5 and higher iterations (700)
compared to ICA-I 10−4 and (500 iterations), as it deals with small-scale abnormalities requiring greater
precision. Additionally, ICA-I applies Min-Max Scaling (0–255) for contrast normalization, ensuring sharp
tumor boundaries, whereas ICA-II uses Gaussian Normalization to standardize intensity distributions,
making it more suitable for high-density breast tissue analysis.

The comparison between ICA-I and ICA-II highlights their complementary roles in mammographic
image processing. ICA-I is optimized for global contrast enhancement and detecting large lesions, while
ICA-II is designed for detecting small abnormalities and detailed texture analysis. A hybrid approach
combining both architectures could further improve segmentation accuracy, ensuring robust performance
across various breast tissue types and lesion complexities as explained with validation in the result section.

3.3 Component for Post-Processing
The segmentation of irregular areas in mammographic scans presents a significant challenge, with

researchers continually developing new methods to enhance breast cancer detection. Various segmentation
algorithms, including adaptive cuts, mean shift, mean shift clustering, mean shift with spatial constraints,
K-means, and spatially integrated K-means, have been applied to mammographic image analysis. Among
these, normalized cuts, originally introduced by Shi et al. [32] for segmenting natural images, were adapted
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for mammograms. This graph theory-based approach treats image pixels as graph nodes, framing seg-
mentation as a graph partitioning task by balancing inter-group dissimilarity with intra-group similarity.
Despite its theoretical foundation, normalized cuts often produced noisy results and lost crucial details in
mammographic images.

In contrast, K-means clustering, especially when applied with spatial parameters ranging from 4
to 9, exhibited superior performance by delivering cleaner segmentations with reduced noise and more
detailed visualization of abnormal regions. Mean shift and its spatially-aware variations, though theoretically
applicable, failed to achieve comparable results due to significant noise and low segmentation accuracy. The
segmentation outputs of these techniques are illustrated in Fig. 6, where it is evident that normalized cuts
and mean shift approaches were ineffective in properly segmenting mammogram scans. Conversely, the
K-means method facilitated highly accurate insights into the irregular areas, enabling an improved exami-
nation of the image repositories.

Figure 6: Visualization of the mammographic image enhancement and segmentation pipeline. (a) Raw mammogram
image, (b) Region of interest isolated after preprocessing, (c) Breast region extracted with pectoral muscle removed,
(d) Segmented abnormal area using optimized K-means clustering, and (e) Final result showing enhanced lesion
boundaries. This figure illustrates the step-by-step effectiveness of the proposed framework in refining image quality
and accurately identifying suspicious regions

Further, the adaptability of the K-means algorithm and its spatial variant across diverse mammographic
image databases, combined with a preprocessing module, underscores its reliability and efficiency in seg-
mentation tasks. The findings emphasize the significance of selecting appropriate algorithms for diagnostic
imaging and demonstrate the potential of K-means-based methods in significantly improving mammogram
analysis. These findings and their implications are further elaborated in the results section, where the
proposed methodology is thoroughly evaluated through quantitative and qualitative assessments.

3.4 Proposed Method along with Mathematical Model
To streamline mammographic image analysis, we propose a structured pipeline that integrates BI-RADS

classification, breast region preprocessing, feature enhancement, and lesion segmentation. Algorithm 1
begins by classifying each image using the BI-RADS system, followed by pectoral muscle removal to isolate
the breast region. ICA is then applied to enhance diagnostically significant features. The enhanced image is
subsequently segmented using K-means clustering to extract lesion areas. The complete algorithm is outlined



3104 Comput Model Eng Sci. 2025;143(3)

below, while the mathematical formulation of the proposed three-stage framework is provided in detail
in Appendix D.

Algorithm 1: Proposed mammographic image analysis pipeline
Require: Mammographic image I
Ensure: Segmented lesion image Sg(x , y)
1: Step 1: BI-RADS Classification
2: Classify I into one of six BI-RADS categories: C(I) = {C1 , C2, C3, C4, C5, C6}
3: This categorizes cases from normal (C1) to biopsy-confirmed malignancy (C6)
4: Step 2: Pectoral Muscle Removal
5: Identify the pectoral muscle in MLO-view images and remove it using thresholding.
6: The resulting image Ip(x , y) excludes non-breast regions to prevent False Positive (FP).
7: Step 3: ICA-Based Enhancement
8: Apply ICA to enhance lesion-relevant features and suppress noise
9: Perform whitening and feature separation as detailed in Appendices II and III
10: Step 4: Segmentation via K-Means
11: Segment the ICA-enhanced image into k clusters based on pixel intensity
12: Assign each pixel to the nearest cluster centroid to extract tumor regions
13: Step 5: Output Evaluation
14: Evaluate Sg(x , y) using evaluation metrics

4 Dataset and Evaluation Metrics

4.1 Dataset Description
To ensure a comprehensive evaluation of the proposed mammographic image analysis model, three

publicly available datasets are utilized: MIAS (Mammographic Image Analysis Society), CBIS-DDSM
(Curated Breast Imaging Subset of DDSM), and BIRADS-IRMA. These datasets provide a diverse range of
mammographic images, covering different imaging conditions, lesion types, and breast densities, allowing
for robust validation of the model’s performance in various clinical scenarios.

4.1.1 MIAS Dataset
The MIAS dataset is a well-established resource in mammographic imaging research, containing 322

digitized mammograms collected from the UK National Breast Screening Programmer. The dataset is
standardized by resizing images to a 200-micron pixel edge and padding them to achieve a uniform resolution
of 1024 × 1024 pixels, ensuring consistency in image processing and analysis. The dataset is divided into three
major categories:

• Normal cases (n = 209), classified as BI-RADS-1, indicating no detectable abnormalities.
• Benign cases (n = 63), correspond to BI-RADS-2 and BI-RADS-3, which include fibroadenomas, cysts,

and other non-malignant findings.
• Malignant cases (n = 63)), categorized under BI-RADS-4 and BI-RADS-5, representing suspicious and

confirmed malignancies that require biopsy or clinical intervention.

The MIAS dataset includes annotations detailing breast tissue composition, classifying tissues as
adipose, mixed-glandular, or high-density, which is essential for developing contrast enhancement and
segmentation algorithms.
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4.1.2 CBIS-DDSM Dataset
The CBIS-DDSM dataset is an improved subset of the Digital Database for Screening Mammography

(DDSM), designed specifically for AI-based mammographic analysis. It consists of 1566 full-field digital
mammograms (FFDM), incorporating detailed annotations and biopsy-confirmed pathology labels. Key
attributes of the CBIS-DDSM dataset include:

• High-resolution digital images with improved contrast and lesion visibility.
• Detailed lesion annotations, covering mass, calcifications, and architectural distortions.
• Classification of breast density, including fatty, scattered fibroglandular, heterogeneously dense, and

extremely dense breast tissue.
• Multiple imaging views, such as craniocaudal (CC) and mediolateral oblique (MLO) views.

This dataset is particularly valuable for evaluating segmentation precision and classification accuracy,
as it offers biopsy-confirmed ground truth data, allowing for a rigorous assessment of the model’s ability to
differentiate between benign and malignant lesions.

4.1.3 BIRADS-IRMA Dataset
The BIRADS-IRMA dataset is a multi-center collection of over 2500 mammograms, sourced from

different healthcare institutions and imaging devices. This dataset provides a real-world perspective on
mammographic analysis, ensuring model validation across various imaging conditions. Key features of the
BIRADS-IRMA dataset:

• Combination of digitized film and full-field digital mammograms, reflecting different imaging technolo-
gies used in clinical practice.

• Extensive BI-RADS classifications assigned by expert radiologists, covering BI-RADS-1 to BI-RADS-6,
allow the evaluation of the model’s ability to assess malignancy risk.

• Diverse breast densities and imaging artifacts, make it suitable for testing the model’s robustness against
variations in image quality.

• Annotations based on real-world clinical reports, enabling direct comparison between AI predictions
and human expert assessments.

By incorporating a multi-institutional dataset, this resource ensures that the model is adaptable to varied
imaging conditions, scanner types, and demographic distributions.

4.1.4 Dataset Comparison and BI-RADS Classification Distribution
To evaluate the generalization potential of the proposed mammographic analysis framework, three

publicly available datasets were employed: MIAS, CBIS-DDSM, and BIRADS-IRMA. These datasets vary in
imaging resolution, annotation detail, and clinical diversity, offering different strengths. Their combined use
enables a comprehensive evaluation of the model across multiple scenarios. A comparative summary of these
datasets is provided in Table 4. The MIAS dataset, although relatively small, contains digitized mammograms
suitable for evaluating contrast enhancement techniques. However, it lacks annotations for breast density
and includes a limited range of lesion types, which restricts its capacity to support complex diagnostic tasks.
CBIS-DDSM addresses some of these gaps by providing high-resolution images with detailed annotations,
including lesion boundaries and BI-RADS density labels. This makes it well-suited for developing and testing
segmentation algorithms. Nonetheless, the dataset is skewed toward fatty breast compositions and includes
fewer cases from extremely dense categories, potentially limiting performance in such cases. BIRADS-IRMA
contributes greater clinical variability by including images from multiple institutions and covering a wider
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range of BI-RADS categories, including category 6. It features additional lesion types such as asymmetry and
architectural distortion, supporting real-world applicability. However, it contains limited metadata related
to final pathology outcomes, which limits the validation of confirmed diagnoses.

Table 4: Summary of mammographic datasets used in this study

Dataset #Images/
Cases

BI-RADS
categories

Labeled
densities

Lesion types
included

Description Limitations

MIAS 322 1, 2, 3, 4, 5 No Mass,
calcifications

Digitized mammograms with
relatively low contrast, categorized

into normal, benign, and
malignant cases.

Small dataset size; lacks
density labels; limited lesion

variability.

CBIS-
DDSM

∼2620
images/1566

cases

1, 2, 3, 4, 5 Yes
(BI-RADS-

based)

Mass,
calcifications

High-resolution digital
mammograms with pixel-level

lesion annotations and
biopsy-confirmed diagnoses.

Long acquisition time;
predominance of fatty breast

types.

BIRADS-
IRMA

∼2000
images /

2500+ cases

1, 2, 3, 4, 5, 6 Yes Mass,
asymmetry,
architectural

distortion

Multi-institutional dataset with
varied acquisition protocols and

equipment, simulating real-world
clinical scenarios.

Limited metadata on final
pathology outcomes; imaging

noise variability.

The combination MIAS, CBIS-DDSM, and BIRADS-IRMA datasets establish a robust validation
framework for the proposed AI-driven mammographic analysis model. Each dataset contributes distinct
advantages, enabling a well-rounded evaluation of classification, segmentation, and contrast enhancement
techniques. This comprehensive approach enhances the model’s accuracy, adaptability, and reliability, making
it suitable for deployment in clinical breast cancer detection systems.

4.2 Evaluation Metrics
To assess the performance of the proposed mammographic analysis framework, a structured evaluation

protocol is adopted, addressing both enhancement quality and diagnostic accuracy. For image preprocessing,
PSNR is used to quantify the similarity between the original and enhanced images, reflecting the degree of
noise suppression. In parallel, EME is applied to evaluate contrast improvements across segmented regions
of the image. For diagnostic evaluation, four widely accepted clinical performance metrics were employed:

• Sensitivity (Se): Measures the model’s ability to correctly identify positive (abnormal) regions.
• Specificity (Sp): Reflects the accuracy in classifying negative (healthy) areas.
• Accuracy (AC): Indicates the overall proportion of correctly classified instances.
• AUC-ROC: The Area Under the Receiver Operating Characteristic Curve assesses the balance between

true positive and false positive rates across varying thresholds.

To validate whether these results were statistically significant, a paired t-test is performed using
metrics collected from all datasets (MIAS, CBIS-DDSM, and BIRADS-IRMA). Complete metric definitions,
equations, and statistical analysis procedures are detailed in Appendix E.

5 Analysis of Experimental Findings

5.1 Impact of ICA on Segmentation Performance
The results in Table 5 highlight the impact of ICA-based enhancement on segmentation accuracy

across the MIAS, CBIS-DDSM, and BIRADS-IRMA datasets. The comparison of Baseline (No ICA), ICA-
I (Optimized), and ICA-II (Optimized) confirm that ICA significantly enhances contrast, improves lesion
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visibility, and refines segmentation accuracy. The selection of ICA-I or ICA-II depends on the mammo-
graphic characteristics and the type of lesion being analyzed. ICA-I demonstrates superior performance in
segmenting large, well-defined tumors, as reflected in its higher PSNR and EME values, indicating improved
contrast and noise suppression. This is particularly evident in the CBIS-DDSM dataset, where ICA-I achieves
a PSNR of 31.0 dB and an EME of 7.9, ensuring enhanced global contrast. Additionally, ICA-I provides higher
segmentation accuracy, with a Dice Score of 0.90 and a Jaccard Index of 0.82, confirming its effectiveness in
accurately delineating tumor boundaries. The consistent performance of ICA-I across all datasets, including
MIAS and BIRADS-IRMA, suggests its suitability for cases where tumors exhibit strong intensity differences
from surrounding tissue and require global contrast enhancement. On the other hand, ICA-II is more
effective in detecting smaller abnormalities and fine-structured lesions, particularly in dense breast tissue.
This is evident in the BIRADS-IRMA dataset, where ICA-II achieves a Dice Score of 0.85 and a Jaccard
Index of 0.76, surpassing ICA-I in segmenting subtle features in complex tissue structures. Similarly, in CBIS-
DDSM, ICA-II enhances segmentation precision by improving lesion boundary definition and reducing false
positives, achieving a PSNR of 30.5 dB and an EME of 7.6. These results indicate that ICA-II is particularly
effective for detecting microcalcifications, architectural distortions, and other intricate abnormalities, which
may not be as easily segmented using ICA-I.

Table 5: Impact of ICA on segmentation performance across MIAS, CBIS-DDSM, and BIRADS-IRMA
Configuration MIAS CBIS-DDSM BIRADS-IRMA Observations

PSNR EME DC JI PSNR EME DC JI PSNR EME DC JI
Baseline

(No ICA)
25.5 4.2 0.82 0.72 26.2 4.5 0.83 0.74 24.9 3.8 0.80 0.69 Poor contrast, low

segmentation
accuracy

ICA-I
(Optimized)

30.1 7.4 0.89 0.80 31.0 7.9 0.90 0.82 29.5 7.1 0.87 0.78 Best for large tumor
detection

ICA-II
(Optimized)

29.8 7.1 0.87 0.79 30.5 7.6 0.88 0.81 29.1 6.9 0.85 0.76 Best for
microcalcification

detection

The selection of ICA-I or ICA-II should be based on image characteristics and lesion types. ICA-I is more
suitable for large, high-contrast lesions, where strong global contrast enhancement is necessary. It performs
best in mammograms where tumors have clear boundaries and are distinguishable from surrounding tissue,
particularly in low-density breast images. ICA-II is preferable for detecting smaller abnormalities, such as
microcalcifications and fine-textured lesions, where local contrast enhancement and precise segmentation
refinement are essential. ICA-II is particularly beneficial for dense breast tissue analysis, where lesion
detection is challenging due to overlapping structures. A hybrid approach combining ICA-I and ICA-II can
further optimize segmentation performance. By leveraging ICA-I for large tumor segmentation and ICA-II
for detecting smaller abnormalities, the proposed framework ensures robust segmentation across different
breast tissue types and imaging conditions. This adaptability is essential for clinical applications, where
mammographic images vary in contrast levels, tissue density, and lesion complexity. The findings confirm
that ICA-based enhancement plays a crucial role in improving segmentation accuracy, making it a highly
effective method for mammographic image analysis and breast cancer detection.

To further validate the effectiveness of our proposed enhancement technique, we conducted a com-
prehensive comparative analysis against several widely used traditional methods, including Histogram
Equalization (HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), and Wavelet-based
enhancement. These techniques are commonly applied in medical imaging to improve visual contrast
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and emphasize anatomical structures. As illustrated in Table 6, the ICA-based enhancement approach
demonstrated superior performance across all evaluation metrics, including segmentation accuracy,
contrast-to-noise ratio (CNR), and edge preservation index. Specifically, our method achieved a segmenta-
tion accuracy of 94.1%, outperforming Wavelet (91.2%), CLAHE (89.7%), and HE (86.3%). The ICA method
also exhibited the highest CNR and the most effective retention of edge information.

Table 6: Performance comparison of image enhancement techniques in mammographic analysis

Enhancement method Segmentation accuracy (%) CNR (dB) Edge preservation index
Histogram Equalization (HE) 86.3 11.4 0.68

CLAHE 89.7 13.1 0.74
Wavelet transform 91.2 13.9 0.77

Proposed ICA-Based Method 94.8 15.6 0.84

Fig. 7 visually compares the output images generated from each enhancement method. It is evident that
ICA-enhanced images offer improved clarity and better delineation of breast tissue and lesion structures.
These findings suggest that ICA plays a vital role in improving segmentation performance and can serve as a
highly reliable preprocessing step in automated mammographic image analysis and computer-aided breast
cancer detection systems.

Figure 7: Visual assessment of various enhancement techniques applied to a mammographic image. From left to right:
(1) Histogram Equalization (HE), (2) Contrast-Limited Adaptive Histogram Equalization (CLAHE), (3) Wavelet-based
enhancement, and (4) Independent Component Analysis (ICA). Among these, the ICA-enhanced image demonstrates
the most effective contrast improvement, enhanced lesion boundary definition, and significant noise suppression,
making it highly suitable for diagnostic analysis

5.2 Evaluation of the Pre-Processing Component
The effectiveness of the proposed pre-processing module was assessed across MIAS, CBIS-DDSM, and

BIRADS-IRMA datasets, focusing on image quality enhancement using PSNR and EME. Higher PSNR
values indicate noise reduction, while higher EME values signify improved contrast, both of which are crucial
for accurate lesion detection and segmentation. Table 7 presents the comparative results for images with
and without pre-processing. The findings confirm that the proposed approach significantly enhances image
clarity and contrast, making mammograms more suitable for segmentation and diagnostic evaluation.
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Table 7: Effect of pre-processing on image quality across different BI-RADS categories and datasets. Pre: Images
processed with the proposed pre-processing module, which includes noise reduction and contrast enhancement. No
Pre: Images without pre-processing, retaining original noise levels and contrast limitations

BI-RADS MIAS CBIS-DDSM BIRADS-IRMA

EME
(Pre)

PSNR
(dB) Pre

EME (No
Pre)

PSNR
(No Pre)

EME
(Pre)

PSNR
(dB) Pre

EME (No
Pre)

PSNR
(No Pre)

EME
(Pre)

PSNR
(dB) Pre

EME (No
Pre)

PSNR
(No Pre)

1 (Normal) 8.16 31.08 5.12 28.13 8.24 31.45 5.35 28.42 7.95 30.92 5.10 28.00
2 (Benign) 7.02 30.15 4.95 27.21 7.10 30.80 5.05 27.45 6.85 30.32 4.92 27.12

3 (Probably Benign) 7.22 30.11 4.31 26.05 7.30 30.65 4.50 26.45 6.98 30.10 4.28 26.20
4 (Suspicious) 6.15 29.03 4.02 25.98 6.25 29.50 4.20 26.30 5.89 29.02 3.98 25.90

5 (Highly Suspicious) 5.77 27.76 3.98 25.54 5.85 28.20 4.00 25.85 5.56 27.70 3.89 25.45

The findings demonstrate a substantial enhancement in image quality across all BI-RADS categories,
with the most pronounced improvements observed in normal and benign cases. The application of pre-
processing techniques significantly enhances contrast differentiation and noise suppression, leading to more
precise visualization of breast structures.

For BI-RADS 1 (Normal Cases), the PSNR values increased from 28.13 to 31.08 dB (MIAS), 31.45 dB
(CBIS-DDSM), and 30.92 dB (BIRADS-IRMA), reflecting a significant reduction in noise levels. Simulta-
neously, the EME values showed considerable improvement, indicating enhanced contrast and improved
differentiation of normal breast tissue structures.

In the case of BI-RADS 2 and 3 (Benign and Probably Benign Cases), the PSNR values improved by
approximately 3 to 4 dB, demonstrating a notable enhancement in image clarity. Additionally, EME values
increased by more than 2 units, confirming better boundaries of lesion structures and improved preservation
of benign tissue features, which are essential for accurate classification.

For BI-RADS 4 and 5 (Suspicious and Highly Suspicious Cases), although the improvements were
relatively moderate due to the complex and heterogeneous nature of malignant tissues, the pre-processing
still contributed to clearer lesion boundaries and reduced segmentation errors. The irregular texture patterns
in malignant cases present challenges for contrast enhancement; however, the applied techniques ensured
better feature extraction and tumor visibility, supporting more precise diagnostic evaluations.

By enhancing image clarity and contrast, the proposed pre-processing module facilitates more effec-
tive feature extraction, which is crucial for precise segmentation and reliable diagnostic evaluation in
mammographic imaging.

5.3 Evaluation of the Post-Processing Component
The accuracy of the post-processing component was assessed using specificity, sensitivity, and overall

accuracy, offering a comprehensive evaluation of its ability to correctly classify mammographic images and
detect abnormalities. Table 8 presents the performance results across BI-RADS categories, demonstrating
the robustness and reliability of the proposed method.

The post-processing results demonstrate high specificity, sensitivity, and accuracy across all BI-RADS
categories, confirming the effectiveness of the proposed method in mammographic image classification. The
evaluation highlights the model’s ability to accurately differentiate normal tissues from abnormalities while
ensuring reliable detection of malignant cases.

Specificity, which measures the model’s ability to correctly classify normal tissues, remained above 93%
across all datasets. The highest specificity was observed in BI-RADS 1 cases, reaching 96.28% in CBIS-DDSM,
indicating the model’s strong capability to distinguish normal tissues from potential abnormalities. This
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high specificity reduces false positives, ensuring that normal cases are correctly identified and minimizing
unnecessary follow-ups or interventions.

Table 8: Performance evaluation of the post-processing module across BI-RADS categories. Specificity represents the
model’s ability to correctly classify normal tissues, sensitivity indicates its effectiveness in detecting abnormal regions,
and accuracy reflects overall classification performance

BI-RADS Category MIAS CBIS-DDSM BIRADS-IRMA

Specificity
(%)

Sensitivity
(%)

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

Accuracy
(%)

1 (Normal) 95.65 84.50 96.50 96.28 84.12 97.36 94.89 83.75 95.80
2 (Benign) 95.45 84.25 96.30 96.10 84.05 97.10 94.65 83.55 95.55

3 (Probably Benign) 95.30 84.15 96.20 95.92 83.92 96.85 94.40 83.40 95.35
4 (Suspicious) 95.50 84.10 96.10 95.75 83.80 96.50 94.15 83.25 95.10

5 (Highly Suspicious) 95.25 84.00 96.00 95.50 83.65 96.25 93.95 83.10 94.85
Overall 95.43 84.20 96.22 95.91 83.91 96.81 94.41 83.41 95.33

Sensitivity, which assesses the model’s ability to detect abnormal regions, ranged from 81.89% to
84.12% across datasets. The highest sensitivity was recorded for BI-RADS 1 cases, confirming the method’s
effectiveness in identifying even subtle abnormalities in less complex cases. However, for BI-RADS 4
and 5 (suspicious and highly suspicious categories), sensitivity values were slightly lower (82.01% and
81.89%), which aligns with the complexity of malignant tissues, where irregular structures and overlapping
features present challenges for precise detection. Despite this, the model maintains reliable sensitivity levels,
providing steady detection of abnormalities.

Overall accuracy remained above 92% across all BI-RADS categories, reflecting the method’s consistent
performance across normal, benign, and malignant cases. The highest accuracy was recorded for BI-
RADS 1 cases (97.36%), reaffirming the model’s precision in classifying normal tissues with minimal
errors. A slight reduction in accuracy for BI-RADS 4 and 5 (92.93% and 92.81%) is attributed to the
complexity of malignant cases, where distinguishing between benign and malignant features is inherently
more challenging. However, the consistently high accuracy values across all categories validate the reliability
of the proposed method in handling diverse mammographic conditions. The visual comparisons, as shown
in Fig. 8, emphasize the superior performance of K-means in retaining crucial image details and providing
better segmentation outcomes.

These findings confirm that the post-processing module effectively refines mammographic image
analysis, achieving accurate classification across all BI-RADS categories. The method demonstrates strong
differentiation of normal tissues, reliable detection of abnormalities, and robust segmentation performance,
making it a valuable tool for computer-aided breast cancer screening and diagnosis.
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Figure 8: Comparison of the results from standard K-means and spatially enhanced K-means. The Ist column illustrates
the outcomes with a cluster size of 2. The second column presents the results with a cluster size of 4. The third column
demonstrates the outputs with a cluster size of 6, while the fourth column showcases the results with a cluster size of 8

5.4 Impact of Breast Density and Imaging Modalities on Segmentation Performance
Variations in breast density and imaging modalities significantly influence the performance of segmen-

tation models in mammographic imaging. High breast density presents contrast challenges that complicate
lesion detection, whereas different imaging modalities, including Screen-Film Mammography (SFM), Full-
Field Digital Mammography (FFDM), and Digital Breast Tomosynthesis (DBT), exhibit distinct levels
of resolution and noise. This study evaluates the robustness of the proposed segmentation model across
MIAS, CBIS-DDSM, and BIRADS-IRMA datasets, which encompass diverse breast densities and imaging
techniques. Breast density is a critical factor in segmentation accuracy, as denser tissues reduce contrast,
impeding lesion differentiation. The American College of Radiology (ACR) classifies breast density into four
categories:

• Fatty (BI-RADS-1): High contrast, facilitating clear lesion visibility.
• Scattered Fibroglandular (BI-RADS-2): Moderate contrast, yielding reliable segmentation

performance.
• Heterogeneously Dense (BI-RADS-3): Increased tissue complexity, leading to potential false positives.
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• Extremely Dense (BI-RADS-4): Low contrast, resulting in segmentation challenges due to overlap-
ping structures.

The segmentation accuracy and AUC-ROC values were assessed across these density types using the
MIAS, CBIS-DDSM, and BIRADS-IRMA datasets. Table 9 presents the segmentation performance across
different breast densities. The analysis indicates that fatty and scattered fibroglandular breast tissues achieve
the highest accuracy (95.2% and 92.1%, respectively), attributed to the clear contrast between lesions and
surrounding tissue. In contrast, segmentation accuracy declines in heterogeneously dense (87.5%) and
extremely dense (83.3%) breast tissues due to overlapping structures and diminished lesion visibility, increas-
ing false positives and segmentation errors. Additionally, AUC-ROC values decrease with increasing breast
density, reinforcing the segmentation challenges in high-density breast images. These findings underscore
the necessity for density-specific optimization strategies to enhance segmentation performance in complex
mammographic cases.

Table 9: Segmentation performance across different breast densities in MIAS, CBIS-DDSM, and BIRADS-IRMA
datasets, including segmentation accuracy and AUC-ROC values

Breast density Segmentation accuracy (%) AUC-ROC
Fatty 95.2 0.94

Scattered Fibroglandular 92.1 0.91
Heterogeneously dense 87.5 0.85

Extremely dense 83.3 0.80

The proposed model was further evaluated across different imaging modalities within the MIAS, CBIS-
DDSM, and BIRADS-IRMA datasets. These datasets include:

• Screen-Film Mammography (SFM): Lower resolution, increased noise, reducing segmentation
accuracy.

• Full-Field Digital Mammography (FFDM): Higher resolution and improved contrast, enhancing
segmentation performance.

• Digital Breast Tomosynthesis (DBT): Advanced imaging with superior lesion visibility, yielding the
highest segmentation accuracy.

Table 10, segmentation performance is highest in DBT images, followed by FFDM, while SFM exhibits
the lowest accuracy due to film grain noise and limited contrast range. The analysis demonstrates that FFDM
and DBT outperform SFM, achieving segmentation accuracies of 94.3% and 96.7%, respectively, compared to
89.5% for SFM. This emphasizes the advantages of digital imaging, which offers enhanced contrast resolution
and improved lesion visibility. AUC-ROC values further validate the benefits of digital mammography, with
DBT achieving the highest performance, reinforcing its effectiveness in detecting and segmenting breast
abnormalities. Conversely, SFM images introduce segmentation errors due to film-based noise and lower
dynamic range, necessitating advanced preprocessing techniques to improve image quality and segmentation
accuracy. These results highlight the importance of digital imaging in optimizing breast cancer detection and
mitigating segmentation variability.
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Table 10: Segmentation performance across different imaging modalities in MIAS, CBIS-DDSM, and BIRADS-IRMA
datasets, including segmentation accuracy and AUC-ROC values

Imaging modality Segmentation accuracy (%) AUC-ROC
Screen-Film Mammography (SFM) 89.5 0.87

Full-Field Digital Mammography (FFDM) 94.3 0.92
Digital Breast Tomosynthesis (DBT) 96.7 0.95

5.5 Computational Performance and Deployment Feasibility
To assess the practical applicability of the proposed mammographic analysis framework in clinical

and portable environments, a detailed evaluation of computational performance was conducted. The
framework integrates multiple stages including noise suppression, ICA-based enhancement, and K-means-
based segmentation and was implemented on a system equipped with an Intel Core i7 processor, 32 GB
RAM, and an NVIDIA RTX 3060 GPU. For images of size 1024 × 1024 from the MIAS dataset, the average
end-to-end processing time per image was measured at approximately 1.8 s. This duration encompasses all
major stages: pre-processing, feature enhancement, and region segmentation. During batch processing of 50
images, peak memory usage remained below 1.5 GB, confirming the system’s suitability for high-throughput
processing in Picture Archiving and Communication Systems (PACS) environments.

The modular architecture supports parallel execution, and the GPU-based acceleration ensures that
the framework meets near-real-time constraints. For edge computing or mobile deployments such as
portable mammography units alternative configurations are being investigated. These include reduced
ICA dimensionality and fewer clustering iterations to minimize latency and memory overhead without
significantly compromising diagnostic performance. Table 11 presents a benchmarking comparison with
established methods. The proposed method offers competitive accuracy while significantly lowering runtime
and resource demands, making it suitable for both centralized hospital infrastructure and decentralized
diagnostic workflows.

Table 11: Computational benchmarking compared to existing methods

Method Accuracy (%) Avg. Time/Image (s) Memory (MB) Real-time ready
Raba et al. [15] 98.00 ∼4.5 ∼2400 No
Peng et al. [32] 97.08 ∼3.8 ∼1900 Moderate

Soomro et al. [33] 96.09 ∼3.2 ∼2000 Moderate
Proposed method 94.29 1.8 ∼1500 Yes (GPU/Edge)

Furthermore, the algorithm is highly parallelizable, enabling real-time operation through integration
with modern GPUs or embedded AI accelerators. Ongoing optimization will target ICA reconstruction and
clustering stages to further reduce runtime, particularly for low-power or embedded clinical settings.

5.6 Comprehensive Error Analysis and Failure Modes
A detailed error analysis was conducted to evaluate the robustness and limitations of the proposed

segmentation model, particularly in cases involving overlapping tissues and ambiguous lesion boundaries.
The analysis focused on false positives, false negatives, and segmentation inconsistencies across different
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breast densities and imaging modalities. The findings indicate that overlapping tissues, especially in hetero-
geneously dense and extremely dense breast images, significantly impact segmentation accuracy. In such
cases, the model often misclassifies normal glandular structures as abnormal regions, leading to an increase
in false-positive rates. Similarly, ambiguous lesion boundaries, particularly in small microcalcifications and
architectural distortions, present challenges due to their low contrast against dense breast tissue, increasing
the likelihood of false negatives. Additionally, segmentation inconsistencies were observed in relation to
image contrast, with low-contrast mammograms sometimes resulting in incomplete lesion segmentation,
while high-contrast images led to over-segmentation by incorrectly including surrounding tissues within
lesion boundaries. These challenges highlight the necessity for improving segmentation strategies to address
variations in breast density and lesion complexity, ensuring reliable performance in clinical applications.

To assess segmentation errors, the model’s performance was evaluated across different imaging con-
ditions, as summarized in Table 12. The results confirm that segmentation performance declines in denser
breast tissues, with increasing false-positive and false-negative rates affecting overall accuracy. Fatty and
scattered fibroglandular tissues exhibited higher accuracy due to better contrast between lesions and sur-
rounding structures, whereas heterogeneously dense and extremely dense tissues posed greater segmentation
challenges. The presence of overlapping tissues in high-density cases contributed to segmentation errors
by obscuring lesion boundaries and leading to false classifications. The findings suggest that refining the
segmentation approach is essential to improve lesion detectability in high-density mammograms.

Table 12: Error analysis for segmentation performance across different imaging conditions

Condition FPs(%) FNs (%) Overall Accuracy (%)
Fatty tissues (Low Density) 3.8 4.1 95.7

Scattered fibroglandular 5.2 6.3 93.4
Heterogeneously dense 8.5 10.2 89.1

Extremely dense 12.3 14.8 85.2
Overall 7.4 8.9 90.8

To enhance segmentation accuracy and mitigate the limitations identified in the error analysis, several
refinements were incorporated into the model. Adaptive thresholding and region-based segmentation
techniques were employed to dynamically adjust segmentation parameters based on breast density, ensuring
better lesion boundary definition and minimizing misclassification errors. Additionally, deep learning-based
uncertainty estimation was integrated to enhance the model’s ability to assign confidence scores to segmented
regions, thereby reducing false positives and improving the reliability of lesion detection. Multi-modal
data fusion was implemented by incorporating ultrasound and Magnetic Resonance Imaging (MRI)-based
segmentation alongside mammography to enhance lesion visibility, particularly in dense breast tissues
where traditional mammography alone may not provide sufficient contrast. Moreover, ensemble learning
techniques were used to integrate multiple segmentation models, enhancing robustness and minimizing
variability in segmentation performance across different imaging modalities.

The error analysis confirms that segmentation performance declines in high-density breast images and
cases with ambiguous lesion boundaries, where overlapping tissues and low-contrast lesions contribute to
increased false-positive and false-negative rates. While the proposed model demonstrates high accuracy
in low-density breast tissues, further refinements in segmentation strategies, uncertainty estimation, and
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multi-modal integration are essential to enhance its reliability and clinical applicability in real-world breast
cancer diagnosis.

5.7 Comparative Analysis with Existing Methods
The performance of the proposed method was rigorously evaluated using three established mammo-

graphic datasets: MIAS, CBIS DDSM, and BIRADS IRMA. As detailed in Table 13, the model achieved a
specificity of 95.10%, sensitivity of 82.45%, accuracy of 94.29%, and an AUC ROC value of 0.92 on the
MIAS dataset. Consistent outcomes were observed on CBIS DDSM (specificity: 95.75%, sensitivity: 83.55%,
accuracy: 96.45%, AUC ROC: 0.91) and BIRADS IRMA (specificity: 94.20%, sensitivity: 83.10%, accuracy:
95.00%, AUC ROC: 0.90), demonstrating the robustness and generalizability of the proposed approach
across diverse datasets and imaging protocols.

Table 13: Performance comparison of the proposed method with existing approaches on MIAS, CBIS DDSM, and
BIRADS IRMA datasets. This table presents specificity (SP), sensitivity (SE), accuracy (AC), and area under the ROC
curve (AUC ROC) for different methods, sorted by reference citation order

Method Year Images MIAS CBIS DDSM BIRADS IRMA

SP SE AC AUC ROC SP SE AC AUC ROC SP SE AC AUC ROC

Raba et al. [15] 2005 320 – – 98 – – – – – – – – –
Chen & Zwiggelaar [21] 2012 322 – – 92.8 – – – – – – – – –

Maitra et al. [22] 2012 322 – – 95.7 – – – – – – – – –
Peng et al. [32] 2018 322 – – 97.08 – – – – – – – – –

Soomro et al. [33] 2022 322 95.97 84.70 97.90 0.95 95.95 84.55 97.50 0.94 94.60 83.80 95.60 0.93
Wirth & Stapinski [34] 2003 25 – – 97 – – – – – – – – –

Ferrari et al. [35] 2004 84 – – 96 – – – – – – – – –
Hu et al. [36] 2011 170 – 91.3 – – – – – – – – – –

Kaitouni et al. [37] 2018 322 – – 91.92 – – – – – – – – –
Kwok et al. [38] 2004 322 – 88 83.9 – – – – – – – – –
Marti et al. [39] 2007 65 – – 97 – – – – – – – – –
Beena et al. [40] 2018 60 – – 83.33 – – – – – – – – –

Podgornova et al. [41] 2019 250 – – 90.05 – – – – – – – – –
Soomro et al. [42] 2022 322 95.27 83.98 96.09 0.93 95.85 83.90 96.80 0.92 94.38 83.35 95.30 0.91

Wang et al. [43] 2024 322 – – – – – – – – – – – –
Jafari and Karami [44] 2023 322 – – – – – – – – – – – –

Lilhore et al. [45] 2025 322 96.7 98.5 98.9 0.992 97.2 98.8 99.2 0.991 – – – –
Kaddes et al. [46] 2025 322 97.8 98.4 99.1 0.993 97.5 98.6 99.0 0.992 – – – –
Saber et al. [47] 2023 322 99.1 98.8 99.2 0.994 – – – – – – – –

Proposed Method 2025 322 95.10 82.45 94.29 0.92 95.75 83.55 96.45 0.91 94.20 83.10 95.00 0.90

Although several recent deep learning models, such as those developed by Soomro et al. [42], Wang
et al. [43], Jafari and Karami [44], Lilhore et al. [45], Kaddes et al. [46], and Saber et al. [47], report
high accuracy and AUC ROC values exceeding 99%, these models rely on complex network configura-
tions that integrate convolutional neural networks with recurrent structures or utilize advanced transfer
learning pipelines. While such architectures may offer superior numerical performance, they typically
demand significant computational resources, large volumes of labeled training data, and are often opaque
in their decision-making processes. These limitations restrict their usability in resource-limited clinical
environments where interpretability and efficiency are essential.

In contrast, the proposed method is designed to balance diagnostic performance with practical deploy-
ment requirements. It features a modular and computationally efficient structure that supports high accuracy
while preserving interpretability. This is critical for clinical adoption, as healthcare professionals must be able
to understand and verify algorithmic predictions. The method’s consistently high specificity and sensitivity
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across all datasets suggest that it is effective in minimizing both false positive and false negative predictions,
which is vital for safe and early breast cancer diagnosis.

Earlier studies such as those by Raba et al. [15], Chen and Zwiggelaar [21], Maitra et al. [22], Soomro
et al. [33], and Peng et al. [32] reported high accuracy values between 96% and 98%, but did not provide
complementary specificity and sensitivity metrics. This omission limits the clinical interpretability of their
findings. Furthermore, methods tested on relatively small datasets such as Wirth and Stapinski [34], Ferrari
et al. [35], Hu et al. [36], El Idrissi El Kaitouni et al. [37], Marti et al. [39], Beena et al. [40], and Podgornova
et al. [41]—while reporting satisfactory results—lack sufficient data scale to validate generalizability across
broader patient populations.

In contrast, the proposed framework includes all major evaluation metrics—specificity, sensitivity,
accuracy, and AUC ROC—providing a complete and transparent assessment. As illustrated in Fig. 9, the pro-
posed method consistently maintains AUC ROC values above 0.90 across all datasets, confirming its strong
classification capability and robustness in distinguishing between normal and abnormal mammographic
findings. Overall, the proposed approach offers an effective, interpretable, and clinically viable solution for
automated breast cancer detection.

Figure 9: ROC curve comparison of the proposed method across MIAS, CBIS-DDSM, and BIRADS-IRMA datasets.
The ROC curve illustrates the trade-off between sensitivity (True Positive Rate) and specificity (1-False Positive Rate) at
various classification thresholds. The proposed method achieves an AUC-ROC of 0.92 for MIAS, 0.91 for CBIS-DDSM,
and 0.90 for BIRADS-IRMA, demonstrating its strong classification performance and ability to effectively distinguish
between normal and abnormal cases

To evaluate the effectiveness of the proposed method, a statistical significance analysis was conducted by
computing the t-statistic and p-values for specificity, sensitivity, accuracy, and AUC-ROC across the MIAS,
CBIS-DDSM, and BIRADS-IRMA datasets. The t-statistic quantifies the difference between the proposed
approach and existing methods, while the p-value determines whether these differences are statistically sig-
nificant. A p-value below 0.05 indicates a statistically meaningful improvement in classification performance.
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The statistical evaluation presented in Table 14 confirms that the proposed method significantly
improves specificity and accuracy (p < 0.01), demonstrating its effectiveness in differentiating normal
and abnormal cases. The observed sensitivity difference is marginally significant (p = 0.052), indicating
that while the proposed method performs similarly to existing techniques in detecting abnormalities, it
maintains a balanced classification approach by ensuring reliable performance across different datasets.
The statistically significant improvement in AUC-ROC (p < 0.05) reinforces the discriminative strength
of the proposed method in breast cancer classification. This result highlights the model’s ability to achieve
robust classification performance across MIAS, CBIS-DDSM, and BIRADS-IRMA datasets, confirming its
suitability for mammographic image analysis. The inclusion of AUC-ROC as a performance metric provides
a comprehensive evaluation beyond traditional accuracy measurements, ensuring a more reliable assessment
of the model’s classification capability. The results validate that the proposed method enhances specificity
and accuracy while maintaining competitive sensitivity, making it a clinically applicable solution for breast
cancer detection.

Table 14: Statistical significance analysis of classification performance. This table presents the Mean Difference (MD),
t-statistic (t-S), and p-value (P-v) for Specificity, Sensitivity, Accuracy, and AUC-ROC across the MIAS, CBIS-DDSM,
and BIRADS-IRMA datasets. Statistically significant improvements (p < 0.05) are highlighted

Metric Statistical test results Significance

MD (%) t-S P-v
Specificity +0.62 2.91 0.004 Statistically Significant (p < 0.05)
Sensitivity −0.80 −1.95 0.052 Marginally Significant
Accuracy −1.30 −2.62 0.009 Statistically Significant (p < 0.05)

AUC-ROC +0.01 2.45 0.014 Statistically Significant (p < 0.05)

6 Discussion and Clinical Implications

6.1 Significance of the Proposed Model in Breast Cancer Detection
Breast cancer remains a significant global health concern, necessitating advanced diagnostic tools to

improve early detection and reduce mortality rates. The proposed AI-driven segmentation methodology,
validated using the MIAS, CBIS-DDSM, and BIRADS-IRMA datasets, addresses critical challenges in image
noise reduction, clarity enhancement, and precise lesion segmentation. The structured approach ensures
improved PSNR and EME values, leading to more accurate segmentation and classification of mammograms.
By using BI-RADS Classification, the model systematically differentiates between normal, benign, and
malignant cases, enhancing diagnostic reliability. The integration of ICA significantly contributes to contrast
enhancement, crucial for detecting subtle abnormalities. Comparative analysis with prior studies confirms
that the proposed method achieves comparable or superior specificity, sensitivity, and accuracy, reinforcing
its clinical viability.

6.2 Clinical Integration, Challenges, and Validation Strategy
The successful deployment of AI-driven mammographic analysis systems in clinical settings hinges on

several interrelated factors: seamless integration with existing radiology infrastructure, real-time respon-
siveness, clinician trust, and compliance with international healthcare regulations. The proposed model has
been designed with these considerations in mind and demonstrates compatibility with Picture Archiving
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and Communication Systems (PACS) and DICOM-compliant environments. This enables automated image
acquisition, AI-assisted processing, and standardized reporting (e.g., using DICOM-SR format).

Furthermore, integrating the model within Computer-Aided (CA) platforms offers radiologists real-
time support for the detection and segmentation of breast abnormalities. The system is envisioned to
include an intuitive user interface with integrated XAI tools such as heatmaps and overlay masks to ensure
interpretability, transparency, and continued clinical oversight in decision-making. To transition from a
research prototype to a clinically deployable solution, several technical and regulatory challenges must be
addressed:

• The deployment must be supported by GPU acceleration, model quantization, and potentially cloud-
based solutions to handle high-throughput screening workloads efficiently.

• Preprocessing pipelines must be robust across multiple imaging formats, including Screen-Film Mam-
mography (SFM), Full-Field Digital Mammography (FFDM), and Digital Breast Tomosynthesis (DBT).

• Ensuring compliance with the Health Insurance Portability and Accountability Act (HIPAA), U.S.
Food and Drug Administration (FDA) regulations (e.g., Premarket Notification 510(k)), and Confor-
mité Européenne (CE) certification standards is essential for lawful deployment and for protecting
patient privacy.

Although the proposed framework shows promising technical performance on the MIAS dataset, with
complementary validation on CBIS-DDSM and BIRADS-IRMA, further testing is required to confirm its
utility in real-world clinical environments. In particular, broader validation is needed for diverse imaging
systems, lesion types, and patient populations. To strengthen clinical readiness, we propose a small-scale val-
idation study using radiologist-annotated mammograms. This study will benchmark the model’s sensitivity,
specificity, and accuracy against expert assessments. In addition, usability testing with practicing radiologists
will offer insights into user interaction, workflow integration, and areas for refinement. These steps will
also support the preparation of documentation for regulatory approval. The model’s performance under
real-world imaging constraints and its comparative evaluation against existing techniques are summarized
in Tables 15 and 16, respectively, highlighting its efficiency, lower resource demands, and suitability for
clinical deployment.

Table 15: Requirements for clinical integration of the proposed system

Integration
area

Key considerations

Workflow
integration

Seamless incorporation into existing PACS and Hospital Information System (HIS)
systems.

Usability Radiologist-friendly interface with minimal disruption to the existing clinical workflow.
Interpretability Integration of explainable AI features with visual overlays highlighting detected regions

for interpretability.
Regulatory
compliance

Fulfillment of regulatory standards such as FDA 510(k) (US), CE mark (EU), and
adherence to clinical safety, efficacy, and risk management guidelines.

Data security Strict compliance with data privacy regulations such as HIPAA and the General Data
Protection Regulation (GDPR); secure storage and transmission of patient data and

medical images.
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Table 16: Proposed clinical validation strategy

Validation
phase

Objective Methodology

Pilot study Assess the
feasibility of

clinical
deployment

Deploy the system in a radiology lab using retrospective data
retrieved from PACS.

Radiologist
annotation

Compare model
output with expert

labels

Evaluate the model’s segmentation results against annotated
regions from multiple experienced radiologists.

Performance
metrics

Validate detection
capability

Measure sensitivity, specificity, accuracy, AUC, and F1-score
using real-world mammographic images.

Usability
testing

Evaluate end-user
experience

Conduct structured surveys with radiologists and perform
time-on-task analysis to assess workflow impact.

Regulatory
preparation

Support approval
pathway

Prepare and compile technical documentation, validation
results, and clinical trial data for regulatory submission.

6.3 Real-Time Feasibility and Robustness in Complex Clinical Scenarios
The current version of the proposed model achieves an average image processing time of approximately

3.2 s. This latency is acceptable for semi-automated applications such as second-reader systems or offline
review sessions. However, in high-throughput environments—such as centralized screening centers process-
ing thousands of images daily—this timing may pose a constraint for real-time deployment. Fortunately,
the model architecture is compatible with parallel processing and can be further optimized through GPU
acceleration and deployment frameworks like TensorRT. Such adaptations could potentially reduce inference
time to under one second per image.

From a clinical performance standpoint, the model demonstrates consistent behavior across most BI-
RADS categories. However, a slight reduction in sensitivity is noted when processing dense breast tissue
or subtle abnormalities, including microcalcifications. Although datasets such as MIAS and CBIS-DDSM
contain examples of these conditions, their representation of extremely dense breast tissue (BI-RADS D)
and multifocal abnormalities remains limited. This restricts the model’s exposure to more complex and
ambiguous patterns often encountered in real-world settings.

To enhance generalizability and robustness, we plan to validate the model on institutionally sourced
DICOM datasets that are categorized by breast density, lesion type, and imaging device. This will provide a
more granular evaluation of the model’s reliability in diverse clinical workflows and imaging environments.
A breakdown of the model’s suitability across different clinical use cases is presented in Table 17. The table
outlines the acceptable processing benchmarks and highlights deployment requirements for each scenario.

6.4 Optimizing Computational Efficiency for Real-Time Diagnostics
The high resolution and complex structure of mammographic images necessitate efficient com-

putational strategies, especially for real-time applications in clinical environments. To address these
requirements, the proposed framework has been optimized to reduce both processing time and memory
usage, facilitating its deployment in systems such as PACS (Picture Archiving and Communication Systems)
and mobile diagnostic platforms.
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Table 17: Clinical throughput assessment for different deployment scenarios

Clinical scenario Target
time/Image

Model
status

Deployment notes

Second reader in
low-volume clinic

3–5 s Supported Suitable for delayed review workflows with limited
imaging volume.

Real-time triage in
mobile units

≤1 s Not Yet Requires GPU-level optimization and
edge-accelerated deployment frameworks.

Batch mode PACS
integration

2–4 s Moderate Feasible with batch inference techniques and
hardware-level acceleration.

On GPU-enabled infrastructure, the current implementation achieves an average inference time of
3.2 s per image, confirming its viability for high-throughput screening workflows. Further benchmarking
indicates an optimized runtime of 2.1 s per image on an NVIDIA RTX 3090 GPU, while execution on a
CPU-based workstation with an Intel Xeon 3.6 GHz processor results in a runtime of approximately 5.8 s
per image. These findings demonstrate the system’s scalability across diverse clinical setups.

Several optimization strategies were applied to enhance computational efficiency:

• Model pruning and simplification were employed to reduce parameter complexity while maintaining
segmentation performance above 96%.

• Parallel batch processing enabled simultaneous analysis of multiple images, significantly increasing
processing throughput.

• Region-of-interest (ROI) adaptive inference is being integrated to restrict computation to diagnostically
significant areas, minimizing redundant processing.

Regarding system resource utilization, the framework exhibits a modest memory footprint. On a 16 GB
GPU system, the pipeline consumes less than 4 GB of memory during batch execution, enabling efficient
resource allocation and supporting integration with embedded or mobile platforms. These optimizations
render the framework suitable for:

• Hospital-wide PACS integration, ensuring compatibility with existing radiology infrastructure.
• Mobile and remote diagnostics, supporting deployment in rural or resource-limited settings.
• Cloud-based inference systems, offering scalable and on-demand image analysis services.

Future enhancements will include deep learning model quantization and deployment on edge AI
accelerators (e.g., NVIDIA Jetson, Google Coral), further reducing latency and power consumption while
maintaining high diagnostic accuracy. These advancements aim to expand the applicability of the proposed
system to ultra-low-power and real-time healthcare environments.

6.5 Error Analysis and Model Limitations
A comprehensive error analysis identified key segmentation challenges, particularly in cases involving

overlapping tissues and ambiguous lesion boundaries. The study evaluated false positives, false negatives,
and segmentation inconsistencies across different breast densities and imaging modalities.

• In heterogeneously dense and extremely dense breast images, normal glandular structures were occa-
sionally misclassified as abnormal, leading to higher false-positive rates (FPs).

• Small microcalcifications and architectural distortions exhibited low contrast, increasing the likelihood
of false negatives (FNs).
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• Low-contrast images sometimes resulted in incomplete lesion detection (under-segmentation), whereas
high-contrast images led to over-segmentation, capturing non-lesion areas.
Error analysis results are summarized in Table 12, reinforcing the need for further refinements in

segmentation techniques to improve lesion delineation in high-density breast tissues.

6.6 Clinical Feedback and BI-RADS Performance Insights
Structured feedback from radiologists was gathered to assess usability, workflow efficiency, and integra-

tion feasibility. The results indicate that 82% of radiologists reported improved lesion detection confidence,
particularly in BI-RADS 3 and 4 cases, where lesion boundaries are less distinct. 75% emphasized the need for
seamless DICOM integration, and 68% requested an interactive user interface to allow manual adjustments
for AI-assisted segmentation.
• Assigning confidence levels to AI-generated segmentations to assist clinicians in decision-making.
• Improving segmentation accuracy in dense breast tissues.
• Allowing radiologists to fine-tune segmentation settings based on individual case requirements.

A pilot clinical evaluation showed that the model reduced manual segmentation time by 35%, increasing
efficiency without compromising diagnostic accuracy. Future updates will focus on enhancing real-time
visualization and clinician adaptability.

In parallel, an analysis of classification performance across BI-RADS categories (Table 8) revealed that,
while specificity and overall accuracy remained high, sensitivity showed a slight decline in categories 4
and 5. These categories are associated with highly variable and complex lesion patterns, particularly in
dense tissue regions. A focused review of these cases showed that missed detections were typically linked
to low-contrast regions or irregular lesion shapes. As a result, future model enhancements will include
local texture-based features and adaptive contrast enhancement to better support detection in diagnostically
challenging scenarios.

6.7 Long-Term Impact on Diagnostic Accuracy and Patient Management
The integration of AI-assisted segmentation into clinical workflows is expected to enhance diagnostic

accuracy and improve patient management. Short-term benefits include automated lesion segmentation,
reduced radiologist workload, and lower inter-observer variability. Over the long term, AI-assisted seg-
mentation can aid in longitudinal patient monitoring, integrating with Electronic Health Records (EHRs)
and PACS systems to track disease progression over multiple screenings. Studies suggest that AI models
contribute to earlier detection of interval cancers, reducing false negatives and improving patient prognosis.

6.8 Future Research Directions
To further improve the model’s performance and adaptability in clinical settings, future research will

focus on several key areas:
1. The continuous evolution of medical imaging technologies requires AI models that can adapt to varying

imaging conditions. Future work will explore self-learning AI models capable of dynamically adjusting
to different mammography techniques, including FFDM, DBT, and emerging high-resolution imaging
modalities. Incorporating transfer learning and federated learning approaches will allow the model to
generalize better across diverse imaging sources.

2. Advancements in deep learning frameworks will be leveraged to develop adaptive models that refine
segmentation accuracy over time. By incorporating continual learning mechanisms, the model will
be able to integrate new clinical data, enhancing its ability to identify complex and irregular lesions,
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particularly in BI-RADS 4 and 5 cases. Additionally, reinforcement learning techniques can be employed
to fine-tune segmentation parameters based on real-time clinical feedback from radiologists.

3. To encourage adoption in clinical practice, the model will be enhanced with XAI techniques, ensuring
transparency in decision-making. The integration of visual attention maps and confidence scoring
mechanisms will allow radiologists to understand and validate the AI-generated segmentations. This
approach will foster greater confidence in AI-assisted diagnostics and improve interpretability in
clinical workflows.

4. Expanding AI-assisted breast cancer screening to underserved areas remains a critical goal. Future
developments will focus on integrating the model into telemedicine platforms, enabling remote AI-
assisted mammogram interpretation. Cloud-based processing and edge AI deployment on portable
medical imaging devices will facilitate real-time diagnostics in low-resource settings, improving access
to early detection services.

7 Conclusion
This study presents an advanced computational framework for mammographic image analysis, aiming

to enhance breast cancer detection through improved image quality, segmentation accuracy, and diagnostic
efficiency. The methodology, validated using MIAS, CBIS-DDSM, and BIRADS-IRMA datasets, effectively
addresses key challenges such as noise reduction, contrast enhancement, and precise lesion identification. By
implementing Independent Component Analysis (ICA) for preprocessing, the model significantly enhances
image clarity, facilitating more accurate segmentation and classification of mammograms. The ability to
categorize mammograms based on BI-RADS classifications strengthens its applicability in clinical settings,
allowing for systematic differentiation between normal, benign, and malignant cases.

The model’s performance evaluation indicates high specificity, sensitivity, and accuracy, reinforcing its
potential for real-world diagnostic applications. Comparative analysis with existing techniques highlights its
superiority or comparable effectiveness in lesion segmentation and classification, demonstrating robustness
across different imaging conditions. Additionally, the model’s modular and adaptable design allows for
seamless integration with evolving AI-driven diagnostic frameworks, ensuring its relevance for future
advancements in breast cancer screening.

Despite its promising results, further enhancements are necessary to optimize its performance in
complex mammographic cases. Refining segmentation algorithms, particularly for BI-RADS 4 and 5
categories, will help improve lesion delineation in challenging cases. The integration of deep learning-based
adaptive models will enable continuous learning from new imaging datasets, improving generalization across
various patient demographics and imaging modalities. Moreover, the incorporation of multi-modal imaging
approaches by integrating ultrasound and MRI data can enhance lesion detection in dense breast tissues,
which often present challenges in traditional mammographic analysis.

For practical deployment, ensuring seamless integration with clinical workflows is essential. The model’s
compatibility with PACS and DICOM-compliant environments facilitates efficient retrieval, processing,
and reporting of mammographic scans. Embedding AI-driven segmentation into CAD systems enables
radiologists to use AI-assisted insights while maintaining full control over final diagnostic decisions.
Regulatory compliance, particularly with HIPAA, FDA, and CE standards, remains a priority to ensure data
security and clinical validation for widespread adoption.

Optimizing computational efficiency is crucial for real-time diagnostic applications. The model has
been refined using GPU acceleration, model pruning, and quantization techniques, significantly reducing
processing times while maintaining high segmentation accuracy. Benchmark evaluations demonstrate a
processing time of 2.1 s per image on high-performance GPU systems and 5.8 s on CPU-based environments,
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confirming its feasibility for high-throughput screening applications. Future improvements will focus on
adaptive inference strategies, dynamically adjusting processing complexity based on imaging conditions to
further enhance efficiency.

Structured feedback from radiologists confirms the model’s usability, effectiveness, and impact on
clinical workflows. A majority of radiologists reported improved lesion detection confidence, particularly
in BI-RADS 3 and 4 cases, where lesions are often difficult to distinguish. Additionally, clinical evaluations
showed a 35% reduction in manual segmentation time, significantly enhancing workflow efficiency without
compromising diagnostic accuracy. Refinements such as adjustable segmentation thresholds, confidence
scoring, and visual overlays have been incorporated to improve user adaptability and acceptance.

The long-term clinical impact of AI-assisted segmentation extends beyond immediate diagnostic
improvements. The integration of AI-generated segmentation results with EHRs and PACS systems enables
longitudinal patient tracking, supporting more precise monitoring of disease progression and recurrence
risk. Studies indicate that AI models contribute to earlier detection of interval cancers, reducing false nega-
tives and improving patient prognoses. Future research will focus on evaluating AI-assisted segmentation’s
influence on recall rates, false positives, and survival outcomes to further establish its clinical benefits.

Looking ahead, further advancements in self-learning AI models, XAI, and telemedicine applications
will expand the model’s utility and accessibility. The development of mobile-based AI-driven diagnostic tools
will facilitate remote breast cancer screening, particularly in underserved regions where radiology expertise
is limited. By integrating multi-modal imaging fusion and continuous learning mechanisms, the model will
evolve to meet the growing demands of breast cancer diagnosis and personalized patient care.

In conclusion, this study introduces a highly adaptable and clinically relevant AI-driven segmentation
model for mammographic image analysis. Its ability to enhance breast cancer detection, optimize workflow
efficiency, and support real-time clinical decision-making underscores its potential as a transformative tool
in modern radiology. Continued research and technological advancements will further solidify its role in
improving early detection strategies, reducing diagnostic errors, and enhancing patient outcomes worldwide.
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Appendix A: Independent Component Analysis for Mammographic Image Enhancement
Independent Component Analysis (ICA) is a powerful statistical method designed to transform

multivariate signals into additive subcomponents that are statistically independent and non-Gaussian. This is
particularly useful in mammographic imaging, where tissue overlap and background artifacts often obscure
meaningful diagnostic content.

The fundamental objective of ICA is to recover the set of underlying independent sources from observed
mixtures. This is achieved by estimating a linear transformation of the observed data. Mathematically, the
observed signal matrix X is modeled as a mixture of unknown statistically independent sources S, combined
through a mixing matrix A:

X = AS , (A1)

where X denotes the observed image data, S represents the set of independent source components, and A is
the mixing matrix to be estimated. The independent components in S are assumed to be non-Gaussian and
statistically independent—a property that enables their separation using ICA, unlike traditional Gaussian-
based methods.

Once the mixing matrix A is estimated, the independent sources S can be recovered by computing the
inverse of A, denoted as W:

S =W X , (A2)

where W = A−1 is the unmixing matrix. ICA algorithms such as FastICA efficiently estimate W using fixed-
point iteration techniques. These algorithms maximize a measure of non-Gaussianity (e.g., kurtosis or
negentropy) to ensure that the recovered components are statistically independent. To avoid convergence
to the same solution during multiple component extractions, orthogonalization techniques such as Gram-
Schmidt are applied.

In mammographic image analysis, ICA is utilized to isolate and enhance diagnostically relevant
features—such as masses, microcalcifications, and glandular patterns—by decomposing the image into
structurally distinct components. This allows for better contrast and improved localization of anomalies,
particularly in dense tissue regions.

The following steps are commonly employed in the application of ICA to mammographic images:

1. Preprocessing: Mammograms are preprocessed to reduce noise and normalize intensity levels. This
step ensures that the input matrix X is suitable for ICA processing.

2. Whitening: The data is decorrelated using a whitening transformation, typically performed via Prin-
cipal Component Analysis (PCA). Whitening ensures unit variance and simplifies subsequent ICA
computations by transforming the covariance matrix into an identity matrix.

https://www.repository.cam.ac.uk/handle/1810/250394
https://www.cancerimagingarchive.net/collections/cbis-ddsm/
https://publications.rwth-aachen.de/record/667223
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3. Feature Extraction: ICA (e.g., via FastICA) is applied to the whitened data to extract independent
components. Each component corresponds to a spatially distinct structure in the image, such as tissue
texture, lesion outlines, or noise.

4. Analysis and Reconstruction: After analyzing the extracted components, those corresponding to
irrelevant noise or artifacts can be discarded. The remaining diagnostically useful components are then
recombined to reconstruct a cleaner image that highlights critical features.

ICA provides a robust and unsupervised framework for enhancing mammographic images. Its ability
to isolate overlapping signals into independent anatomical or pathological features makes it especially suited
for early breast cancer detection and computer-aided diagnosis.

Appendix B: Detailed Mathematical Formulation of ICA-I
Independent Component Analysis (ICA) is employed to extract statistically independent features from

a set of mammographic images. The ICA-I architecture operates on image-level representations, where each
sample is treated as a column vector in the data matrix. The complete preprocessing and transformation
procedure for ICA-I is described below.

Data Representation and Transposition
Let there be n image samples, each reshaped into a column vector of length m. These vectors form the

data matrix X ∈ Rm×n , where each column xi represents a single image. To facilitate ICA-I, the matrix is
transposed:

Y = XT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
⋮

ym

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (A3)

where each row y j ∈ Rn corresponds to intensity values from the same pixel location across all images.
Appendix B.1 Centering Phase
The mean vector of the rows is computed as:

μI =
1
m

m
∑
j=1

y j . (A4)

Each row vector is then centered by subtracting the mean:

y j = y j − μI , (A5)

yielding the centered matrix Y , where each row has zero mean. This ensures that the data has no bias toward
any specific component.

Appendix B.2 Whitening via PCA
The covariance matrix ΣI of the centered data is computed as:

ΣI =
1
m

m
∑
j=1

y j y j
T . (A6)

Eigenvalue decomposition is applied:

ΣI = V DV T , (A7)
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where V is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues, sorted as d1 ≥ d2 ≥ ⋅ ⋅ ⋅ ≥
dp > 0.

The whitening transformation matrix is defined as:

H = V D−
1
2 , (A8)

which ensures that the transformed data is uncorrelated and each component has unit variance.
Appendix B.3 Whitening Transformation
The whitened data matrix is obtained as:

Ỹ = HT Y , (A9)

where Ỹ ∈ Rp×n is the decorrelated, normalized input for the ICA algorithm.
Appendix B.4 ICA Decomposition
ICA seeks an unmixing matrix WI such that the rows of:

SI =WIỸ , (A10)

are as statistically independent as possible. This is typically achieved using FastICA, which maximizes non-
Gaussianity via fixed-point iterations.

Each row in SI represents an independent component (or basis image) learned from the input. These
components are used to reconstruct or analyze image features.

Appendix B.5 Final Projection and Feature Extraction
To obtain the final projection of the original centered data Y onto the independent components:

Z = Y ST
I = YỸ T WI . (A11)

The matrix Z ∈ Rm×p represents the projection of each image sample onto p independent basis vectors,
capturing the independent features across the dataset. The number of components p is selected based on
user-defined requirements or eigenvalue thresholds.

The ICA-I formulation provides a framework to extract statistically independent features from global
image representations. The procedure ensures noise suppression, redundancy reduction, and enhancement
of diagnostically significant patterns such as masses or microcalcifications. By converting raw pixel data
into a more interpretable and sparse domain, ICA facilitates efficient classification and segmentation tasks
downstream in the CAD pipeline.

Appendix C: Mathematical Formulation of ICA-II
The ICA-II architecture is an alternative formulation of Independent Component Analysis that operates

on column-wise pixel relationships across images. Unlike ICA-I, which treats each image as a global feature
vector, ICA-II captures localized statistical dependencies at the pixel level.

Let the image dataset be represented by a matrix:

X = [x1 , x2, . . . , xn] ∈ Rm×n , (A12)

where each column x j corresponds to one image sample of m pixels, and the matrix X contains n such images.
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Appendix C.1 Centering Phase
In the first step, the data matrix is centered by subtracting the mean across columns. The column-wise

mean vector is calculated as:

μII =
1
n

n
∑
j=1

x j . (A13)

Each column of X is then centered:

x j = x j − μII , (A14)

yielding the zero-mean centered matrix:

Xh = [x1 , x2, . . . , xn]. (A15)

This ensures that each pixel value across the dataset has zero mean, which is essential for ICA.
Appendix C.2 Whitening Phase
The centered data Xh is whitened using Principal Component Analysis (PCA), similar to ICA-I. The

covariance matrix of Xh is decomposed as:

ΣII =
1
n

Xh Xh
T = V DV T , (A16)

where V contains the eigenvectors and D the diagonal matrix of eigenvalues. The whitening matrix is given
by:

H = V D−1/2. (A17)

This matrix H is used to transform the data into a decorrelated space:

Xw hite = HT Xh . (A18)

Appendix C.3 ICA Decomposition and Feature Extraction
Once the data is whitened, ICA is applied to extract independent components as column vectors:

SII =WII HT , (A19)

where WII is the unmixing matrix learned by the ICA algorithm.
Finally, the independent components are projected back onto the centered dataset to obtain the

extracted features:

Z = SII Xh . (A20)

The matrix Z contains the independent representations of the image dataset. Each column of Z can be
interpreted as a statistically independent reconstruction, enhancing discriminative regions and suppressing
background noise.

ICA-II provides a pixel-centric view of mammographic features, complementing the image-level
approach of ICA-I. By modeling correlations across pixel intensities rather than whole-image statistics, ICA-
II improves the separation of subtle patterns such as microcalcifications or localized textures that are critical
in early cancer detection.
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Appendix D: Step-by-Step Formulation of the Proposed Mammographic Image Analysis
Framework

This appendix presents the mathematical and procedural formulation of the proposed three-stage
mammographic image analysis pipeline, comprising BI-RADS classification, pectoral muscle removal,
ICA-based enhancement, and lesion segmentation.

1. BI-RADS Classification: Each mammogramI is categorized using the Breast Imaging Reporting and
Data System (BI-RADS), which standardizes lesion interpretation and risk assessment in mammography:

C(I) = {C1 , C2, C3, C4, C5, C6} (A21)

where:

• C1: Normal—no abnormalities.
• C2: Benign findings.
• C3: Probably benign.
• C4: Suspicious abnormality (biopsy recommended).
• C5: Highly suggestive of malignancy.
• C6: Malignancy confirmed by biopsy.

This classification enables structured image processing and helps prioritize cases in clinical workflows.
2. Pectoral Muscle Removal: To avoid false positives during lesion detection, the bright region

corresponding to the pectoral muscle in mediolateral oblique (MLO) views is removed. The processed
mammogram is given by:

I′P(x , y) = IP(x , y) −M(x , y), ∀(x , y) ∈ RM (A22)

where IP(x , y) is the original classified mammogram, M(x , y) denotes the pectoral muscle mask, and RM is
the region of pixels corresponding to the muscle. Thresholding and region-growing techniques are typically
used to identify RM .

3. ICA-Based Enhancement and Segmentation: After anatomical preprocessing, ICA is applied to the
mammographic data for feature enhancement. The process is divided into two sub-stages:

(a) Feature Extraction Using ICA: ICA separates the mammographic image matrix into statistically
independent components:

X = AS , S =W X , W = A−1 (A23)

where X is the observed image matrix, A is the mixing matrix, S contains the independent components (fea-
tures), and W is the unmixing matrix used to recover S from X. These components emphasize diagnostically
relevant structures such as masses and calcifications while suppressing noise.

(b) K-Means Segmentation: The ICA-enhanced image is then segmented into k intensity-based clusters
using K-means clustering:

Sg(x , y) = argk min
k
∑
i=1
∥S′(x , y) − μi∥

2 (A24)

where S′(x , y) is the ICA-processed image, μi is the centroid of the ith cluster, and k is the total number
of clusters. The Euclidean distance metric is used to assign each pixel to the nearest centroid, resulting in
segmented lesion regions.
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The proposed framework is validated through performance metrics such as sensitivity, specificity,
and contrast-to-noise ratio (CNR), confirming the improvements achieved in image quality and lesion
segmentation accuracy.

Appendix E: Evaluation Metrics and Statistical Validation
To evaluate the performance of the proposed mammographic image analysis framework, both image

quality enhancement and classification effectiveness were measured using a comprehensive set of metrics.
These include PSNR and EME for preprocessing assessment, and classification metrics such as Sensitivity,
Specificity, Accuracy, and AUC-ROC. A statistical significance test was also performed using a paired t-test.

Appendix E.1 Image Enhancement Metrics

• Peak Signal-to-Noise Ratio (PSNR): Measures the fidelity of enhanced images relative to the original.
PSNR is computed from the Mean Squared Error (MSE) using:

MSE = 1
MN ∑m

∑
n
∣X(m, n) − Y(m, n)∣2 (A25)

PSNR = 10 log10 (
(L − 1)2

MSE
) (A26)

where X(m, n) and Y(m, n) are pixel intensities of the original and processed images, and L = 255 for 8-bit
images.

• Effective Measure of Enhancement (EME): Assesses local contrast across image blocks:

EME = 1
K1K2

K2

∑
l=1

K1

∑
k=1

20 log( Imax(k, l)
Imin(k, l)) (A27)

where Imax and Imin are max and min intensities within each segment.
Appendix E.2 Classification Performance Metrics.

• Sensitivity (Se): Measures the proportion of correctly identified positives:

Se = TP
TP + FN

(A28)

Higher sensitivity indicates the model’s ability to detect true abnormal regions.

• Specificity (Sp): Measures correct identification of negatives:

Sp = TN
TN + FP

(A29)

High specificity minimizes false positives, aiding diagnostic reliability.

• Accuracy (AC): Indicates the overall classification correctness:

Accurac y = TP + TN
TP + TN + FP + FN

(A30)
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• AUC-ROC: The Area Under the Receiver Operating Characteristic curve evaluates the trade-off between
sensitivity and specificity:

TPR = TP
TP + FN

, FPR = FP
FP + TN

(A31)

AUC =
n−1
∑
i=1
(FPRi+1 − FPRi) ⋅

(TPRi+1 + TPRi)
2

(A32)

An AUC of 1.0 indicates perfect classification, while 0.5 suggests random performance.
Appendix E.3 Statistical Significance Testing
To determine whether observed improvements in classification metrics are statistically significant, a

paired t-test was applied. The formula is:

t = D̄
s/
√

n
(A33)

where:

• D̄ is the average difference in metric values between the proposed and baseline methods.
• s is the standard deviation of differences.
• n is the number of observations (datasets).

The corresponding p-value was used to assess significance at a 95% confidence level.
This appendix supports the reproducibility and objectivity of the reported performance outcomes.
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