
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.068723

ARTICLE

Vulnerability2Vec: A Graph-Embedding Approach for Enhancing Vulnerability
Classification

Myoung-oh Choi1, Mincheol Shin1, Hyonjun Kang1, Ka Lok Man2 and Mucheol Kim1,*

1Department of Computer Science and Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
2School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China
*Corresponding Author: Mucheol Kim. Email: kimm@cau.ac.kr
Received: 05 June 2025; Accepted: 15 August 2025

ABSTRACT: The escalating complexity and heterogeneity of modern energy systems—particularly in smart grid and
distributed energy infrastructures—has intensified the need for intelligent and scalable security vulnerability classi-
fication. To address this challenge, we propose Vulnerability2Vec, a graph-embedding-based framework designed to
enhance the automated classification of security vulnerabilities that threaten energy system resilience. Vulnerability2Vec
converts Common Vulnerabilities and Exposures (CVE) text explanations to semantic graphs, where nodes represent
CVE IDs and key terms (nouns, verbs, and adjectives), and edges capture co-occurrence relationships. Then, it embeds
the semantic graphs to a low-dimensional vector space with random-walk sampling and skip-gram with negative
sampling. It is possible to identify the latent relationships and structural patterns that traditional sparse vector methods
fail to capture. Experimental results demonstrate a classification accuracy of up to 80%, significantly outperforming
baseline methods. This approach offers a theoretical basis for classifying vulnerability types as structured semantic
patterns in complex software systems. The proposed method models the semantic structure of vulnerabilities, providing
a theoretical foundation for their classification.

KEYWORDS: Security vulnerability; graph representation; graph-embedding; deep learning; node classification

1 Introduction
The growing complexity of modern software systems, compounded by the integration of artificial intelli-

gence technologies, leads to increasingly diverse and sophisticated forms of security vulnerabilities [1]. These
vulnerabilities often emerge not in isolation, but as interconnected phenomena, such as semantic approaches
that integrate vulnerability patterns [2] and structural techniques grounded in code-level representations [3].
In response, cybersecurity research institutions disseminate large-scale vulnerability information to support
standardized risk assessment and mitigation efforts [4]. The National Vulnerability Database (NVD) [5], for
example, registers more than 40 new entries daily which reflects the dynamic and high-dimensional nature
of the current threat landscape. These trends underscore the urgent demand for intelligent classification
frameworks that can model latent structures and evolving semantics, particularly within complex energy
domains [6]. Energy systems comprise tightly coupled components spanning software, hardware, and
communication protocols. Traditional vulnerability classification methods often fail to adequately capture
this complexity. Therefore, there is a critical need for classification techniques that can effectively model the
semantic characteristics in such systems.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published Online: 09 September 2025

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.068723
https://www.techscience.com/doi/10.32604/cmes.2025.068723
mailto:kimm@cau.ac.kr

2 Comput Model Eng Sci. 2025

Common vulnerabilities and exposures (CVE)1 and common weakness enumeration (CWE)2 are
cybersecurity standards managed by MITRE3. CVE provides information related to various environments
such as systems, software, and web applications, while CWE provides a formal taxonomy of generalized
software weakness types. However, CVE entries lack an explicit classification schema, making them unsuit-
able for tasks requiring semantic categorization. The National Vulnerability Database (NVD), maintained
by the National Institute of Standards and Technology (NIST), augments CVE entries with structured
metadata to facilitate comprehensive impact analysis and risk assessment [6]. Although CVEs and CWEs
are complementary, structural inconsistencies caused by the unstructured nature of CVE descriptions make
automated classification difficult.

Although they are complementary, the structural misalignment between CVE and CWE hinders auto-
mated classification. Because CVE descriptions are unstructured, and CWE mappings are often incomplete.
It is difficult to build scalable and interpretable threat detection architectures, especially in smart energy
systems and cyber-physical domains. As vulnerability data grows in volume and complexity, the need
arises for representation models that capture semantic structure—paving the way for graph-based learning
methods grounded in deep and fractional modeling paradigms.

Recent advancements in cloud computing and artificial intelligence (AI) technologies increase the need
for information management across various platforms. This expansion gives rise to increasingly complex
and multifaceted attack patterns that challenge conventional classification systems based on predefined
categories [7]. As shown in Fig. 1, there is a sharp increase in the number and types of security vulnerabilities
reported in CVE. They are yet to be incorporated into the list of security weaknesses of existing software.
As shown in Fig. 2, the growth rate of CWE increases by an average of approximately 27% from 1999
to 2017. Modern attacks often depend on the subtle misuse of logic, application programming interfaces
(APIs) or contextual behavior, which is challenging to identify using structural features alone. Therefore,
classifying vulnerabilities based on semantic context is essential, especially in complex, dynamic areas such
as energy systems. This expansion introduces increasing semantic heterogeneity and hierarchical imbalance
in vulnerability classification. It makes a structured mapping framework necessary to align emerging threats
with their corresponding software weaknesses [8,9].

Figure 1: CVEs Count by year4

1https://www.mitre.org/focus-areas/cybersecurity (accessed on 15 May 2025).
2https://cwe.mitre.org/ (accessed on 15 May 2025).
3https://www.mitre.org/ (accessed on 15 May 2025).
4http://cvedetails.com (accessed on 15 May 2025).

https://www.mitre.org/focus-areas/cybersecurity
https://cwe.mitre.org/
https://www.mitre.org/
http://cvedetails.com

Comput Model Eng Sci. 2025 3

Figure 2: CWEs Count by year5

Because CVE data lacks an explicit representation of attack patterns, it often requires expert interpre-
tation based on contextual security knowledge to determine operational relevance. Common Attack Pattern
Enumeration and Classification (CAPEC)6 provides information on attack patterns that exploit security
vulnerabilities. Although directly linking CVE with CAPEC remains challenging, it can be achieved by
correlating them with the software security weaknesses defined in CWE [10,11]. The CWE classification
systematically organizes diverse vulnerability information, enabling accurate risk assessment and the formu-
lation of effective mitigation strategies. However, the pronounced class imbalance remains a fundamental
limitation that constrains effective modeling of infrequent CWE categories [12]. Traditional methods for
categorizing vulnerabilities often depend on relationships from information extracted by domain experts
from various components, including system-level attributes [1] and software specifications [10,11,13,14].
Despite being a time-consuming process, traditional methods can lead to a high probability of errors and
consistency issues owing to the subjective judgments of experts [15]. Therefore, the key to cybersecurity
defense lies in dynamic management in response to in-creasing information and in analyses that can replace
the role of experts [16].

The CVE description is important in CWE categorization because it often contains the most essential
of the attributes. This provides insights into the conditions that define each vulnerability, thereby supporting
both the mitigation of cyber-attacks and the development of effective response strategies [17]. Traditional
automated classification approaches rely primarily on frequency-based analysis of terms appearing in CVE
texts. Early neural network-based methods adopt one-hot encoding to represent features as sparse vectors.
However, sparse vector representations—characterized by a limited set of activated terms—struggle to cap-
ture semantic distinctions when identical terms occur in different contexts. Moreover, such representations
are insufficient for recognizing emerging vulnerability types due to the low frequency of critical technical
terms or novel patterns. Meanwhile, methods like Sparse Coding [18] and Hashing Trick [19,20] improve
computational efficiency and essential feature extraction while capturing contextual variations only to a
limited extent.

Graph-based representation learning has emerged as a powerful paradigm for modeling structured
relationships across complex domains. Unlike sparse vector representations, graph-based approaches are
well-suited for modeling semantic and syntactic relationships. Graphs enable the abstraction of diverse data
types—such as text, images, and entities—into nodes and edges. This effectively captures both local and

5https://www.cvedetails.com/cwe-definitions/ (accessed on 15 May 2025).
6https://capec.mitre.org/ (accessed on 15 May 2025).

https://www.cvedetails.com/cwe-definitions/
https://capec.mitre.org/

4 Comput Model Eng Sci. 2025

global topological dependencies [21–23]. Traditional vulnerability detection methods (i.e., sparse vector
representation via graph embeddings, source code graph-based methods) have difficulty capturing the
potential semantic structure inherent in CVE descriptions. The limitations are even more pronounced
when source code or text-based semantic relationship is unavailable. Graph embeddings capture the
semantic relationships among key parts of speech extracted from vulnerability descriptions. By modeling
the co-occurrence of local terms within a global semantic context, the method effectively encodes the
interdependence among different types of vulnerabilities.

Graph embedding based methods are successfully applied in a wide range of contexts, including
social networks, biological systems, and recommender architectures [24–26]. Graph embedding transforms
relational structures into low-dimensional vector spaces while preserving connectivity and proximity
information between entities. In the domain of software vulnerability analysis, graph neural networks
(GNNs) show promise in modeling structural properties of source code through constructs such as abstract
syntax trees (ASTs) and control flow graphs (CFGs). While effective in capturing syntactic structure, these
approaches face limitations in generalizing to vulnerability types characterized by latent semantic nuances
and context-dependent behaviors [27,28].

This paper presents Vulnerability2Vec to address challenges inherent in sparse vector representations
derived from CVE description texts. The proposed method exhibits both structural complexity and seman-
tic diversity. First, Vulnerability2Vec captures contextual relationships by learning the connections and
structural patterns among nodes. The proposed method involves constructing a graph that models the
semantic relationships among key parts of speech. Then, it classifies the graph using a traditional machine
learning–based graph embedding model. This process positions elements with high semantic similarity in
adjacent spaces. Second, we perform automated vulnerability classification by analyzing node similarities
based on structural information. This process identifies related vulnerabilities while attacking techniques,
uncovering hidden patterns within networks. This approach effectively captures contextual information
through semantics-driven graph construction, without relying on the representational complexity of deep
learning–based graph neural networks. Our contributions are as follows:

• We propose a novel approach with a unified multi-relational graph that integrates source code and
graph components.

• Our proposed method outperforms over six baselines despite the expansion of CWE categories
vulnerability types.

• Experimental results demonstrate the effectiveness of graph representation and node embedding
process.

The remainder of this study is organized as follows. Section 2 reviews related work in the fields of
security vulnerabilities and graph embedding. Section 3 describes the proposed method. Section 4 presents
the experimental designs and results and discusses the research questions. Finally, Section 5 concludes the
paper. During the preparation of this manuscript, the authors utilized OpenAI’s ChatGPT version GPT-4o
to improve its linguistic clarity and grammar. The authors have carefully reviewed and revised the output
and accept full responsibility for all content.

2 Related Works

2.1 Vulnerability Classification
Classification of Vulnerability is a fundamental task in cybersecurity. It facilitates rapid response to

emerging threats, prioritization of security risks, and the formulation of appropriate mitigation strategies.
One line of work focuses on the use of sparse vectors from CVE descriptions and their subsequent application

Comput Model Eng Sci. 2025 5

to machine learning algorithms. For instance, Na et al. [29] propose a naïve-bayes based classification
model by applying a sparse vector model from NVD. Rahman and Mustafa [30] propose a text feature
extraction method that enhances the classification performance by assigning weights to terms across the
entire document, rather than focusing solely on their simple frequency for specific security. Yosifova et al. [31]
apply various machine learning algorithms (linear support vector classification, multinomial naïve Bayes,
and random forest classification) to text feature extraction with term frequency weights. They confirm the
effectiveness of these algorithms in classifying vulnerability types. Yosifova [32] compares machine-learning
algorithms that employ different ensemble techniques and highlights the importance of effectively learning
complex data patterns for vulnerability classification.

2.2 Graph Embedding
Graph embedding captures the semantic relationships between terms. A study on graph embeddings

converts the structural information into low-dimensional vectors. For instance, Perozzi et al. [33] propose
DeepWalk, which applies a truncated random walk to a neural network model to learn relationships
between graph nodes. DeepWalk encodes relationships between similar nodes into a low-dimensional vector
space. This excels complex pattern recognition and structural understanding while preserving structural
information. Grover and Leskovec [34] propose Node2Vec, an extension of DeepWalk. Node2Vec effectively
captures the complex structure of graphs by employing breadth-first and depth-first sampling strategies to
generate node sequences. Perozzi et al. [35] propose Walklets, which learns multi-scale relationships through
paths of various lengths. Tang et al. [36] propose LINE, which applies to large-scale networks. LINE learns
both direct and indirect neighbor relationships between nodes, expressing wide contextual relationships as
low-dimensional vectors.

2.3 Source Code-Based Vulnerability Detection
In source code–based vulnerability detection, program structures such as ASTs and CFGs are applied

to GNNs. Wang et al. [37] propose VulGraB which encodes program dependency graphs from source code
with node2vec and applies a bidirectional gated graph neural network (BiGGNN) [38] for classification.
VulGraB enhances detection through control–flow and data–flow analysis. VulGraB processes low-level code
structures such as program dependency graphs. Its token-based node represents only partial access to higher-
level semantics. Tang et al. [27] propose the CSGVD model, which enhances vulnerability detection by
integrating source code sequences with graph-based structural representations. The model encodes semantic
and structural properties of source code through a unified encoder to generate task-specific representations.
The integration of semantic and structural representations involves intricate interactions, and the distinction
between contextual and structural features remains subtle, reducing the model’s interpretive clarity. Ling
et al. [28] propose DualGNN, which represents sequence embeddings as graph nodes and combines Graph
Convolutional Network (GCN) and Graph Attention Network (GAT) to capture local and global source code
characteristics. It extracts multi-scale features through convolutional kernels with varying receptive fields.
The model accommodates varying context lengths, while its architecture involves considerable complexity
and computational demand.

3 A Proposed Graph Embedding Approach for Efficient Vulnerability Classification
This section proposes Vulnerability2Vec, an efficient graph-embedding approach for vulnerability

classification (Fig. 3). It consists of two parts which are a graph representation method for the vulnerability
relationship and an efficient graph embedding approach.

6 Comput Model Eng Sci. 2025

Figure 3: Overview of Vulnerability2Vec

The graph representation preprocesses each CVE description into a graph in which nodes correspond
to the CVE ID and salient terms (nouns, verbs, adjectives), while edges denote their co-occurrence relations.
This structure captures both the semantic and structural attributes of vulnerability. Random-walk sampling
combined with the Skip-Gram with Negative Sampling (SGNS) model embeds the graph into a continuous
vector space for classification. Algorithm 1 presents the procedure for constructing a text-based graph and
generating embeddings. The main components are described in detail as follows.

Algorithm 1: Vulnerability2Vec.
INPUT: CVE_Details (CVE ID, CWE ID, Score, CVE Description)

Embedding parameters: dimension d, walks per node r, walk length l, parameters p, q
OUTPUT: Graph G

Embeddings for each CVE_ID node in G
1. Initialize empty list Tokenized_Descriptions
2. FOR each CVE in CVE_Details DO

Tokenize CVE Description
POS Tag the tokens
Filter tokens by POS Tags
Append filtered_tokens to Tokenized_Descriptions

END FOR
3. Initialize empty Graph G
4. FOR each CVE in CVE_Details DO

Get the index of the current CVE in CVE_Details
FOR each token in Tokenized_Descriptions at the current index DO

Add node CVE.CVE_ID to G (if not exists)
(Continued)

Comput Model Eng Sci. 2025 7

Algorithm 1 (continued)
Add node token to G (if not exists)
Add an edge between CVE.CVE_ID and token in G

END FOR
5. Adjust transition probabilities of edges in G based on parameters p, q,

optionally using CVE attributes (Score, CWE similarity)
6. Initialize empty list Walks
7. FOR each CVE_ID node in G DO

FOR iteration = 1 to r DO
Perform random walk of length l starting at CVE_ID using parameters p, q
Add the resulting walk to Walks

END FOR
END FOR

8. Extract security features from Walks
9. Train embeddings using extracted features with dimension d
10. RETURN Graph G and Embeddings

3.1 Graph Representation of Security Vulnerabilities
This section presents the graph representation step of security vulnerabilities to graph representations.

Our approach transforms CVE data into embedding vectors composed of nodes and edges to understand the
context and syntax of the descriptions. In this graph, nodes are formed from the preprocessed terms in the
descriptions, while the edges indicate the relationships between the CVE identifier and features. It clarifies
the various characteristics and interactions of security vulnerabilities.

Preprocessing. We preprocess the CVE data by extracting essential information of security vulnerabil-
ities into a format suitable for graph analysis. Fig. 4 illustrates the preprocessing step for Vulnerability2Vec.
This step converts textual data into a structured format to graphically represent CVE descriptions.
Tokenization separates textual data into terms that aid in analyzing key information regarding security
vulnerabilities. Part-of-speech (POS) tagging identifies important terms by classifying them as nouns, verbs,
and adjectives [39]. A structured representation of the preprocessed data facilitates an understanding of the
relationships between the causes, behaviors, and characteristics of vulnerabilities.

Figure 4: Preprocessing of a CVE description

Graph representation approach. We represent CVEs as a graph by linking them with preprocessed key
terms to understand complex relationships (Fig. 5). This graph consolidates vulnerability information into a
single structure and clarifies interactions. Nodes are constructed from nouns, verbs, and adjectives extracted
from CVE IDs and descriptions, where nouns represent core characteristics, verbs express functional

8 Comput Model Eng Sci. 2025

behaviors, and adjectives reflect descriptive qualities. This representation of CVE terms as nodes helps
preserve the contextual semantics of each vulnerability. Edges capture the associations between CVE IDs
and their corresponding terms, effectively modeling contextual relationships as a graph structure. The nodes
in the graph are defined by Eq. (1).

V = {v1 , v2, ⋅ ⋅ ⋅ , vn} ∪ {w1 , w2, ⋅ ⋅ ⋅ , wm}, (1)

where vi is the CVE ID and w j represents the preprocessed terms (nouns, verbs, and adjectives) from the
description. n is the number of CVE IDs and m is the number of terms. The edges of the graph are defined
by Eq. (2).

E = {(vn , wm)∣vn ∈ VCV E , wm ∈ Vwords} (2)

where VCV E is a set of CVE ID nodes and Vwords is a set of preprocessed nodes (nouns, verbs, and adjectives)
from the text description. (vn , wm) represent the relationship between a specific CVE ID node vn and
node wm . Definition 1 describes the graph structure of this vulnerability information while Algorithm 2
summarizes the detailed expression procedure.

Figure 5: Example of a security vulnerability graph representation. The graph visualizes the relationships between
CVE-IDs and various parts of speech. (The gray nodes represent CVE-IDs, blue nodes represent nouns, orange nodes
represent verbs, and green nodes represent adjectives.)

Definition 1. Graph G is represented as G = (V , E). Where V is a set of nodes containing CVE IDs and
tokenized terms, and E is a set of edges representing the relationships between these nodes, indicating the
association between vulnerability information and the corresponding text.

Algorithm 2: Vulnerability graph representation.
INPUT: CVE_Details (CVE ID, CWE ID, Score, CVE Description)
OUTPUT: Graph G
1. Initialize Tokenized_Descriptions as an empty list
2. FOR each CVE in CVE_Details DO

Tokenize the CVE Description
POS Tag the tokens
Filter the tokens by POS Tags
Add the Filtered_Tokens to Tokenized_Descriptions

(Continued)

Comput Model Eng Sci. 2025 9

Algorithm 2 (continued)
3. INITIALIZE Graph G
4. FOR each CVE in CVE_Details DO

Get the index of the current CVE in CVE Details
For each token in Tokenized_Descriptions at the current index
Add an edge in Graph G between CVE.CVE_ID and token

5. Return Graph G

3.2 Graph Embedding Approach for Representing Vulnerability Features
This section describes the graph-embedding approach for security vulnerabilities embedded into a low-

dimensional vector space. Node2vec [34] embeds each node in the graph into a low-dimensional vector
space based on the skip-gram model from Word2vec and then applies a support vector machine (SVM)
for [40] classification.
Graph Embedding Method

We apply Node2Vec to generate low-dimensional embeddings that encode the structural patterns within
the semantic graph. These embeddings are then used as input features for a Support Vector Machine (SVM)
classifier to identify vulnerability types. The full classification workflow is outlined in Algorithm 3.

Node sampling strategy. The node sampling strategy captures complex connectivity by randomly
selecting the neighbors of a given vulnerability node. It learns these relationships using the random walk
method, which involves starting at a designated node and then moving to a randomly selected neighboring
node to generate a path. These paths produce sequences that represent the CVE ID context. For example,
the random walk generates paths starting from a specific CVE ID and moving to connected nodes such as
“inject”-“vulnerability”-“unspecified”, “unspecified”-“vulnerability”-“inject”. The generated sequence repre-
sents the context of the corresponding CVE ID, which clarifies the relationship by learning the connections
between the key terms. To extend the path during random walks, the next node is selected based on a
transition probability that reflects both node connectivity and data characteristics (Eq. (3)).

P (ci = w∣ci−1 = v) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

πvw

Z
i f (v , w) ∈ E

0 otherwise
, (3)

where ci−1 is the (i − 1)th node starting from v, a neighboring node of ci−1 is selected to extend the path. ci
is the i-th node of the path and is the selected neighboring node. πvw represents the transition probability
from v to w, as defined by Eq. (4).

πvw = αpq (t, w) ⋅ xvw (4)

where αpq(t, w) is the sum of the transition probabilities from v to all neighbors. xvw is the weight of the
edge-connecting nodes v and w. The concept of the node sampling strategy and the random walk approach
are summarized in Definition 2.
Definition 2. Node sampling infers the characteristics of a graph by selecting a specific node vi and exploring
its neighboring nodes. A random walk starts at a given node and extends the path by randomly selecting
the neighboring nodes. This method identifies the overall structural characteristics of a graph by analyzing
sampled nodes.

Skip-gram with negative sampling. Vulnerability2Vec embeds complex relationships among security
vulnerabilities into a low-dimensional vector space. SGNS generates node embeddings that capture the

10 Comput Model Eng Sci. 2025

semantic similarities between vulnerability nodes (CVE IDs) and relevant parts of speech (nouns, verbs, and
adjectives). The SGNS contextualizes the parts of speech within a certain range around each node to learn
their relationships. Negative sampling enhances computational efficiency by randomly sampling irrelevant
parts of speech and training the model to distinguish them clearly from the correct parts of speech. The
optimization objective of the SGNS is to maximize the log probability of predicting key terms from a given
node and reduce the probability of negative samples. The probability of a negative sample is defined by Eq. (5):

max f ∑
u∈V

⎡⎢⎢⎢⎢⎣
−logZu + ∑

ni∈Ns(u)
f (ni) ⋅ f (u)

⎤⎥⎥⎥⎥⎦
, (5)

where V represents the set of security vulnerability nodes (CVE IDs) u. Ns (u)is the set of vulnerability terms
that are adjacent nodes of u, It consists of nodes that are semantically and structurally connected to node
u. f (ni) and f (u) represent the embedding vectors of the adjacent nodes and the central node (CVE ID),
respectively. Zu is the partition function for a given node u, approximated through negative sampling for
computational efficiency.

The SGNS optimization adopts a conditional probability to express the relationship between security
vulnerabilities. It is calculated based on the inner product of a specific security vulnerability and its key terms
(nouns, verbs, and adjectives). This determines the log probability involved in the optimization objective.
The conditional probability of SGNS is defined by Eq. (6):

Pr (ni ∣ f (u)) =
ex p (f (ni) ⋅ f (u))
∑v∈V ex p (f (v) ⋅ f (u))

, (6)

where f (u) and f (ni) are the embedding vectors of the vulnerability node (CVE ID) and feature
node, respectively.
Definition 3. The SGNS extends the skip-gram model by improving learning efficiency through negative
sampling. It captures the similarity between nodes in a graph by learning the relationship between a given
security vulnerability u and its connected vulnerability term ni . This relationship is embedded into a low-
dimensional vector space. The optimization goal of the SGNS is twofold: first, to maximize the log probability
of predicting the actual connected vulnerability type from a given vulnerability, and second, to minimize
this probability for randomly generated negative samples. The conditional probability is calculated based on
the vector inner product of the CVE ID and vulnerability terms.

Algorithm 3: Vulnerabilty2vec (G, d, r, l, p, q).
Input: Vulnerability Graph G, embedding dimension d, total number of walks r, walk length l, return
parameter p, in-out parameter q
Output: d-dimensional vector representation for each vulnerability node, capturing interactions and
relations
1. Preprocess the graph G

Adjust probabilities for the random walk based on vulnerability attributes like severity, type similarity,
and shared components, influenced by p and q parameters
2. Initialize an empty list called walks
3. For each vulnerability node v in G DO

For each walk from 1 to r (total number of walks) DO
Perform a random walk of length l starting from node v using parameters p and q
Append the resulting walk to the walks list

(Continued)

Comput Model Eng Sci. 2025 11

Algorithm 3 (continued)
4. Extract features from the walks

Implement the feature extraction process
5. Train embeddings using the extracted features

Implement the training process to generate node embeddings
6. Return the node embeddings

Finally, we apply an SVM model for automated classification of vulnerability types. An SVM takes
feature vectors from graph embedding as input. It learns the optimal boundary and classifies each vector into
a specific CWE type. For example, it determines whether a vector represents CWE-79 (cross-site scripting)
or CWE-89 (SQL Injection).

4 Experiments
In this section, we evaluate the performance of the CWE classification task on CVE data by addressing

two research questions. These questions are designed to analyze the extent to which graph-based semantic
modeling improves classification accuracy and enhances our understanding of contextual vulnerability rela-
tionships.

RQ1: Does Vulnerability2Vec enhance the classification performance of security vulnerabilities?
We evaluate the effectiveness of Vulnerability2Vec using one-hot vectors, which represent each term as

a distinct binary vector, thereby converting textual data into a structured numerical format. However, these
vectors only represent individual terms, without capturing their structural relationships between them. To
assess the impact on the classification performance, different models based on one-hot vectorized text data
are applied to validate the effectiveness of the relationships.

RQ2: Do nouns, verbs, and adjectives extracted from security vulnerability descriptions contribute
to understanding relationships between vulnerabilities?

We conduct experiments by including or excluding key vulnerability information to evaluate its impact
on classification. The proposed method was evaluated to determine whether it accurately captures the
relationships between vulnerabilities.

4.1 Experimental Setup
Vernerality2Vec maps the security vulnerabilities represented as graphs into low-dimensional vectors

by exploiting Node2Vec. The Node2Vec hyperparameters are set based on the de-fault values proposed by
Grover and Leskovec (2016) [34], as shown in Table 1. We apply 5-fold cross-validation during the evaluation
process to ensure the reliability and robustness of the results.

Table 1: Hyperparameter settings for Vulnerability2Vec

Parameter Value
Random walks 20

Random walks length 40
Dimensions 256

p (Return parameter) 1
q (Inout parameter) 1

12 Comput Model Eng Sci. 2025

4.2 Datasets
We evaluate Vulnerability2Vec based on CVE-Details data collected from 1999 to 2017 under conditions

of varying data scale and complexity. Preprocessing of the data results in 716,771 vulnerability records.
The CVE attributes include a unique CVE ID, a common vulnerability scoring system (CVSS), general
descriptions, and multiple references. The dataset spans vulnerabilities reported annually across diverse
security domains and systems, reflecting a gradual increase in both semantic and structural variability. This
progression supports a systematic evaluation of the model’s generalization capability. We randomly split the
data into training (60%) and test (40%) sets.

4.3 Baseline Models
The experiments compare Vulnerability2Vec with three traditional text classification models, including

Logistic Regression, Naïve Bayes, and Random Forest.
Logistic Regression [41]: A linear model that computes class probabilities using weighted sums of sparse

input vectors. It creates simple decision boundaries and treats each feature independently, without modeling
interactions between terms.

Naïve Bayes [42]: A probabilistic classifier that assumes feature independence and estimates class
membership based on word frequency and conditional probabilities. Its simplicity makes it effective for small
or high-dimensional datasets.

Random Forest [43]: An ensemble model that combines multiple decision trees to capture non-linear
patterns and partial feature interactions. It provides greater modeling flexibility compared to linear methods.

The baseline models perform classification solely on word-level information, without considering struc-
tural relationships between nodes. This setting compares graph-based and non-graph-based representations.

4.4 Evaluation Metrics
The experiments evaluate the classification performance of the models with Accuracy (Micro-F1),

Precision, Recall, and Macro-F1. The metrics are defined in Eqs. (7)–(10).
Accuracy measures the proportion of total correct predictions among all predictions:

Accuac y = TP + TN
TP + TN + FP + FN

× 100 (7)

Precision indicates the proportion of correct positive predictions, averaged equally across all classes. It
is important when false positives are costly.

Precision = 1
N

N
∑
i=1

TPi

TPi + FPi
(8)

Recall measures the proportion of actual positives correctly predicted, averaged equally across all
classes. It is critical when false negatives are more concerning.

Recal l = 1
N

N
∑
i=1

TPi

TPi + FNi
(9)

Comput Model Eng Sci. 2025 13

Macro-F1 is the harmonic means of precision and recall. It is the average of each class’s micro-F1, so
every class counts equally.

Macro − F1 = 1
N

N
∑
i=1

2 × TPi

2 × TPi + FPi + FNi
× 100 (10)

where TP (True Positive) refers to the number of correctly predicted vulnerabilities, TN (True Negative) to
correctly predicted normal samples, FP (False Positive) to normal samples misclassified as vulnerabilities,
and FN (False Negative) to vulnerabilities incorrectly classified as normal. N denotes the total number of
classes, and i is an index representing each class which ranges from 1 to N.

4.5 Experimental Results
Vulnerability2Vec captures the structural relationships among CVEs by generating graph-based embed-

dings. Fig. 6 illustrates how central nodes connect with subordinate nodes, revealing patterns that reflect
related vulnerability types and attack vectors. For instance, the central node “CVE-2013-2025” connects to
subordinate nodes such as “Cross-site,” “XSS,” and “inject.” These connections highlight the key attributes
of XSS (Cross-Site Scripting) attacks, confirming that “CVE-2013-2025” belongs to the XSS vulnerability
category. Multiple CVE IDs share XSS attacks, indicating that these vulnerabilities are repeatedly identified
in certain systems. This pattern offers critical evidence to prioritize code reviews and patches in such systems.
Nodes with lower connectivity show fewer links to other nodes while focusing on specific attributes. CVE-
2016-10701’ connects only to attributes such as ‘arbitrary’ and ‘platform,’ indicating a unique security issue
specific to certain platforms. Vulnerability2Vec offers a precise analysis of structural relationships among
vulnerabilities, providing valuable insights for security management and response strategies.

Figure 6: Visualizing CVE data relationships

14 Comput Model Eng Sci. 2025

4.6 Discussion with Research Questions
This section discusses the experimental results of Vulnerability2Vec to address the research question

(RQ).
RQ1: Effectiveness of Vulnerability Classification
Table 2 illustrates the comparison of vulnerability classification accuracy among the baseline models.

Vulnerability classification remains challenging due to the complexity of software systems. The effectively
represented graph embedding matrix enhances accuracy to overcome existing challenges in automated
vulnerability classification. Our model demonstrates a 0.02–0.17 points increase in accuracy over traditional
probability-based models (Naive Bayesian, Random Forest), Logistic Regression, and one-hot encoding-
based classification models from 2009 to 2017. It outperforms random forest by 0.02–0.06 points, which
was the smallest performance difference. Table 2 presents a detailed performance comparison with accuracy.
Vulnerability2Vec outperforms competing methods by up to 0.247 points in accuracy, with particularly
strong gains over Naïve Bayes and Random Forest across multiple years. Furthermore, Table 3 shows that our
model achieves up to 0.247 points higher macro F1 than Naive Bayesian and up to 0.14 higher than Random
Forest, consistently maintaining stable macro F1 performance even as baseline models decline.

Table 2: Year-over-year accuracy results for the baseline comparison

Accuracy (Micro-F1)
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

One-Hot 0.280 0.324 0.375 0.493 0.610 0.627 0.672 0.690 0.756 0.809
Logistic Regression 0.360 0.294 0.458 0.557 0.618 0.652 0.680 0.713 0.768 0.813

Naive Bayesian 0.280 0.353 0.292 0.486 0.532 0.533 0.600 0.620 0.642 0.693
RandomForest 0.280 0.382 0.354 0.571 0.614 0.633 0.680 0.705 0.741 0.787

Our model 0.360 0.346 0.510 0.595 0.652 0.654 0.683 0.733 0.761 0.812

2009 2010 2011 2012 2013 2014 2015 2016 2017

One-Hot 0.815 0.822 0.818 0.822 0.812 0.808 0.799 0.776 0.773
Logistic Regression 0.820 0.823 0.818 0.826 0.817 0.811 0.798 0.771 0.764

Naive Bayesian 0.699 0.693 0.695 0.695 0.681 0.679 0.664 0.645 0.610
RandomForest 0.796 0.802 0.801 0.800 0.793 0.790 0.782 0.756 0.749

Our model 0.818 0.823 0.827 0.817 0.809 0.810 0.791 0.773 0.764

Note: The bold scores represent the highest score of the dataset bound to the year and the underlined scores show
the second-best score.

Table 3: Year-over-year macro F1 results for the baseline comparison

Macro F1
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

One-Hot 0.160 0.147 0.200 0.240 0.327 0.364 0.386 0.354 0.386 0.474
Logistic

Regression
0.220 0.118 0.311 0.315 0.367 0.388 0.424 0.371 0.392 0.477

Naive Bayesian 0.150 0.150 0.179 0.186 0.266 0.253 0.248 0.223 0.191 0.254
RandomForest 0.150 0.167 0.248 0.308 0.340 0.349 0.357 0.332 0.363 0.426

(Continued)

Comput Model Eng Sci. 2025 15

Table 3 (continued)

Macro F1
Our model 0.290 0.169 0.364 0.348 0.345 0.357 0.440 0.393 0.417 0.407

2009 2010 2011 2012 2013 2014 2015 2016 2017

One-Hot 0.456 0.406 0.409 0.394 0.318 0.254 0.297 0.296 0.308
Logistic

Regression
0.469 0.429 0.408 0.380 0.328 0.261 0.247 0.255 0.243

Naive Bayesian 0.252 0.233 0.242 0.215 0.175 0.142 0.111 0.096 0.060
RandomForest 0.418 0.390 0.383 0.349 0.304 0.249 0.269 0.267 0.275

Our model 0.450 0.414 0.362 0.335 0.318 0.255 0.284 0.278 0.307

Note: The bold scores represent the highest score of the dataset bound to the year and the underlined scores show the
second-best score.

This performance advantage highlights the model’s ability to capture semantic relationships among key
vulnerability characteristics. Fig. 7 displays the yearly trend of both precision and recall from 1999 to 2017.
While all models decrease in performance on both metrics after 2008, the proposed model maintains higher
values than the baseline model. This is attributed to the increased data volume, complexity of vulnerability
types, and changes in data characteristics. As shown in Table 4, the number of CWEs has steadily increased
over the past few years. The difficulty of classification increases when complex relationships are insufficiently
modeled. The rapid increase in CWE diversity causes performance decline observed from 2008. It requires
handling class imbalance caused by the growing number of classes. However, our model maintains a relative
outperformance compared with the other models. Baseline models have advantages for analyzing individual
features rather than contextual relationships between terms. They are effective in small-scale data but are
limited in capturing the complex context and syntax of vulnerabilities. Our model enables more accurate
classification by identifying key features and their semantics. For example, existing models are limited in
their ability to adequately reflect the context of various vulnerabilities when they rely solely on the term
‘buffer overflow.’ Contrarily, our model identifies the causes of potential buffer overflows by considering
the similarity of key terms such as ‘memory,’ ‘corrupt,’ and ‘potential.’ This approach employs memory-
related issues to classify potential buffer overflow vulnerabilities. Vulnerability2Vec, which accounts for
the semantics between vulnerabilities, achieves higher accuracy in classifying security vulnerabilities than
models focusing only on individual terms.

RQ2: Effectiveness of Extracting Meaningful Information for Vulnerability Classification
This experiment evaluates the effect of different parts of speech such as nouns, verbs, and adjectives

in CVE descriptions on modeling structural relationships between security vulnerabilities. This study
examines how parts of speech affect semantic relationship modeling and CWE classification through removal
and combination.

16 Comput Model Eng Sci. 2025

Figure 7: Annual changes in vulnerability classification performance (1999–2017). (a) Precision; (b) Recall

Table 4: Yearly Increase in CWE Categories (1999–2017)

Year CWE count Year CWE count
1999 12 2009 25
2000 12 2010 28
2001 11 2011 28
2002 20 2012 34

(Continued)

Comput Model Eng Sci. 2025 17

Table 4 (continued)

Year CWE count Year CWE count
2003 18 2013 42
2004 18 2014 66
2005 23 2015 76
2006 29 2016 98
2007 26 2017 144
2008 25

Our model demonstrates that effectively combining key information and removing unnecessary details
is crucial for optimizing performance. We also conduct an ablation study to verify the effectiveness of the
proposed graph representation approach by adopting various Vulnerability2Vec variants. The variants are
as follows: (1) excluding actions and characteristics of vulnerabilities (Nouns), (2) excluding subjects and
characteristics (Verbs), (3) excluding characteristics (Nouns + Verbs), (4) combining nouns with substitute
terms (Nouns + Pronouns), (5) combining Vulnerability2Vec with substitute terms (Nouns + Pronouns +
Verbs + Adjectives), (6) using only the CVSS score of vulnerability attributes (Score), and (7) combining
nouns+ pronouns with score (CVE data). Fig. 8 illustrates the results of the ablation study on the meaningful
relationships in the data. By combining or excluding nouns, verbs, and adjectives, Vulnerability2Vec outper-
forms models that rely solely on a single part of speech. Table 5 details the year-by-year performance trends.
Accuracy is the highest in most years, with a 0.43–0.46 points advantage over all comparison models between
2005 and 2010, confirming the consistency and robustness of the proposed graph-representation strategy.
The proposed model combines key parts of speech (nouns, verbs, and adjectives) to reveal meaningful
relationships and enhance the structural understanding of core characteristics and their impacts. This
improvement has likely resulted from minimizing unnecessary information and focusing on key features
to capture hidden patterns. Our model outperforms the Nouns + Verbs model by approximately 0.006
accuracy points on average across all years, surpassing the Nouns + Pronouns +Verb +Adjectives and CVE
data models by approximately 1 accuracy point. It also achieves improvements of over 0.46 accuracy points
compared to the Score model, based on the results in 2006. For example, our model improves structural
understanding of the relationships between vulnerabilities by combining key terms such as ‘exploit’ (verb),
‘unauthorized’ (adjective), and ‘SQL injection’ (noun). However, ambiguous expressions such as ‘it’ or ‘they’
can complicate identifying key information by merging different security issues. The experimental results
indicate that combining key information specifically nouns, verbs, and adjectives and removing irrelevant
content substantially improves model performance. This emphasizes the importance of reducing data noise
and ensuring reliable results for security vulnerability classification.

18 Comput Model Eng Sci. 2025

Figure 8: Year-by-year accuracy from an ablation study which evaluates how the structural relationships between parts
of speech (nouns, verbs, adjectives, etc.) influence vulnerability classification

Table 5: Results of the ablation study based on different POS-tag combinations

Accuracy (Micro-F1)
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Nouns 0.350 0.316 0.510 0.573 0.644 0.642 0.667 0.716 0.744 0.802
Verbs 0.090 0.177 0.281 0.430 0.512 0.471 0.498 0.532 0.582 0.657

Nouns+Verbs 0.360 0.309 0.568 0.570 0.647 0.654 0.684 0.733 0.758 0.811
Nouns+Pronouns 0.340 0.331 0.516 0.561 0.648 0.645 0.666 0.720 0.742 0.803

Nouns+Pronouns+
Verbs+Adjectives 0.290 0.331 0.443 0.584 0.643 0.651 0.654 0.717 0.754 0.808

Score 0.240 0.191 0.229 0.304 0.284 0.307 0.254 0.273 0.326 0.386
CVE Data 0.290 0.331 0.438 0.571 0.632 0.647 0.655 0.715 0.751 0.805

Our model 0.360 0.346 0.510 0.595 0.652 0.654 0.683 0.733 0.761 0.812

2009 2010 2011 2012 2013 2014 2015 2016 2017

Nouns 0.808 0.811 0.811 0.805 0.795 0.792 0.776 0.754 0.739
Verbs 0.662 0.669 0.673 0.668 0.654 0.667 0.649 0.622 0.592

Nouns+Verbs 0.819 0.820 0.823 0.812 0.803 0.805 0.785 0.766 0.752
Nouns+Pronouns 0.810 0.812 0.814 0.802 0.795 0.794 0.776 0.757 0.740

Nouns+Pronouns+
Verbs+Adjectives 0.813 0.822 0.823 0.814 0.805 0.807 0.791 0.771 0.762

(Continued)

Comput Model Eng Sci. 2025 19

Table 5 (continued)

Accuracy (Micro-F1)
Score 0.389 0.396 0.383 0.375 0.365 0.374 0.360 0.348 0.327

CVE Data 0.813 0.821 0.825 0.814 0.805 0.808 0.789 0.771 0.762

Our model 0.818 0.823 0.827 0.817 0.809 0.810 0.791 0.773 0.764

Note: The bold scores represent the highest score of the dataset of the year and the underlined scores are the second-
best score.

5 Conclusions
Advancements in information technology (IT) leads to an increasing demand for automated security

vulnerability analyses, and text descriptions are central in effective automated response systems. In this
study, we propose Vulnerability2Vec, a novel approach for capturing semantic similarities in vulnerability
type classification. The proposed method represents CVE descriptions as graphs to learn node embeddings
using Node2vec. These embeddings enable the classification of security vulnerability types through an SVM
classifier. The experimental results demonstrate that the proposed method outperforms existing approaches
based on sparse vector term frequency in classifying the complex relationships of CVEs. Particularly, the
combination of key terms effectively captures complex relationships and important patterns. The results
demonstrate that both the semantic similarity of texts and the structural relationships of key features are
effective for classifying vulnerability types.

Despite these advantages, the proposed model is still limited by two core factors. First, it relies on a
static graph representation, embedding vulnerability information in a fixed, time-invariant structure that
must be rebuilt whenever new CVEs appear, thereby constraining scalability. Second, all embeddings are
generated offline in batch mode, preventing real-time processing and diminishing the model’s utility for
continuous security monitoring. Future work may focus on enriching the graph with additional modalities,
such as abstract syntax trees, control-flow graphs, and CVSS metrics. Multimodal joint-embedding or gating
mechanisms can be used to broaden semantic coverage and bolster classification robustness. For the node
embedding method, graph attention-based methods and deep neural networks or knowledge graphs may be
used. Efficient graph mining or dynamic graph neural networks may be used for incremental updates, and
continual-learning techniques to avert catastrophic forgetting. In future, our model can be applied to prac-
tical applications through real-time vulnerability monitoring and automated patch prioritization scenarios.
We personally aim to develop a tool that classifies new vulnerabilities in real-time using Vulnerability2Vec.
This will allow us to build a more efficient security vulnerability management system.

Acknowledgement: During the preparation of this manuscript, the authors utilized OpenAI’s ChatGPT version GPT-
4o to improve its linguistic clarity and grammar. The authors have carefully reviewed and revised the output and accept
full responsibility for all content.

Funding Statement: This work was partly supported by the MSIT (Ministry of Science and ICT), Republic of Korea,
under the Convergence Security Core Talent Training Business Support Program (IITP-2025-RS-2023-00266605, 50%),
and in part by the Institute of Information & Communications Technology Planning & Evaluation (lITP) grant funded
by the Korea government (MSIT) (RS-2025-02305436, Development of Digital Innovative Element Technologies for
Rapid Prediction of Potential Complex Disasters and Continuous Disaster Prevention, 30%). It was also supported by
the Chung-Ang University Graduate Research Scholar-ship in 2023 (20%).

20 Comput Model Eng Sci. 2025

Author Contributions: Conceptualization, Myoung-oh Choi and Mincheol Shin; methodology, Myoung-oh Choi
and Mincheol Shin; software, Myoung-oh Choi and Mincheol Shin; resources, Hyonjun Kang; writing—original draft
preparation, Myoung-oh Choi; writing—review and editing, Mucheol Kim and Ka Lok Man; supervision, Mucheol
Kim; project administration, Mucheol Kim; funding acquisition, Mucheol Kim. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are openly available at: http://
cvedetails.com (accessed on 15 May 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Alhazmi O, Malaiya Y, Ray I. Security vulnerabilities in software systems: a quantitative perspective. In: Data and

applications security XIX. Berlin/Heidelberg, Germany: Springer; 2005. p. 281–94. doi:10.1007/11535706_21.
2. Akhter L, Khan MT, Loukas G, Sakellari G. Towards integration of syntactic and semantic vulnerability patterns.

In: 2024 IEEE 21st International Conference on Software Architecture Companion (ICSA-C); 2024 Jun 4–8;
Hyderabad, India. p. 260–4. doi:10.1109/ICSA-C63560.2024.00054.

3. Ji C, Yang S, Sun H, Zhang Y. Applying contrastive learning to code vulnerability type classification. In: Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL; 2024.
p. 11942–52. doi:10.18653/v1/2024.emnlp-main.666.

4. Strom BE, Applebaum A, Miller DP, Nickels KC, Pennington AG, Thomas CB. Mitre att&ck: design and philosophy.
Technical report. McLean, VA, USA: The MITRE Corporation; 2018.

5. Byers R, Turner C, Brewer T. National vulnerability database. Gaithersburg, MD, USA: National Institute of
Standards and Technology; 2022.

6. Adam C, Bulut MF, Sow D, Ocepek S, Bedell C, Ngweta L. Attack techniques and threat identification for
vulnerabilities. arXiv:2206.11171. 2022.

7. Mohamed N. Artificial intelligence and machine learning in cybersecurity: a deep dive into state-of-the-art
techniques and future paradigms. Knowl Inf Syst. 2025;67(8):6969–7055. doi:10.1007/s10115-025-02429-y.

8. Varma G. A study of synergy between programming practices evolution and information disclosure-causing
vulnerabilities. Iran J Comput Sci. 2024;7(1):25–40. doi:10.1007/s42044-023-00156-7.

9. Steve C, Martin R. Vulnerability type distributions in CVE. Mitre Report. 2007;200(7):1–38.
10. Tripathi A, Singh UK. Taxonomic analysis of classification schemes in vulnerability databases. In: 2011 6th

International Conference on Computer Sciences and Convergence Information Technology (ICCIT); 2011 Nov
29–Dec 1; Seogwipo, Republic of Korea. p. 686–691.

11. Liu P, Ye W, Duan H, Li X, Zhang S, Yao C, et al. Graph neural network based approach to automatically assigning
common weakness enumeration identifiers for vulnerabilities. Cybersecurity. 2023;6(1):29. doi:10.1186/s42400-
023-00160-1.

12. Atiiq SA, Gehrmann C, Dahlén K, Khalil K. From generalist to specialist: exploring cwe-specific vulnerability
detection. arXiv:2408.02329. 2024.

13. Li X, Chen J, Lin Z, Zhang L, Wang Z, Zhou M, et al. A mining approach to obtain the software vulnerability
characteristics. In: 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD); 2017 Aug 13–16;
Shanghai, China. p. 296–301. doi:10.1109/CBD.2017.58.

14. Chang YY, Zavarsky P, Ruhl R, Lindskog D. Trend analysis of the CVE for software vulnerability management. In:
2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International
Conference on Social Computing; 2011 Oct 9–11; Boston, MA, USA. p. 1290–3. doi:10.1109/PASSAT/SocialCom.
2011.184.

15. Russo ER, Di Sorbo A, Visaggio CA, Canfora G. Summarizing vulnerabilities’ descriptions to support experts
during vulnerability assessment activities. J Syst Softw. 2019;156(1):84–99. doi:10.1016/j.jss.2019.06.001.

http://cvedetails.com
https://doi.org/10.1007/11535706_21
https://doi.org/10.1109/ICSA-C63560.2024.00054
https://doi.org/10.18653/v1/2024.emnlp-main.666
https://doi.org/10.1007/s10115-025-02429-y
https://doi.org/10.1007/s42044-023-00156-7
https://doi.org/10.1186/s42400-023-00160-1
https://doi.org/10.1186/s42400-023-00160-1
https://doi.org/10.1109/CBD.2017.58
https://doi.org/10.1109/PASSAT/SocialCom.2011.184
https://doi.org/10.1109/PASSAT/SocialCom.2011.184
https://doi.org/10.1016/j.jss.2019.06.001

Comput Model Eng Sci. 2025 21

16. Liu C, Chen X, Li X, Xue Y. Making vulnerability prediction more practical: prediction, categorization, and
localization. Inf Softw Technol. 2024;171(4):107458. doi:10.1016/j.infsof.2024.107458.

17. Wei Y, Bo L, Sun X, Li B, Zhang T, Tao C. Automated event extraction of CVE descriptions. Inf Softw Technol.
2023;158(1):107178. doi:10.1016/j.infsof.2023.107178.

18. Templeton A. Word equations: inherently interpretable sparse word embeddings through sparse coding.
arXiv:2004.13847. 2020.

19. Weinberger K, Dasgupta A, Langford J, Smola A, Attenberg J. Feature hashing for large scale multitask learning.
In: Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, QC, Canada: ACM;
2009. p. 1113–20. doi:10.1145/1553374.1553516.

20. Freksen CB, Kamma L, Green Larsen K. Fully understanding the hashing trick. In: Advances in Neural Information
Processing Systems 31 (NeurIPS 2018). San Jose, CA, USA: Curran Associates, Inc.; 2018.

21. Yao L, Mao C, Luo Y. Graph convolutional networks for text classification. Proc AAAI Conf Artif Intell.
2019;33(1):7370–7. doi:10.1609/aaai.v33i01.33017370.

22. Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, et al. Graph neural networks: a review of methods and applications.
AI Open. 2020;1(1):57–81. doi:10.1016/j.aiopen.2021.01.001.

23. Han K, Wang Y, Guo J, Tang Y, Wu E. Vision GNN: an image is worth graph of nodes. Adv Neural Inf Process Syst.
2022;35:8291–303.

24. Bourigault S, Lagnier C, Lamprier S, Denoyer L, Gallinari P. Learning social network embeddings for predicting
information diffusion. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining.
New York, NY, USA: ACM; 2014. p. 393–402. doi:10.1145/2556195.2556216.

25. Theocharidis A, van Dongen S, Enright AJ, Freeman TC. Network visualization and analysis of gene expression
data using BioLayout Express 3D. Nat Protoc. 2009;4(10):1535–50. doi:10.1038/nprot.2009.177.

26. Yu J, Yin H, Xia X, Chen T, Li J, Huang Z. Self-supervised learning for recommender systems: a survey. IEEE Trans
Knowl Data Eng. 2024;36(1):335–55. doi:10.1109/TKDE.2023.3282907.

27. Tang W, Tang M, Ban M, Zhao Z, Feng M. CSGVD: a deep learning approach combining sequence and graph
embedding for source code vulnerability detection. J Syst Softw. 2023;199(3):111623. doi:10.1016/j.jss.2023.111623.

28. Ling M, Tang M, Bian D, Lv S, Tang Q. A dual graph neural networks model using sequence embedding as graph
nodes for vulnerability detection. Inf Softw Technol. 2025;177(3):107581. doi:10.1016/j.infsof.2024.107581.

29. Na S, Kim T, Kim H. A study on the classification of common vulnerabilities and exposures using naïve
bayes. In: Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA-2016).
Berlin/Heidelberg, Germany: Springer; 2017. p. 657–62. doi:10.1007/978-3-319-49106-6_65.

30. Rehman S, Mustafa K. Software design level vulnerability classification model. Int J Comput Sci Secur.
2012;6(4):238–55.

31. Yosifova V, Tasheva A, Trifonov R. Predicting vulnerability type in common vulnerabilities and exposures (CVE)
database with machine learning classifiers. In: 2021 12th National Conference with International Participation
(ELECTRONICA); 2021 May 27–28; Sofia, Bulgaria. p. 1–6. doi:10.1109/ELECTRONICA52725.2021.9513723.

32. Yosifova V. Vulnerability type prediction in common vulnerabilities and exposures database with ensemble
machine learning. In: 2021 International Conference Automatics and Informatics (ICAI); 2021 Sep 30–Oct 2; Varna,
Bulgaria. p. 146–9. doi:10.1109/icai52893.2021.9639588.

33. Perozzi B, Al-Rfou R, Skiena S. DeepWalk: online learning of social representations. In: Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM;
2014. p. 701–10. doi:10.1145/2623330.2623732.

34. Grover A, Leskovec J. node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM; 2016. p. 855–64.
doi:10.1145/2939672.2939754.

35. Perozzi B, Kulkarni V, Chen H, Skiena S. Don’t walk, skip!: online learning of multi-scale network embeddings.
In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining 2017. New York, NY, USA: ACM; 2017. p. 258–65. doi:10.1145/3110025.3110086.

https://doi.org/10.1016/j.infsof.2024.107458
https://doi.org/10.1016/j.infsof.2023.107178
https://doi.org/10.1145/1553374.1553516
https://doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1145/2556195.2556216
https://doi.org/10.1038/nprot.2009.177
https://doi.org/10.1109/TKDE.2023.3282907
https://doi.org/10.1016/j.jss.2023.111623
https://doi.org/10.1016/j.infsof.2024.107581
https://doi.org/10.1007/978-3-319-49106-6_65
https://doi.org/10.1109/ELECTRONICA52725.2021.9513723
https://doi.org/10.1109/icai52893.2021.9639588
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/3110025.3110086

22 Comput Model Eng Sci. 2025

36. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. LINE: large-scale information network embedding. In: Proceedings
of the 24th International Conference on World Wide Web. Florence, Italy: International World Wide Web
Conferences Steering Committee; 2015. p. 1067–77. doi:10.1145/2736277.2741093.

37. Wang S, Huang C, Yu D, Chen X. VulGraB: graph-embedding-based code vulnerability detection with bi-
directional gated graph neural network. Softw Pract Exp. 2023;53(8):1631–58. doi:10.1002/spe.3205.

38. Chen Y, Wu L, Zaki MJ. Reinforcement learning based graph-to-sequence model for natural question generation.
arXiv:1908.04942. 2019.

39. Lee R. Part-of-Speech (POS) tagging. In: Natural language processing: a textbook with python implementation.
Berlin/Heidelberg, Germany: Springer; 2025. p. 45–68. doi:10.1007/978-981-96-3208-4_3.

40. Awad M, Khanna R, Awad M, Khanna R. Support vector machines for classification. In: Efficient learning
machines: theories, concepts, and applications for engineers and system designers. Berkeley, CA, USA: Apress;
2015. p. 39–66. doi:10.1007/978-1-4302-5990-9_3.

41. Wright RE. Logistic regression. In: Reading and understanding multivariate statistics. Washington, DC, USA: APA;
1995. p. 217–44.

42. Dumais S, Platt J, Heckerman D, Sahami M. Inductive learning algorithms and representations for text categoriza-
tion. In: Proceedings of the Seventh International Conference on Information and Knowledge Management. New
York, NY, USA: ACM; 1998. p. 148–55. doi:10.1145/288627.288651.

43. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi:10.1023/A:1010933404324.

https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1002/spe.3205
https://doi.org/10.1007/978-981-96-3208-4_3
https://doi.org/10.1007/978-1-4302-5990-9_3
https://doi.org/10.1145/288627.288651
https://doi.org/10.1023/A:1010933404324

	Vulnerability2Vec: A Graph-Embedding Approach for Enhancing Vulnerability Classification
	1 Introduction
	2 Related Works
	3 A Proposed Graph Embedding Approach for Efficient Vulnerability Classification
	4 Experiments
	5 Conclusions
	References

