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ABSTRACT

The morphological differences between two geographical maps can be highlighted by a polycentric distance
cartogram resulting from a bidimensional regression. Beyond the communicational interest of the transformations
thus produced, the method makes it possible to reveal the differences in structure and therefore constitutes a
real research tool. However, bidimensional regression can only compare the shape of two maps. Since the 1990s,
geometric morphometrics has revolutionized the morphological analysis of natural structures (and others). It has
since been applied in many fields of research but not in cartography. This article describes the theoretical and
methodological bases of a method combining bidimensional regression with a geometric morphometrics approach
to compare the shape of several geographical maps. Geometric morphometrics and bidimensional regression
indeed share common approaches of the statistical shape analysis like homologous landmarks and interpolation
grids. However, there is no software in geometric morphometrics capable of directly reading geographical data,
which would facilitate the work of cartographers accustomed to GIS software. That is why we present MapMorphy,
a tool specifically developed for this task. An example on ancient maps illustrates the method.

KEYWORDS
Geometric morphometrics; bidimensional regression; shape space; tangent space; ancient maps

1 Introduction

The shape is analyzed in cartography in two different ways by statistical methods. The first
one consists in analyzing the intrinsic shape of objects, in particular by calculating specific indices
(Gravelius compactness index, Miller circularity index, elongation index, concavity index, etc.) or
even by fractal geometry. Another way consists in considering the morphology of a background
map not for itself but by comparison with that of another base map. In this case, it is a question
of measuring the morphological difference between the two objects. This can be revealed by a
cartographic transformation moving the points, lines and polygons making up the background map
[1,2]. The general underlying hypothesis, resulting from the work of the naturalist D’Arcy Thompson1

[3] is the following: “The shape expresses the structure of a phenomenon; if one can characterize a
shape or to compare shapes, then one can reveal through the form an invisible structure, one can
1First edition in 1917.
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compare structures with each other” [4]. Geographic maps, as representations of a specific space, are
structured by landmarks (in particular places) separated from each other according to a measure of
distance. However, for the same space, these distances can vary, for example between ancient maps,
between cognitive representations of this space or even between maps expressing the distance in travel
time. Comparing the shape of these maps reveals their hidden structure and shows the differences in
the measurement of these distances. The method and the software presented in this article, adopt this
second approach to compare the shape of several geographical maps. Kendall [5] defined shape as “the
residual geometric information of an object once its size, position and orientation have been filtered
out”. The shape is therefore distinguished from the form, in particular by Needham’s equation [6]:
“Form = shape + size”. Analyzing the form therefore means considering the size of the object, i.e.,
not filtering it (or reintroducing it) in the analysis, which can be relevant for morphometric studies
of biological organisms but which is of little interest for geographical maps. They will therefore be
compared here by their shape.

Bidimensional regression [7,8] has been the most used method in cartography since the 1970s
to compare the shape of two maps, by filtering out the geometric data unrelated to this shape.
Waldo Tobler’s method is based on the comparison of the relative position of homologous landmarks
corresponding to each other on an image map and a reference map. The image landmarks can
correspond, for example, to those drawn on a sketch map externalizing the cognitive representation of
a particular space or to those of an ancient map. The bidimensional regression method is composed
of two successive steps. The first is an adjustment of all the landmarks of the image surface to be
analyzed on those of the reference surface, a topographic map for example. This adjustment is an
adaptation of the simple linear regression to bidimensional data. When the compared surfaces are
geographical maps, the landmarks in question correspond to places, i.e., elementary portions of the
geographical space, identified by a toponym. The image landmarks are moved so that they are located
as close as possible (in the sense of least squares) to their counterparts on the reference surface. After
the adjustment, the size, position and orientation of the coordinates have indeed been filtered and the
remaining geometric information corresponds well to the shape. The second step is an interpolation
of cartographic data. The residual differences between the image and reference coordinates are
used to deform the reference surface by an interpolation calculated from the displacement vectors
corresponding to each pair of homologous landmarks. The result of this cartographic transformation
of position is a cartographic anamorphosis, more precisely a polycentric distance cartogram capable
of revealing the invisible underlying structure of the image map. The figure below presents an example
in the field of ancient maps (Fig. 1).

However, bidimensional regression can only compare two maps at a time. To overcome this limit,
we associate the regression fit with a method of standardization fit derived from the natural sciences
and used to compare the shapes of several objects, also from homologous landmarks: geometric
morphometrics [9–11]. Bookstein [12] defined this new morphometric approach as the statistical
analysis of variations in shapes and their covariations with other variables. Baab et al. specified that the
objectives of geometric morphometrics refer to three main categories: to characterize and quantify the
main directions of variations and covariations of shapes in a sample; test whether two or more groups
differ in certain aspects of the shapes; establish the nature of the relationship between the shapes and
one or more additional variables [13].

Bidimensional regression and geometric morphometrics seem to us sufficiently close in their
methodology to associate them in the same cartographic software. Regularities, similarities, and
dissimilarities of cartographic shapes can be detected and cross-checked with other indicators. Several
software have been developed since the 90s for geometric morphometrics. These include, without being
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exhaustive, IMP [14], Morphologika [15], MorphoJ [16], the R package Geomorph [17], and the series
of tps software [18]. These software programs are all capable of performing geometric morphometric
analyzes from maps but cannot read cartographic file formats such as the shapefile format used by
the MapMorphy software presented in this article. This file format allows existing cartographic data
(e.g., illustrations) to be directly integrated into data processing and can be easily produced (e.g., image
landmarks) by GIS tools used by cartographers. Likewise, all vector files produced by MapMorphy
can be formatted using GIS software.

Figure 1: Comparison of the shape of two maps by bidimensional regression: the cartography of France
by Abraham Ortelius (1570) is compared to a modern Map (source: gallica.bnt.fr/National Library
of France). (a) The vectorized sketch of 44 cities from the ancient map. (b) The modern reference map
with its 44 homologous landmarks used for the morphological comparison. (c) Step 1: adjustment
by the bidimensional regression. The image landmarks of the ancient map are moved closer to the
reference landmarks. The displacement vectors correspond to the residual displacement between each
pair of homologous landmarks. (d) Step 2: the grid and the contour of France have been deformed
according to the displacement vectors

gallica.bnt.fr
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2 Some Examples of Potential Applications of Geometric Morphometrics in Cartography

Geometric morphometrics has already been used in many fields of research (biology, archaeol-
ogy, botany, image analysis, chemistry, medicine, bioinformatics, genetics, geology, etc.). The first
applications relating to cartography concern spatial analysis. They were carried out by statisticians
to test Christaller’s theory of central places [19]. Mardia et al. [20] verified this hypothesis for a map
of 44 cities in the state of Iowa (USA) in the seventies. They compared the shape of the polygons
resulting from a Delaunay triangulation between triplets of nearby cities with the equilateral triangles
of the theoretical situation. The question was whether the proportion of nearly equilateral triangles
between cities was more important than a random distribution. Kendall [21] also found a higher-than-
expected proportion of equilateral triangles corresponding to the distribution of 234 cities and towns in
Wisconsin. More recently, geometric morphometrics has been applied to human traces on the ground,
such as footprints [22] or constructions such as Neolithic dwelling plans [23]. For a comprehensive
review of applications, see Mitteroecker et al. [11].

All these structures (human traces or others) can of course be the subject of a map when they
are located in a geographical reference frame, especially because geometric morphometrics analysis
produces shape variables for each object. But the map, as a direct object of this method, is not a
topic that has been explored to date. We propose to explore this approach as the extension to several
objects of the applications already practiced for the morphological comparison of two maps from
bidimensional regression. It will therefore be a question of comparing the shape of several image
maps to the shape of a single reference map. The first possible category concerns the comparison of
maps resulting from the measurements of the terrestrial space carried out in conventional systems of
coordinates and units of distance. The cartographic shapes can indeed vary according to the methods
and techniques used over time, from the astrolabe to the satellite, including the land surveyor’s chain
and triangulation. These shapes could be analyzed from the perspective of the level of precision
between ancient and modern maps [8] (Fig. 1), but also between modern maps using different
technologies [24]. The analysis of cartographic shapes also makes it possible to better understand the
context of the elaboration of ancient maps of which we often know little. Many of these maps were
based on previous productions. By their shape, they provide information on their parentage, lineage,
and even plagiarism [25].

But geographic space is not measured only with Euclidean distances expressed in meters or
kilometers. Other possible cartographic applications in geometric morphometrics imply that there
are other metrics, and that geographical space is not a neutral, unique and intangible container but
that it is relative, that is to say, that it is constructed by the values associated with places. From this
point of view, several non-Euclidean metrics can be superimposed and the exposed method makes it
possible to compare the morphology of the resulting spaces in two registers. The first one concerns
functional spaces [26]. On a daily basis, we evaluate what separates or brings places together according
to values that are not measured in miles or kilometers. The physical space, objectified by universal
metrics, is then replaced by a space where the layout of places is modified according to the functions
assigned to them and the relationships attributed to them. For such spaces, distances in meters are
replaced by effort-distances (time-distances, cost-distances, energy-distances, tiredness-distances, etc.)
or by metaphorical distances measured, for example, by the number of social contacts between places
(cultural exchanges, phone calls, etc.). The heterogeneous and anisotropic nature of these spaces can be
visualized by a polycentric distance cartogram [27,28]. Geometric morphometrics makes it possible to
simultaneously compare the shapes of several of these non-Euclidean maps, i.e., several time-space
maps. The second register concerns cognitive spaces. Cognitive space corresponds to a functional
space recognized by a subject [29,30]. The cognitive space therefore introduces an additional variation
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compared to the functional spaces because many individual factors such as motivation or personal
characteristics come into play [29]. It produces in us a cognitive representation of space whose structure
may be very different from that of “objective” space. Here again, the cognitive space can be revealed
in the form of a polycentric distance cartogram [31,32]. A morpho-geometric analysis could detect
constants in the transformation of space for groups of individuals and highlight cognitive spaces that
are similar or opposite in shape.

3 Theoretical and Methodological Framework of the Implemented Method
3.1 Emergence of Geometric Morphometrics

From the 1960s and 1970s, what is now called traditional morphometrics [33] applied multivariate
statistical methods (principal component analyses, discriminant analyses, etc.) to a set of measure-
ments (linear distances, angles, surfaces, lengths, perimeters, etc.) or ratios [34,35]. However, this
approach to comparative morphology does not make it possible to understand pure shapes because
the analyzed linear measurements are usually strongly correlated with size. Several solutions have
sought to eliminate the size effect, but with different results and none of them being unanimous
[36]. From the end of the 80s, a new current of research emerged to characterize shapes by variables
independent of size. These methods use all the Cartesian coordinates of a series of homologous
identified points called landmarks or calculated points (semilandmarks) on each object [37–39], and no
longer measurements between certain reference points. Several approaches have been used (Bookstein
coordinates, Euclidean Distance Matrix Analysis, resistant fit, etc.) but it is the Generalized Procrustes
Analysis (GPA) that has prevailed since the 1990s [40–42]. This method removes what is not about
the shape by a translation, followed by a scaling and then a rotation of the coordinates [37,43].
Concomitantly, several statisticians and in particular Kendall [44,45] and Goodall [46,47] developed
a statistical framework, a theory, for the statistical analysis of shapes including the fit of Cartesian
coordinates and the obtaining of shape variables. Geometric morphometrics emerged in the 1980s from
this convergence. It was a new current of research that some do not hesitate to describe as revolutionary
[33,48]. In addition, to better visualize the differences in shape, geometric morphometrics uses, like
bidimensional regression, a grid interpolation method in the spirit of the pioneering work of D’Arcy
Thompson at the beginning of the 20th century, recently republished [3]. This is the so-called thin-plate
splines method [49] which is generally applied to grids.

3.2 From the Configuration Space to the Shape Space
Shape differences appear through the exploration of a morphological space (also called mor-

phospace). Its construction involves a series of operations on the initial coordinates of homologous
landmarks. Initially, there is the configuration space. The configurations correspond to the coordinates
of homologous landmarks including information on the position, the orientation and the size of several
objects. The configuration space is the set of matrices of k homologous landmarks with M coordinate
dimensions (2 or 3). The configuration space is potentially very large and therefore practically
impossible to represent by the mind. Each configuration of K landmarks in M dimensions can be
considered as a point in a space of K ∗ M dimensions [50]. Thus, geographical maps structured by
configurations composed of 20 places in 2 dimensions originally sit in a 40-dimensional configuration
space. Statistically, such a space has 40 degrees of freedom because there are 40 independent pieces of
information. To obtain a shape, it is possible to superimpose two configurations of landmarks by the
ordinary Procrustes method [51]. The first step in this method is to center the two configurations
relative to each other (removal of positional differences). The second step reduces them to size 1
thanks to the centroid size (removal of size differences). Centroid Size (CS) is the most commonly used
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measure of size in geometric morphometrics. It corresponds to the square root of the sum of the square
distances between each landmark and the centroid of the configuration. This can be expressed as:

CS =
√∑n

i=1
(ui − x)

2 + (vi − y)
2 (1)

where u, v correspond to the coordinates of the configuration; x, y correspond to the coordinates of
the centroid of the configuration, and n the number of landmarks of the configuration.

To standardize the size of an object at the value of 1, it suffices to divide the coordinates of its
homologous landmarks by the centroid size; finally, a rotation of one of the configurations on the
other is carried out in such a way as to reduce the distance between the two configurations as much as
possible (removal of orientation differences). This distance, called the Procrustes distance, corresponds
to the square root of the sum of the square distances between each homologous landmark (Fig. 2). The
Procrustes distance is therefore a measure of the difference between shapes. The greater this distance,
the greater the differences in shape. Conversely, this distance is zero for two strictly identical shapes.

Figure 2: Calculation of the Euclidean Procrustes distance between two triangle configurations

Kendall [44,45] demonstrated that the shape space corresponding to the Procrustes metric is a
riemannian manifold (curved space) of dimension 2K-4 for two-dimensional configurations. Indeed,
the superposition reduces the number of dimensions, that is to say, the degree of freedom of the values.
For 2D configurations, the shape space is reduced by four dimensions: two dimensions for position,
one dimension for scaling and one dimension for orientation. These data are no longer necessary
since they are common to the different configurations (same size, same position and same orientation
of the homologous landmarks). The result is an isotropic (uniform) hyperspherical space in which each
configuration is represented by a point separated from the others by a constant metric corresponding
to the Procrustes distance.

By using the ordinary Procrustes method previously described, it is thus possible to visualize
a space corresponding to shapes composed of three homologous landmarks [52,53]. The points
corresponding to triangles then sit on a surface in 2 dimensions (2 dimensions ∗ 3 landmarks − 4
dimensions). More precisely, Kendall’s shape space for triangles corresponds to the 2D surface of a
3D sphere of radius of 0.5. The table of Procrustes distances between pairs of configurations then
makes it possible to produce Kendall’s shape space for triangles, for example by means of MDS
(multidimensional scaling). For more than three landmarks, Kendall’s shape space corresponds to
a hypersphere of dimension greater than 3 (Fig. 3).
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Figure 3: Kendall’s shape space for triangles (after Klingenberg [54]). In such a space, each triangle
corresponds to a point on the sphere and the distances between points correspond to the differences
in shape (distances on the arc or in a straight line). If an equilateral triangle is chosen as the North
Pole, then several regularities emerge: to the South Pole corresponds to another equilateral triangle
and the content of the Southern Hemisphere is the symmetrical of that of the Northern Hemisphere.
At the equator (thick dashes), correspond to the flattened triangles while at the meridians correspond
to the isosceles triangles

Current work in geometric morphometrics is based on that of Kendall. However, they most often
use a generalized version of Procrustes fit: GPA, Generalized Procrustes Analysis [9,37,43]. It was
indeed suggested by Rohlf [38] that when data from curved space are projected onto a tangent linear
space for statistical analysis (see below), distances between objects were better respected when the
shape space was produced from the GPA [55]. Several properties distinguish the GPA shape space
(sometimes called the Slice shape space) from the Kendall shape space. 1. The fit is no longer applied
there between the homologous landmarks of each pair of configurations but between the homologous
landmarks of each object and those of a unique reference. 2. This unique reference ideally corresponds
to the average of the Procrustes-fitted coordinates and is called consensus in this case. Consensus is
calculated during the iterative process of fitting. An external reference to the images can also be chosen
however the risk of a lower quality of the model. 3. Depending on how the size is processed during
this iterative adjustment, the GPA produces two kinds of shape space, each endowed with a specific
metric [50,53,56]. When size is neutralized by standardizing all objects to a centroid size of 1, the fit
is said to be partial. When the size is constrained to the value of 1 for only one object and it can vary
to reduce the Procrustes distance of the others, the fit is said to be full. 4. When a partial generalized
fit is used (which is the most frequent case), the shape space does not correspond to a sphere but to
a hemisphere (for triangles) or a hyper-hemisphere (for more than three homologous landmarks) of
radius of 1. It has been shown that there is a relation between Kendall’s shape space and the Slice
shape space produced by partial generalized fitting [55]. For more details on shape spaces and related
metrics, see the article by Klingenberg [53].

3.3 From the Shape Space to the Morphospace
In order to visualize and explore the shape space, a reduction in the number of dimensions is

necessary. It is possible to do this by using a multidimensional analysis of the data to produce a relevant
perspective on the shape space, which we will call here morphospace. However, the shape space is a
curved space that does not lend itself well to linear statistical methods such as principal component
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analysis. On the other hand, when the individuals are grouped on a relatively limited portion of the
curved space, which is the case after the fit, we can project their coordinates with little deformation
on a linear tangent space whose point of contact with the curved space corresponds to the reference
configuration (Fig. 4a), ideally the consensus [57]. The tangent space is then of the same dimension
as the curved space. The problem is comparable to that of cartographic projections which seek to
convert the angular geodesic coordinates into Cartesian coordinates on a tangent plane: the closer the
individuals are to the point of tangency on the curved space, the more faithful will be their projection
on the tangent space. The most used method in geometric morphometrics is an orthogonal projection
during which the coordinates of the homologous landmarks are projected perpendicular to a space
which is tangent to the point of reference2 [38].

Figure 4: From the shape space to the morphospace (an example with triangles). (a) Sectional view
of the articulation of Kendall’s shape space for triangles (the sphere of radius of 0.5), the shape space
by fitting to a reference (hemisphere of radius of 1) and the tangent space (the horizontal plane). The
three spaces have a common point: the reference R. Point A corresponds to the position of a triangle
on the sphere (full superimposition with a size closest to that of R) and B, its orthogonal projection
on the tangent plane. C corresponds to the same fitted triangle but is reduced to centroid size of 1 and
D its projection on the tangent plane (after Klingenberg [54]). (b) A morphospace corresponds to the
visualization of the individuals in the tangent plane according to two or three of the first components
of a principal component analysis

A principal component analysis can then be applied to the projected coordinates of the individuals
on this tangent space. In geometric morphometrics, the advantage of PCA over other multidimensional
data analysis methods is that it operates a rigid rotation of the data on the main axes (those with the

2When the conformations being compared are very similar, the straight-line distances on the tangent plane after projection and the distances along the curved space are
almost identical because the points are so close to the reference that the curvature is practically zero on the curved space. It is therefore possible to skip the projection
procedure.
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greatest variances) while preserving the original distances [50]. Principal component analysis [9,12]
and its equivalents such as relative warp analysis [58] have thus become central tools for analyzing
geometric morphometrics data to show the essential morphological differences [59–61]. The first
use of PCA is to show a morphospace generally built from the first two components in which each
individual represented by a point is separated from the others by distances which approximate that of
the multidimensional shape space (Fig. 4b). It is therefore easy to evaluate the resemblance of two maps
or on the contrary their dissimilarity by their location in this space. In addition, PCA eigenvectors can
be used to compute models for any point of the morphospace. Finally, the scores of the individuals
(e.g., geographical maps) on the axes can be considered as shape variables that can be cross-referenced
with other data. In order to construct the morphospace, the coordinates of the reference are subtracted
from those of each adjusted object, which has the effect of centering the morphospace on this reference.
The PCA is then calculated from the covariance matrix of these residuals. The principal components
then constitute linear combinations of the original data which are independent of each other. The
eigenvalues describe the decreasing percentage of variance that is explained by each axis. The scores
of the principal components correspond to the position of each object, therefore of each map, along
the axes. The first axis corresponds to the main tendency of variation of shapes, the second axis, to the
second in terms of importance, etc. The orthogonal crossing of two or three of these axes therefore
makes it possible to represent a morphospace in which each map is arranged according to the main
shape variations. For more than three homologous landmarks, keep in mind that this is a partial view
of the shape space.

4 The MapMorphy Software

The MapMorphy software was designed to implement the methods previously described and allow
the user to compare the morphology of several surfaces structured by homologous landmarks, in par-
ticular geographical maps. The application uses the open-source MapWinGIS ActivX (https://www.
mapwindow.org/), a software component that brings all the functionalities of a geographic information
system to MapWindow GIS. MapMorphy was developed in the VB.net language and the Microsoft™
company Visual Studio Community integrated development environment. Supplementary materials
are available at: https://mapmorphy.fr. They include the MapMorphy installer, documentation, and
examples.

4.1 Input Data
The software user begins by choosing the data files necessary for processing. All should be coded

in shapefile3 format. The main data correspond to the homologous landmarks. These are identifiable
points, precisely localizable on each of the objects of the studied corpus, which are present both
on all the image maps and on the reference map. These landmarks must meet several requirements
[62]. They must first of all make it possible to summarize the morphology of each object and must
therefore be correctly distributed on its surface and sufficiently numerous. When a hypothesis concerns
one or more landmarks, these must necessarily be part of the input data. The landmarks must be
digitized precisely or according to a particular convention if maps present ambiguities regarding their
location (for example on ancient maps). Finally, landmarks must maintain between them a relatively
similar topology for the method to be convincing (cf. 4.4). For structures relating to living things,
the statistician and biologist Bookstein classify landmarks into three types with decreasing level of
homology. It is striking to note for a geographer that for this author, landmarks are comparable to

3Data format for storing geospatial vectors and attributes, designed by Esri company. This data format can be produced from most GIS software. The data of the article
were vectorized under the QGIS software.

https://www.mapwindow.org/
https://www.mapwindow.org/
https://mapmorphy.fr
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places, as if this geographical concept best defined the notion of landmark from a general point of view:
“These are loci that have names (‘bridge of the nose’, ‘tip of the chin’) as well as Cartesian coordinates”
[12]. Conversely, by its properties, the place (or locus) appears from a geographical point of view as a
concept perfectly adapted to the notion of landmarks in the sense of geometric morphometrics. First
of all, answering the question “where”, the place has spatial properties: it is located in a unique way,
possibly in a Cartesian coordinate system, by its projected geographical coordinates. It is indivisible
and mathematically discrete. It can be isolated, occupies a well-determined surface and can exist
at all scales, from the micro-place like a square or a church, to the macro-place like a country. In
addition, the place has social characteristics that make it a very unique landmark. The place only
exists through the meaning attributed to it. “An expanse only becomes a place at the end of a process
of mental construction which individualizes it in relation to the surrounding space and which is based
on individual or collective practices and experiences” [63]. The place must therefore be recognized
by some or by all for its qualities, its functionalities, its appearance in order to be consecrated as a
place. As such, it has an identity expressed by a toponym. For all these reasons, the place can be
assimilated to a type 1 landmark in Bookstein’s typology, those presenting the strongest homology.
Other secondary data can be added to the project, optionally. When an external reference is chosen (for
example a topological map), it is possible to add to it illustrative plots of points, polylines or polygons
which will be deformed with a grid during the interpolation process, according to the differences
observed between fitted landmarks and reference landmarks. If the consensus is chosen as a reference,
it is possible to associate link files connecting the fitted landmarks, in the absence of illustrations. In
addition, bitmap files from photographs or scans of the compared objects can be added to the project.
Due to the privileged geomatics format of the data, the software is specially adapted to the comparison
of geographical data. It is however able to compare any corpus of surfaces structured by a series of
homologous landmarks coded in shapefile format.

4.2 A GIS User Interface
MapMorphy has a graphical user interface (GUI). It offers two different aspects corresponding

to two distinct but complementary types of projects (Fig. 5).

The type 1 project corresponds to the comparison of a single image configuration with a reference
configuration. This type of project computes a classical polycentric cartographic transformation of
position by ordinary bidimensional regression [8,64]. It can be displayed by a polycentric distance
cartogram. The processing menu is used to launch the two successive stages of a bidimensional
regression as described above. The first step is a superimposition of the image landmarks of a
configuration on the reference landmarks. The residual differences (there are always some if the two
configurations are not strictly identical) determine the displacement vectors for each landmark of
the reference configuration. The user interface then proposes to define the extent and the resolution
of a grid which covers the reference space and represents a continuous space. The second step is a
configurable multiquadric interpolation which allows to propagate all the deformations corresponding
to the displacement vectors on the grid and the illustrations relating to the reference map. The
cartogram then appears in the principal window. This type of project makes it possible to show
the difference in shape between the landmarks of an image configuration with those of a reference
topographic map (Fig. 1) or to compare an average of image landmarks of a configuration with the
topographic landmarks of this reference. It is complementary to type 2 projects.
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Figure 5: Simplified processing of both types of projects in the MapMorphy software

The type 2 project corresponds to the morpho-geometric analysis of the software. It presents
an additional visualization panel for the exploration of the morphospace. This time, it is a matter
of comparing several image configurations to a reference configuration, and this, in four steps. The
first two are the same as type 1 projects, except that the reference can match the consensus or an
external reference and the data can be projected onto a tangent plane. If the consensus is chosen as
the reference, no illustration is available, because the consensus is an average that does not correspond
to any possible illustration. However, links between the superimposed adjusted landmarks provide
additional visual context to the interpolated grid. These first two steps make it possible to calculate,
show and save the total difference in shape between each map and the reference map. This difference
can then be visually compared to the partial reconstruction by the model. The third step calculates the
PCA and the morphospace. The PCA is constructed from the covariance matrix of superimposition
residuals. The PCA of MapMorphy makes it possible to reconstruct, for any point and thanks to its
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eigenvectors, typical models, four of which are displayed on the PCA graph. An additional window
allows to calculate a model for each point of this continuous morphospace. This window also makes
it possible to evaluate, by a linear regression test, the relevance of the data for a morpho-geometric
analysis (cf. 4.4). Finally, the fourth step, associated with the calculation of the PCA, is an unsupervised
classification by K-means witch allow to associate the close shapes on the PCA.

Figure 6: MapMorphy user interface for a type 2 project. This test is only intended as an illustration
of the presented method. The shape of seven ancient maps of France4 structured by 44 homologous
landmarks is compared to a modern map named IGN at the intersection of the axes. The reference
here is not the consensus but external data which could therefore be associated with an illustration
corresponding to the modern limits of the country. The linear regression test (Fig. 8b) nevertheless
reveals that the data can be processed by PCA without recourse to consensus and that the model is
reliable. (a) The morphospace corresponds to the scores on the first two components of the PCA which
cumulate nearly 84% of the variance. The proximity of the points brings to light the proximity of the
shapes. Four typical models are displayed at the ends of each axis (PC1 on the horizontal axis and
PC2 on the vertical axis). They correspond to the points of intersection of the rectangular frame with
the two axes and show the two main trends in shape deviation from the reference. (b) For example, the
map of Paolo Forlani and Oronce Fine (1566) is targeted by the user (red cross). Its similarity in shape
with the previous map of Oronce Fine (1561) is highlighted here by the software. (c) Its total deviation
from shape with the reference is displayed in the left window. (d) Its reconstruction by the model using
the first two PCA components is displayed in the floating window
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Figure 7: Vector formatting of the morphospace from files calculated by MapMorphy

Both interfaces are very similar. The type 1 interface is a simplification of the type 2 interface, so
many tools and visual codes are common to both types of projects. The user interface uses the standard
presentation of GIS software for cartographic navigation, management of data layers, attribute table,
identification of objects, formatting. The two types of project are processed according to comparable
sequences: choice of the project type, creation of the project folder, loading of necessary and optional
data, superimposition and creation of the grid, multiquadric interpolation, PCA associated with the
clusters (only for type 2 projects). In both cases, all processing is automatically saved in the folder
previously designated by the user. This folder contains the vectors and attribute data in shapefile
format and the statistical results in text format (which can be consulted in the software). At the end
of processing, the project file is saved in this folder with the relative paths to the folder. This project
file redisplays the data layers, dispensing with reloading them and recalculating the graphical and
statistical processing.

MapMorphy makes it easy to view and interact with the map dataset. The selection of a
geographical map in the morphospace entails, for example, the visualization of its total difference
in shape with the reference. The Model can then be displayed and the corresponding variables can
be consulted in an attribute table and a floating identification window. Additional analyzes and
formatting can be carried out in other software from the produced results saved in the project folder.
The individuals in the morphospace can be thus easily joined with a geographical location in a GIS
thanks to the shapefile format. Figures 6 and 7 show an example based on ancient maps.
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4.3 Construction of the Shape Space Centered on the Consensus
The statistical adjustment method occupies a central place in the software for the construction of

the shape space and therefore that of the morphospace. MapMorphy uses bidimensional regression,
classically used in geography to compare two surfaces and is considered equivalent to the ordinary
Procrustes method [65]. It is therefore used as it is in type 1 projects which only compare two sets of
landmarks. By consistency, bidimensional regression is also used to construct, with an adaptation, the
shape space of type 2 projects which compare several images. We present here the iterative process of
optimal adjustment, that is to say the one using consensus as a reference. At the end of the generalized
fitting, each point in the shape space corresponds to a specific shape and each particular shape
corresponds to a point in the shape space. The adjustment method chosen for the software is of the
partial type, so the size of all the configurations will be reduced to the value of 1 during the following
process:

1. Calculation of the centroid of each configuration.

2. Calculation of the centroid size of each configuration as previously described (Eq. (1)).

3. Calculation of the centered coordinates reduced to value of 1 of each configuration.

4. Choice of the first centered-reduced configuration as provisional consensus.

5. Rotation of the coordinates of all the configurations as close as possible to the consensus. The
bidimensional regression calculation has been modified to simply pivot the data.

6. Calculation of the new consensus (average of the coordinates of the shapes).

7. Calculation of the average distance between the shapes and the new consensus (distances are
calculated as in Fig. 2).

8. Back to 5 until this average distance stabilizes.

At the end of this iterative process, we obtain the adjusted coordinates of all the original
configurations and those of a consensus, that is to say of an optimal reference. These coordinates
are used to create links between landmarks from a diagram provided with the data loading. They can
then be projected onto a tangent plane and used in PCA to construct the morphospace.

4.4 Testing the Validity of the Cartographic Data
The process of recursive adjustment on the consensus aims to reduce the distance between all the

shapes and the reference as much as possible so that the points corresponding to each individual are
located on the smallest possible part of the shapes space. The consensus is the best-suited reference for
this objective because it allows all shapes to be grouped together as closely as possible after the fitting
process. As in the natural sciences, however, it is possible to use a reference other than the consensus
[66,67], i.e., a topographic map. In this case, the difference between the reference and another shape
can then be interpreted as a transformation not only mathematical but also geographical. However,
the difference between the shapes and this reference will be greater than with the consensus and
the calculation of the models will possibly be less efficient. Because distances between shapes must
be small enough for modeling, geometric morphometrics should be used on objects with relative
morphological resemblance. When analyzed shapes are related, data is indeed very close to the
projection point (the reference) and there are not too many differences between data in the curved
shape space and those in the linear tangent space. This is particularly the case for the usual objects
of geometric morphometrics, that is to say mainly biological structures. On the other hand, when too
large differences remain between all the shapes, image points are less grouped around the reference

4Jean Jolivet, posthumous edition of 1560; Oronce Fine, 1561; Paolo Forlani and Oronce Fine, 1566; Abraham Ortelius, 1570; Gerard Mercator, 1585; Pierre Duval, 1670;
Guillaume de l’Isle, 1721 (source: gallica.bnt.fr/National Library of France).

gallica.bnt.fr
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in the shape space. The points corresponding to the individuals are further away from the point of
tangency and the approximation in the tangent space is distorted with respect to the curved space
(Fig. 8a). This may be the case for certain geographical data, in particular for cognitive spaces having
physical space as a common reference but constructed by individuals with necessarily very different
individual characteristics and experiences [29,30].

Figure 8: Are shape variations small enough for statistical analysis of tangent space? (a) The two
distances compared (example with triangles). The distance A–C is the geodesic Procrustes distance p
on the curve. B and D correspond to the location on the tangent space (here a plane) of the projection of
points A and C, respectively. The Euclidean Procrustes distance B–D constitutes the second distance.
It is calculated as indicated above (Fig. 2) but with the projected coordinates. The more the points
deviate from the point of tangency R, the less these two distances correspond as on a cartographic
projection (see also Fig. 4). (b) The graph under MapMorphy of the linear regression relating each
pair of distances calculated for the individuals (the test concerns the data of Figs. 6 and 7). Only half
of the distance matrix is considered for the calculation of the linear regression (distance A–C = distance
C–A and distance B–D = distance D–B). The points must be globally aligned for the results of the
PCA and the modeling to be relevant. The blue line has a slope of 1. The red line corresponds to the
regression model and should ideally overlap and hide the blue line as in the case presented here



32 RIG, 2023, vol.32

This is why MapMorphy includes a tool5 to test the relevance of a statistical analysis of tangent
space coordinates (Fig. 8b). Using a linear regression through the origin, the software compares all the
distances between pairs of individuals in curved space (geodesic Procrustes distance in radians) and in
tangent space (Euclidean Procrustes distance). When shape variations are small between individuals,
i.e., when the points corresponding to the objects are close to the point of tangency in the shape space,
these two distances evolve together and the regression data are aligned. In this case, statistical analysis
on the tangent space can be carried out without fear because the tangent space correctly represents
the distances of the curved space. When significant differences between individuals are observed,
it is therefore advisable to eliminate the outliers by deleting the configurations presenting excessive
variations (for example from the RMSEs calculated by MapMorphy). This modifies the morphospace,
and improves the quality of the modeling and the results of the linear regression test.

5 Conclusion

Geometric morphometrics is a powerful method for comparing the morphology of several
structures and therefore of several maps. But like any method, it must be applied within a framework
and on specific data (homologous landmarks, related shapes, etc.). We have developed the MapMorphy
software to easily apply this method to cartographic data.

MapMorphy relies on the functions of the Morphoses plugin for MapWindow GIS (https://www.
morphoses.eu/). This extension was intended to calculate by bidimensional regression and in a single
pass, several adjustments on the same reference. The objective was then to express the shape of the
average cognitive space in a group of individuals with a specific profile (age, sex, location, etc.).
MapMorphy’s morphogeometric method is significantly different from its predecessor since it is no
longer a question of calculating an average shape from an a priori on the profile of individuals but of
comparing shapes and exploring the profile of individuals with similar shapes6.

MapMorphy is a hybrid software combining bidimensional regression and the main principles of
geometric morphometrics. In fact, the software no longer limits its objectives to spatial cognition but
extends them to all surfaces structured by homologous landmarks, including biological structures. The
specificity of the software remains however to process geographical data like ancient maps for example.
In this case, it will be necessary to verify that the level of variation of the data is sufficiently low to be
able to consider that the coordinates of the tangent space constitute a representative approximation
of the data of the shape space. This condition is most often fulfilled in the natural sciences but not
necessarily for geographical data. In addition, the software compares the variations of the shapes from
a global point of view, because all the homologous landmarks are moved during the adjustment. The
method is therefore not suitable for analyzing the variation of a particular place in the sample.

The current limits of the software concern the absence of statistical methods allowing to cross the
shape variables (the scores on the PCA) with other variables. However, this can be done by other
software from the saved results. In addition, the page layouts and vector formatting must also be
produced by other software, for example, GIS software, from files in shapefile format produced during
the automatic processing. The objective is now to be able to take semilandmarks into account, which
would make it possible to extend the field of action of the software to structures delimited by curves
and no longer only by landmarks. In the end, MapMorphy is presented as a software calculating the
basic operations of geometric morphometrics using an easy-to-use user interface, not requiring the
knowledge of programming language. It also offers a unique feature, that of being able to display side

5The algorithm used in MapMorphy is directly inspired by that of the tpsSmall32 software [18].
6This requires working on quotas representative of the population studied.

https://www.morphoses.eu/
https://www.morphoses.eu/
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by side the total deviation of a shape with the reference and the partial reconstruction of this deviation
through the model calculated by the PCA.
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Appendix A: Short Glossary of Geometric Morphometrics

Bidimensional regression: statistical method developed by Waldo Tobler from the 1970s to compare
the structure of two surfaces (in particular two maps) using a superimposition of two sets of homolo-
gous landmarks. It is a two-dimensional extension of linear regression. The calculation simultaneously
moves, rotates and scales one set of landmarks on top of another, unlike ordinary Procrustes analysis
which performs the same transformations sequentially. Both methods are considered equivalent.

Centroid size: the most common size measurement methods in geometric morphometrics. It
corresponds to the square root of the sum of the squared distances separating each landmark from
the centroid of the object. The centroid size is used to standardize a set of objects to size of 1.

Configuration: geometric information of an object including its position, size and orientation.

Consensus: optimal reference shape in geometric morphometrics. The consensus corresponds to
the average of the Procrustes coordinates of a set of objects.

Euclidean distance: square root of the sum of the squared deviations of the coordinates of two
points, along orthogonal axes.

Form: geometric information of an object after filtering out the effects of position and orientation.
The shape of an object therefore corresponds to its shape associated with its size.

Geometric morphometrics: set of techniques using the Cartesian coordinates of homologous
landmarks to compare and analyze the shape or form of a set of objects.
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Generalized Procrustes Analysis (GPA): recursive adjustment method seeking to reduce the
Procrustes distance between the calculated reference shape, called consensus, and the other shapes.

Homologous landmark: particular point precisely identified on the surface of an object. They
are said to be homologous because they correspond to each other on each object. Geometric
morphometrics also uses semi-landmarks. These are not identified but calculated in relation to the
geometry of a curve.

K-means: unsupervised classification algorithm allowing each object in a morphospace to be
associated by proximity with groups whose number is defined in advance.

Link: polyline connecting the various fitted landmarks and intended to give a more complete
representation of the shape (in the absence of illustration).

Morphospace (morphological space): space produced by a multidimensional statistical analysis,
PCA type. In this case, it corresponds to a representation of the data along the axes that best express
the data, i.e., that present the strongest variances.

Multiquadric interpolation: interpolation function used in MapMorphy to deform a grid and
illustrations from displacement vectors determined by the difference between homologous landmarks
after statistical fitting. Geometric morphometrics usually uses the thin-plate spline method.

PCA: principal component analysis. Multidimensional statistical method which perform a rigid
rotation on data in the tangent space. PCA can produce several morphological spaces depending on
the principal components chosen for its graph. It is a visualization of the shape space and therefore of
the similarities/dissimilarities of shapes.

Procrustes coordinates: coordinates of the homologous landmarks after GPA. The set of coordi-
nates constitutes the shape of the object.

Procrustes distance: metric of shape difference. It corresponds to the square root of the sum of the
square distances between each pair of homologous landmarks of two objects in shape space (Euclidean
Procrustes distance). This is a good approximation but we can prefer a more precise but very close
measurement on the curved space (geodesic Procrustes distance).

Shape: geometric information of an object once filtered the effects of position, size and orienta-
tion. The shape corresponds to the Procrustes coordinates.

Shape space: general term designating a curved multidimensional space in which each shape is
represented by a point and where each point corresponds to a shape. The notion can refer to different
spaces depending on the type of statistical fitting method used.

Statistical fit: statistical method consisting in modifying the position of a cloud of landmarks so
that it replaces itself as close as possible to a second. The method of least squares is generally used to
optimize this adjustment.

Tangent space: Euclidean space approximating the shape space. It is produced by the orthogonal
or stereographic projection of shapes from shape space. The tangent space is of the same dimension
as the shape space. It is suitable for multidimensional statistical analyzes (e.g., principal component
analyzes).

Residual: difference between the adjusted coordinates and those of a reference.

RMSE: root-mean-square error or mean square error. The calculation is the square root of the
average of the Euclidean distances (the error) squared between reference landmarks and adjusted
landmarks.
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